
Pilotgesteuertes 2/2-Wege-Elektromagnetventil ohne Mindestdifferenzdruck Für Dampf

Pilotgesteuertes 2/2-Wege-Elektromagnetventil ohne Mindestdifferenzdruck Serie VXS

Schutzart IP65

Flammenbeständigkeit gemäß
UL94V-0

schwer entflammbares Spulenmaterial

24 VDC, DIN-Terminal standardisjert

Dichtungsmaterial (Spezial-FKM) mit hoher Dichtwirkung

interne Leckage (Druckluft)

1,0 cm³/min oder weniger

Die Betriebssicherheit wurde durch ein optimiertes Kolbenhauptventil und eine Gummidichtung aus speziellem FKM erhöht.

- · stabiles Gleitverhalten
- Dank des verbesserten Abstreifers dringen weniger Fremdkörper ein.

Geringere Leistungsaufnahme

18 VA → 12 VA*1

20 VA → 15 VA*2

- *1 bisheriges Modell VXS22 → VXS23/24 *2 bisheriges Modell VXS23 → VXS25/26
- Reduzierter Temperaturanstieg der Spule

120 °C \rightarrow 100 °C*3
*3 bisheriges Modell VXS22/23 \rightarrow VXS23 bis 26

Verbesserte Korrosionsbeständigkeit des Ankers Geräuscharme Konstruktion

Dämpfer sorgt für geringere Geräuschentwicklung und Stoßbelastung.

Dank der Dämpfscheibe und des optimierten Abstands wurde das Aufprallgeräusch des Ankers beim Einschalten reduziert (bei geöffnetem Ventil).

Gehäusematerial

C37 (Messing), rostfreier Stahl

Ausführung mit integriertem Vollweggleichrichter (Wechselspannungs-Option)

Längere Lebensdauer

Die Lebensdauer ist dank der Spezialbauweise länger (verglichen mit gebräuchlicher Spulenabschirmung).

Verringertes Brummgeräusch

Die Umwandlung in Gleichspannung durch den Vollweggleichrichter sorgt für weniger Brummgeräusche.

Geräuscharme Konstruktion

Optimierte Konstruktion zur Verringerung des Schaltgeräusches während des Betriebs.

Modell	Größe	Nennweite [mm]	Anschluss- größe	Gehäusematerial	Medium						
VXS23	10A	10	1/4, 3/8	C37 (Messing)							
VA523	IUA	10		rostfreier Stahl							
VXS24	154	4.5	1/2	C37 (Messing)							
VA524	15A	15		rostfreier Stahl							
VVCOE	004	00	0/4	C37 (Messing)	Dampf						
VXS25	20A	20	:UA 20	20 3/4	3/4	rostfreier Stahl					
WYCOC	25A 25 1									C37 (Messing)	
VXS26		25	1	rostfreier Stahl							

Serie

Direktbetätigt

Serie VX

kompakt

Einzelventil

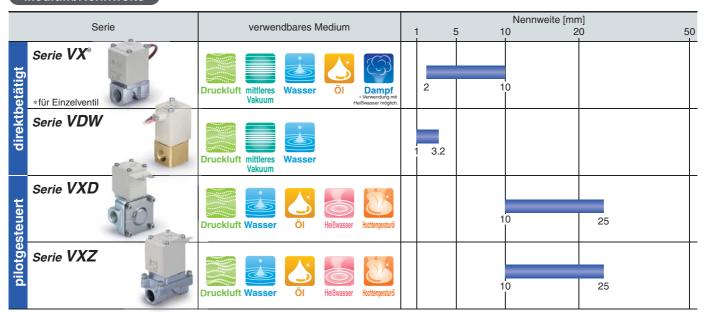
Ventilausführung	Anschlussgröße	Nennweite [mm]
N.C./N.O.	1/8, 1/4, 3/8, 1/2, Ø 6, Ø 8, Ø 10, Ø 12	2, 3, 4, 5, 7, 8, 10

Mehrfachanschlussplatte

Ventil- ausführung	A	Nennweite [mm]			
	Ausführ gemeinsame		Ausführ individueller	ung mit Versorgung	
N.C./ N.O.	IN	OUT	IN	OUT	2, 3, 4,
	3/8	1/8 1/4	1/8 1/4	3/8	5, 7

Ventilausführung	Anschlussgröße	Nennweite [mm]
N.C.	M5, 1/8, Ø 3.2, Ø 4, Ø 6	1, 1.6, 2.3, 3.2

Pilotgesteuert


Ventilausführung	Anschlussgröße	Nennweite [mm]
N.C./N.O.	1/4, 3/8, 1/2, 3/4, 1,	10, 15, 20, 25

Ventilausführung	Anschlussgröße	Nennweite [mm]
N.C./N.O.	1/4, 3/8, 1/2, 3/4, 1, Ø 10, Ø 12, Ø 3/8"	10, 15, 20, 25

Medium/Nennweite



Technische Daten Für Dampf

INHALT

Pilotgesteuertes 2/2-Wege-Elektromagnetventil ohne Mindestdifferenzdruck

Serie VXS

Allgemeine technische DatenS. 2						
Ventilaus	VentilauswahlS. 2					
Für Dampf Modell/Technische Daten Ventil, Medien- und Umgebungstemperatur, Ventilleckage						
	Bestellschlüssel S. 4					
Konstruk	tionS. 6					
Abmessungen						
Gehäu	sematerial: C37 (Messing), rostfreier Stahls.					
ErsatzteileS. 8						
GlossarS. S						
Durchflusseigenschaften ElektromagnetventileS. 10						
DurchflusseigenschaftenS. 12						
Produkts	pezifische SicherheitshinweiseS. 13					
Sicherhe	itshinweise Anhanç					

Serie VXS

Allgemeine technische Daten und Ventilauswahlvorgang

Technische Daten (Standard)

	Ventilkonstruktion Prüfdruck (mit Wasserdruck)		pilotgesteuertes 2/2-Wege-Elektromagnetventil ohne Mindestdifferenzdruck	
			2,0 MPa	
Technische	Gehäusemater	ial	C37 (Messing), rostfreier Stahl	
Daten Ventil	Dichtungsmate	erial	FKM	
vontin	Schutzart		staubgeschützt, spritzwasserfest (IP65)	
	Betriebsumgebung		Umgebung ohne korrosive oder explosive Gase	
	Nennenennung	AC	24 VAC, 48 VAC, 100 VAC, 110 VAC, 200 VAC, 220 VAC, 230 VAC, 240 VAC	
	Nennspannung	DC	24 VDC	
Technische	zulässige Spar	nungsschwankung	±10 % der Nennspannung	
Daten Spule	zulässige AC (mit Vollweggleichrichter)		max. 5 % der Nennspannung	
opu.o	Restspannung	DC	max. 2 % der Nennspannung	
	Spulenisolation		Klasse H	

Lesen Sie vor der Inbetriebnahme die "produktspezifischen Sicherheitshinweise" durch.

Menn die Druckdifferenz kleiner als 0.01 MPa ist, kann der Betrieb bei geringem Durchfluss instabil werden. Falls Sie das Ventil mit geringem Durchfluss betreiben möchten, wenden Sie sich bitte an SMC (siehe Seite 6).

Technische Daten der Magnetspule

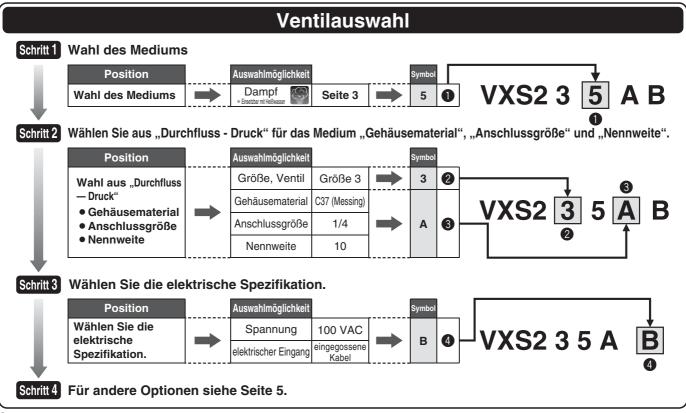
Unbetätigt geschlossen (N.C.)

DC-Ausführung

Modell	Leistungsaufnahme [W] Anm. 1)	Temperaturanstieg [°C] Anm. 2)		
VXS23/24	12	100		
VXS25/26	15	100		

Anm. 1) Die Werte gelten für einer Umgebungstemperatur von 20 °C und bei Nennspannung. (Toleranz: ±10 %)

Anm. 2) Die Werte gelten für eine Umgebungstemperatur von 20 °C und bei Nennspannung. Der Wert hängt von den Umgebungsbedingungen ab. Referenzwert.

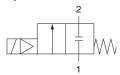

AC-Ausführung (mit Vollweggleichrichter)

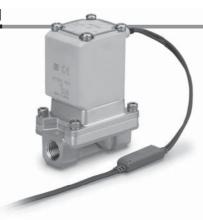
Modell	Scheinleistung [VA] Anm. 1) 2)	Temperaturanstieg [°C] Anm. 3)
VXS23/24	12	100
VXS25/26	15	100

Anm. 1) Die Werte gelten für einer Umgebungstemperatur von 20 °C und bei Nennspannung. (Toleranz: $\pm 10~\%$)

Ann. 2) Frequenz, Einschaltstrom und Scheinleistung im eingeschalteten Zustand ändern sich nicht, da eine Gleichrichterschaltung in der AC-Spule verwendet wird (mit integriertem Vollweggleichrichter).

Anm. 3) Die Werte gelten für eine Umgebungstemperatur von 20 °C und bei Nennspannung. Der Wert hängt von den Umgebungsbedingungen ab. Referenzwert.




Modell/Technische Daten Ventil

N.C.

Symbol

Wenn das Ventil geschlossen ist, wird der Fluss von Anschluss 1 zu Anschluss 2 blockiert. Wird der Druck am Anschluss 2 größer als am Anschluss 1, öffnet das Ventil und das Medium strömt von Anschluss 2 nach Anschluss 1.

unbetätigt geschlossen (N.C.)

Gehäuse-	Größe	Anschlussgröße	Nennweite	Modell	min. Betriebs- differenzdruck ^{Anm. 1)}	max. Betriebsdiff	erenzdruck (MPa)	Durchflussei	genschaften	max. Systemdruck	Gewicht Anm. 2)
material	Grobe	(Nenn-Ø)	[mm]	Modeli	[MPa]	AC	DC	Av x 10 ⁻⁶ m ²	Cv	[MPa]	[g]
	3	1/4 (8A)	10	VXS235				58	2,4		600
C37	_	3/8 (10A)	10	V A 3 2 3 3				67	2,8		000
(Messing), rostfreier	4	1/2 (15A)	15	VXS245	0	1	.0	130	5,3	1.0	720
Stahl	5	3/4 (20A)	20	VXS255				220	9,2		1100
	6	1 (25A)	25	VXS265]			290	12,0		1300

Anm. 1) Der Betrieb des Ventils kann aufgrund zu geringer Kapazität der Druckversorgungsquelle (z. B. Pumpen und Kesseln) oder des Druckverlustes durch den Rohrleitungsquerschnitt instabil werden. Um zu überprüfen, ob die erforderliche Ventilgröße in Ihrer Anwendung eingesetzt werden kann, wenden Sie sich bitte an SMC. Bitte fragen Sie SMC nach der Kompatibilität von Durchfluss des Kreislaufs und Ventilgröße. (siehe Seite 6).

Anm. 2) Gewicht der Ausführung mit eingegossenen Kabeln. Addieren Sie jeweils 10 g bei Schutzrohranschluss, 30 g bei DIN-Terminal bzw. 60 g bei Anschluss mit Klemmenkasten.

• Im Glossar auf Seite 9 finden Sie Erklärungen zur max. Betriebsdruckdifferenz.

Medien- und Umgebungstemperatur

Medium		Temperatur [°C]	Umgebungstemperatur [°C]
	Dampf	max. 183	-20 bis 60
	Heißwasser	max. 99	-20 bis 60

Anm.) ohne Gefrieren

Ventilleckagerate

interne Leckage

Medium	Dichtungsmaterial	Leckagerate
Dampf	FKM	1 cm ³ /min oder weniger
Heißwasser	FIXIVI	0,1 cm ³ /min oder weniger

externe Leckage

Medium	Dichtungsmaterial	Leckagerate
Dampf	FKM	1 cm ³ /min oder weniger
Heißwasser	I IXIVI	0,1 cm ³ /min oder weniger

Anm.) Leckagewert bei einer Umgebungstemperatur von 20 °C.

Bestellschlüssel

VXS2

allgemeine technische Daten Dichtungsmaterial FKM

Medium 4

5 Für Dampf

Größ	3e/Ventilty	/p		Gehäusematerial/Anschlussgröße/ Nennweite							
Symbol	Größe	Ventilausführung	Symbol	Gehäusematerial	Anschlussgröße	Nennweite					
			Α	C37	1/4						
3	10A	N.C.	В	(Messing)	3/8	10					
3	IUA	N.C.	С	rostfreier	1/4	10					
			D	Stahl	3/8						
4	154	N.C.	F	C37 (Messing)	1/0	15					
4	15A	N.C.	G	rostfreier Stahl	1/2	15					
_			Н	C37 (Messing)	- / -						
5	20A	N.C.	J	rostfreier Stahl	3/4	20					
			K	C37 (Messing)							
6	25A	N.C.	L	rostfreier Stahl	1	25					

weitere Optionen

WCILC	weitere Optionen										
Symbol	ölfrei	Anschlussgewinde									
_		Rc									
Α		G									
В	_	NPT									
D	0	G									
Е		NPT									
Z	0	Rc									

Spannung/elektrischer Eingang

(Spulenisolation: Klasse H)

Symbol	Spannung	elektrischer Eingang				
Α	24 VDC	eingegossene Kabel				
В	100 VAC					
С	110 VAC	eingegossene Kabel				
D	200 VAC	(mit Funken- löschung				
Е	230 VAC	,				
G	24 VDC					
Н	100 VAC	DIN-Terminal				
J	110 VAC	/ mit Funken- löschung				
K	200 VAC	\ Anm. 1) 2) /				
L	230 VAC					
N	100 VAC	121				
Р	110 VAC	Klemmenkasten / mit Funken- \				
Q	200 VAC	löschung				
R	230 VAC					
Т	100 VAC	Kahalainaana füu				
U	110 VAC	Kabeleingang für Schutzrohranschluss				
V	200 VAC	(mit Funken- löschung				
W	230 VAC	(losellarig)				

Symbol	Spannung	elektrischer Eingang					
Z1A	48 VAC						
Z1B	220 VAC	eingegossene Kabel /mit Funken- \					
Z1C	240 VAC	löschung					
Z1U	24 VAC						
Z1F	48 VAC						
Z1G	220 VAC	DIN-Terminal /mit Funken- \					
Z1H	240 VAC	löschung					
Z1V	24 VAC	,					
Z1K	48 VAC						
Z1L	220 VAC	Klemmenkasten /mit Funken- \					
Z1M	240 VAC	löschung					
Z1W	24 VAC	,					
Z1P	48 VAC	Kabalainaana füu					
Z1Q	220 VAC	Kabeleingang für Schutzrohranschluss					
Z1R	240 VAC	(mit Funken- löschung					
Z1Y	24 VAC	(lossifiery					

Symbol	Spannung	elektrischer Eingang		
Z2A	24 VDC			
Z2B	100 VAC			
Z2C	110 VAC			
Z2D	200 VAC	DIN-Terminal		
Z2E	230 VAC	/ mit Funken- löschung, mit		
Z2F	48 VAC	\Betriebsanzeige /		
Z2G	220 VAC			
Z2H	240 VAC			
Z2V	24 VAC			
Z2L	100 VAC			
Z2M	110 VAC			
Z2N	200 VAC	Klemmenkasten		
Z2P	230 VAC	/ mit Funken- \		
Z2Q	48 VAC	löschung, mit Betriebsanzeige		
Z2R	220 VAC	\Dottiobbatizoige/		
Z2S	240 VAC			
Z2W	24 VAC			

Anm. 1) Die Wechselspannungsspule für Spulenklasse H mit DIN-Terminal hat keinen integrierten Vollweggleichrichter. Der Vollweggleichrichter ist im DIN-Stecker integriert. Siehe Seite 8, um diesen als Zubehör zu bestellen.

Anm. 2) Die Isolierungsklasse des DIN-Steckers ist "B".

Anm. 3) Faston-Klemmenanschluss ist nicht erhältlich.

Entnehmen Sie Angaben zu weiteren Sonderoptionen der Seite 5.

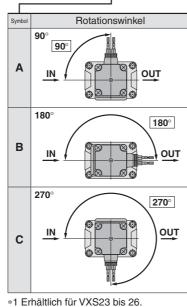
mit Befestigungselement

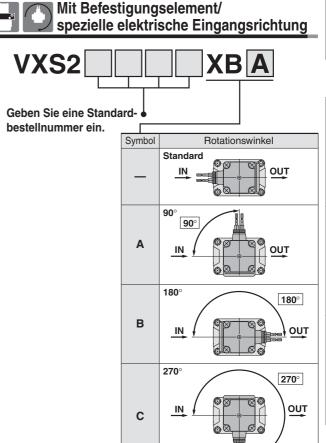
spezielle elektrische Eingangsrichtung

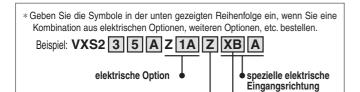
Für Dampf

Installationsoptionen (Montageoption/spezielle elektrische Eingangsrichtung)

Weitere Sonderoptionen


Folgende Kombinationen können bei den Installationsoptionen gewählt werden.


Bestelloption XC□ XB□


Spezielle elektrische Eingangsrichtung Geben Sie eine Standardbestellnummer ein. Symbol Rotationswinkel

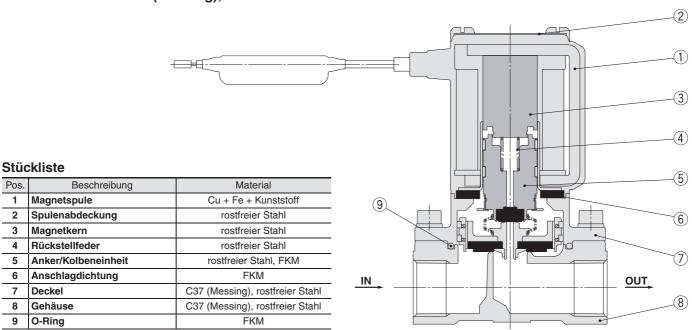
Serie VXS

- *1 Frhältlich für VXS23 bis 26.
- *2 Das Befestigungselement wird dem Ventil beigelegt.

weitere Optionen

Befestigungselement <u>Anzugsdreh</u>moment VXS23/24: 2 bis 3 N·m VXS25/26: 4 bis 5 N·m

Montage des Befestigungselements



mit Befestigungselement

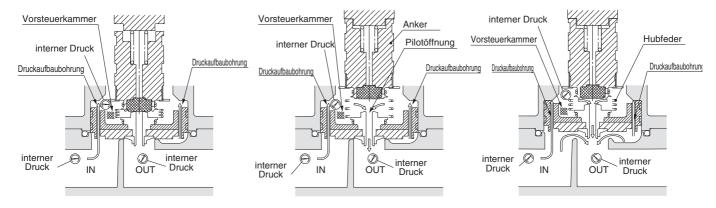
Konstruktion/unbetätigt geschlossen (N.C.)

Gehäusematerial: C37 (Messing), rostfreier Stahl

Funktionsprinzip

Ausgeschaltet

Das Medium strömt bei IN ein und dann weiter durch die Druckaufbaubohrung, um die Vorsteuerkammer zu füllen.


Das Hauptventil wird durch den Druck in der Vorsteuerkammer und der kraft der Rückstellfeder geschlossen.

Unmittelbar nach dem Einschalten (Pilotventil offen)

Wenn die Spule bestromt wird, wird der Anker angezogen und öffnet die Pilotöffnung. Das Medium, in der Vorsteuerkammer, fließt durch die Pilotöffnung zur OUT-Seite.

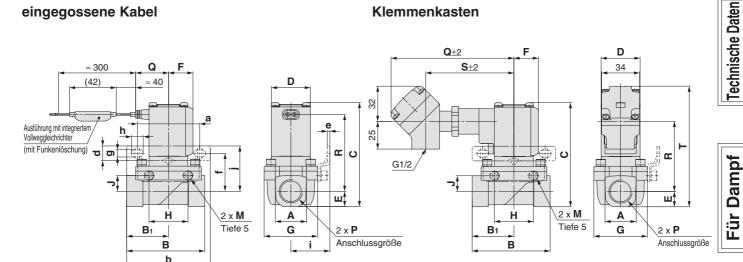
Eingeschaltet (Hauptventilseite)

Der Druck in der Vorsteuerkammer nimmt ab, dadurch dass das Medium durch die Pilotöffnung abfließt. Da die Kraft, die das Ventil geschlossen hält, wird durch das Abfließen des Mediums verringert. Dadurch steigt die Kraft, die das Hauptventil öffnet, gegenüber der Kraft die es geschlossen hält. Das Hauptventil öffnet sich durch die Gegenkraft der Hubfeder, selbst wenn der Druck auf der IN-Seite 0 MPa oder sehr gering ist.

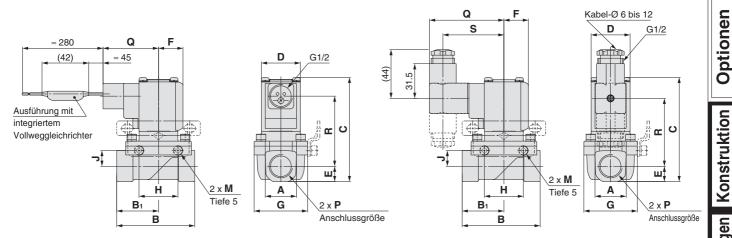
Marnung

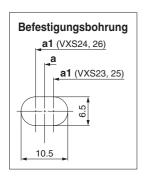
Instabile Schaltvorgänge können folgende Ursachen haben:

- Geringe Förderleistung von Pumpe, Kesse usw..
- Einsatz mehrerer Winkel oder T-Stücke in der Verrohrung oder dünne Düsen am Ende der Rohrleitung montiert usw. Dies kann zu Störungen beim Öffnen/Schließen der Ventile oder zum Schwingen führen und Funktionsstörungen der Ventile verursachen. Wenn die Produkte mit Vakuum verwendet werden, dann kann aufgrund dieser Bedingungen das Vakuumniveau schwanken. Prüfen Sie den Durchfluss im System und wenden Sie sich an SMC bezüglich der Eignung des Ventils.



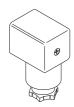
Abmessungen/Gehäusematerial: C37 (Messing), rostfreier Stahl


eingegossene Kabel


Klemmenkasten

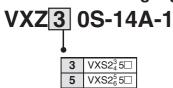
Kabeleingang für Schutzrohranschluss

DIN-Terminal


Abmes	Abmessungen																				
Modell	Anschlussgröße P			D.	0	ח	_	E G	G	н	-	М	Montage mit Befestigungselement								
Modeli		A		B1	C	U		Г	G	п	0	IVI	а	b	d	е	f	g	h		j
VXS23	1/4, 3/8	21	57	28,5	87,5	35	10,5	22	40	35	10	M5	56	75		2,3	30	6,5	10,5	31	37
VXS24	1/2	28	70	37,5	94	35	14	22	48	35	14	M5	56	75	13,5	2,3	34	6,5	10,5	35	41
VXS25	3/4	33,5	71	38,5	105,5	40	17	24,5	62	33	15,2	M6	70,5	92	10,5	2,3	39	6,5	10,5	43	46
VXS26	1	42	95	49,5	111,5	40	20	24,5	66	37	17,2	M6	70,5	92		2,3	41	6,5	10,5	45	48

			elektrischer Eingang										
Modell	Anschlussgröße P	eingegossene Kabel		DIN-Terminal			Klemmenkasten				Kabeleingang für Schutzrohranschluss		
		Q	R	Q	R	S	Q	R	S	T	Q	R	
VXS23	1/4, 3/8	29,5	66	67	58	55	110,5	60	79,5	102,5	50	60	
VXS24	1/2	29,5	69,5	67	61,5	55	110,5	63,5	79,5	109	50	63,5	
VXS25	3/4	32	78	69,5	70	57,5	113	72	82	120,5	52,5	72	
VXS26	1	32	81	69,5	72,5	57,5	113	74,5	82	126,5	52,5	74,5	

Ersatzteile


• Bestell-Nr. DIN-Stecker

<Spulenisolierung/Klasse H>

elektrische Option	Nennspannung	Bestell-Nr. Stecker
	24 VDC	GDM2A-G-S5
	100 VAC	
	110 VAC	
	200 VAC	
ohne	220 VAC	GDM2A-R
	230 VAC	GDIVIZA-N
	240 VAC	
	24 VAC	
	48 VAC	
	24 VDC	GDM2A-G-Z5
	100 VAC	GDM2A-R-L1
	110 VAC	GDM2A-R-L1
	200 VAC	GDM2A-R-L2
mit Betriebsanzeige	220 VAC	GDM2A-R-L2
Doniosodrizoigo	230 VAC	GDM2A-R-L2
	240 VAC	GDM2A-R-L2
	24 VAC	GDM2A-R-L5
	48 VAC	GDM2A-R-L5

- Bestell-Nr. der Dichtung für DIN-Stecker
 VCW20-1-29-1-F
- Bestell-Nr. Befestigungselement

*2 Befestigungsschrauben werden gemeinsam mit dem Befestigungselement geliefert.

Serie VXS Glossar

Pneumatische Begriffe

1. Maximaler Betriebsdifferenzdruck

Der maximale zum Betrieb zulässige Differenzdruck (die Differenz zwischen Eingangs- und Ausgangsdruck) bei geschlossenem oder offenem Ventil. Ist der Ausgangsdruck 0 MPa, entspricht dies dem maximalen Betriebsdruck.

2. Minimaler Betriebsdifferenzdruck

Der minimale Differenzdruck (Differenz zwischen Eingangsund Ausgangsdruck), der nötig ist, um das Ventil vollständig offen zu halten.

3. Maximaler Systemdruck

Der maximale Druck, mit dem die Rohrleitungen beaufschlagt werden können (Rohrleitungsdruck).

[Die Druckdifferenz am Elektromagnetventil darf den max. Betriebsdifferenzdruck nicht überschreiten.]

4. Prüfdruck

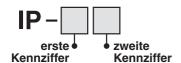
Statischer Druck der für 1 Minute angelegt wird. Danach muss das Ventil bei Betriebsdruck innerhalb der angegebenen Spezifikation arbeiten.

Elektrische Begriffe

1. Scheinleistung [VA]/Leitung (W)

Voltampere ist das Produkt aus Spannung [V] und Strom [A]. Leistungsaufnahme [W]: Für Wechselstrom: $W = V \cdot A \cdot \cos\theta$. Für Gleichstrom: $W = V \cdot A$.

Anm.) $cos\theta$ zeigt den Leistungsfaktor. $cos\theta \approx 0.9$


2. Stoßspannung oder Spannungsspitze

Eine hohe Spannung, die kurzzeitig im Schaltelement entsteht, wenn die Spannungsversorgung ausgeschaltet wird.

3. Schutzart

Eine Schutzartbezeichnung ist definiert gemäß "EN60529"

Beachten Sie die Schutzart der Produkte.

Erste Kennziffer:

Schutzgrad für Berührungs- und Fremdkörperschutz

0	kein Schutz
1	geschützt gegen feste Fremdkörper (ab Ø 50 mm)
2	geschützt gegen feste Fremdkörper (ab Ø 12 mm)
3	geschützt gegen feste Fremdkörper (ab Ø 2,5 mm)
4	geschützt gegen feste Fremdkörper (ab Ø 1,0 mm)
5	staubgeschützt
6	staubdicht

Elektrische Begriffe

Zweite Kennziffer: Schutzgrad Wasserschutz

_						
()	kein Schutz	_			
•	1	Schutz gegen senkrecht fallendes Tropfwasser	tropfwassergeschützte Ausführung 1			
2	2 Schutz gegen senkrecht fallendes Tropfwasser bis 15° des Gehäuses gegen die Senkrechte tropfwassergeschützte A					
(3	Schutz gegen fallendes Sprühwasser bis 60° gegen die Senkrechte	wasserdichte Ausführung			
4	1	Schutz gegen allseitiges Spritzwasser	spritzwasserfeste Ausführung			
į	5	Schutz gegen Strahlwasser	wasserstrahlgeschützte Ausführung			
(6	Schutz gegen starkes Strahlwasser	stark wasserstrahlgeschützte Ausführung			
7	7	Schutz gegen zeitweiliges Untertauchen	eintauchbare Ausführung			
8	3	Schutz gegen dauerndes Untertauchen	untertauchbare Ausführung			

Beispiel: IP65: staubdichter Schutz gegen Strahlwasser

"Schutz gegen Strahlwasser" bedeutet, dass kein Wasser in das System eindringt und seine Funktionstüchtigkeit beeinträchtigt, wenn Wasser wie vorgeschrieben für 3 Minuten angewandt wird. Sorgen Sie für ausreichenden Schutz, da das Gerät in einer konstant wassertropfen-reichen Umgebung nicht einsetzbar ist.

Sonstige

1. Material

FKM: Fluorkautschuk

2. Ölfreie Ausführung

Entfetten und Waschen der medienberührenden Teile

3. Erklärung zum Pneumatiksymbol

Wenn das Ventil geschlossen ist, wird der Fluss von Anschluss 1 zu Anschluss 2 blockiert. Wird der Druck am Anschluss 2 größer als am Anschluss 1, öffnet das Ventil und das Medium strömt von Anschluss 2 nach Anschluss 1.

Serie VXS

Durchflusseigenschaften Elektromagnetventile (Angabe der Durchflusseigenschaften)

1. Angabe der Durchflusseigenschaften

Die Durchflusseigenschaften eines Geräts, wie z. B. eines Elektromagnetventils, werden in seinen technischen Daten wie in Tabelle (1) angegeben.

Tabelle (1) Angabe der Durchflusseigenschaften

zugehörige Geräte	Angaben durch internationale Norm	sonstige Angaben	Standard gemäß	
Geräte zur	Av	_	IEC60534-2-3: 1997 JIS B 2005: 1995	
Prozessmediensteuerung	_	Cv	Gerät: JIS B 8471, 8472, 8473	
Geräte für pneumatische Anwendungen	C, b	_	ISO 6358: 1989 JIS B 8390: 2000	
	_	s	JIS B 8390: 2000 Gerät: JIS B 8373, 8374, 8375, 8379, 8381	
		Cv	ANSI/(NFPA) T3.21.3: 1990	

2. Steuerungsgeräte für Prozessmedien

(1) Standard gemäß

IEC60534-2-3: 1997: Stellventile für die Prozessregelung. Teil 2: Durchflusskapazität, Kapitel 3- Prüfverfahren

JIS B 2005: 1995: Prüfverfahren für den Durchflusskoeffizienten eines Ventils

Gerätestandard: JIS B 8471: Elektromagnetventil für Medium Wasser

JIS B 8472: Elektromagnetventil für Medium Dampf

JIS B 8473: Elektromagnetventil für Medium Öl

(2) Definition der Durchflusskennwerte

Av-Faktor: Wert des Durchflusses von Reinwasser in m³/s das durch ein Ventil (Prüfgerät) fließt, bei einer Druckdifferenz von 1 Pa. Er wird mittels folgender Formel berechnet.

$$\mathbf{A}\mathbf{v} = \mathbf{Q} \sqrt{\frac{\rho}{\Delta \mathbf{P}}}$$
(1)

Av: Durchflusskoeffizient [m2]

Q: Durchfluss [m³/s]

 ΔP : Druckdifferenz[Pa]

ρ : Mediendichte [kg/m³]

(3) Formel für Durchfluss

Wird durch folgende Durchflussformel Formal beschrieben. Die Durchflusseigenschaften sind auch in Grafik (1) dargestellt.

Bei Flüssigkeiten:

$$Q = 1.9 \times 10^6 Av \sqrt{\frac{\Delta P}{G}}$$
(2)

Q: Durchfluss [L/min]

Av: Durchflusskoeffizient [m2]

△P: Druckdifferenz [MPa]

G: spezifisches Gewicht [Wasser = 1]

Bei gesättigtem Wasserdampf:

$$Q = 8.3 \times 10^6 \text{Av} \sqrt{\Delta P (P_2 + 0.1)}$$
 (3)

Q: Durchfluss [kg/h]

Av: Durchflusskoeffizient [m2]

 ΔP : Druckdifferenz [MPa]

 P_1 : Eingangsdruck [MPa]: $\Delta P = P_1 - P_2$

P2: Ausgangsdruck [MPa]

Durchflusseigenschaften Elektromagnetventile Serie VXS

Umrechnung des Durchflusskoeffizienten:

 $\mathbf{A}\mathbf{v} = 28 \times 10^{-6} \mathbf{K}\mathbf{v} = 24 \times 10^{-6} \mathbf{C}\mathbf{v}$ (4)

Hier: **Kv**-Faktor : Wert des Durchflusses von Reinwasser in m³/h, das durch ein Ventil fließt, bei 5 bis 40 °C und einer Druckdifferenz von 1 bar.

Cv-Faktor (Referenzwert): Wert des Durchflusses von Reinwasser in der US-Einheit US gal/min, das durch ein Ventil fließt, bei 60 °F und einer Druckdifferenz von 1 lbf/in² (psi).

Dieser Wert unterscheidet sich von den Faktoren Kv und Cv für pneumatische Zwecke, aufgrund der unterschiedlichen Prüfverfahren.

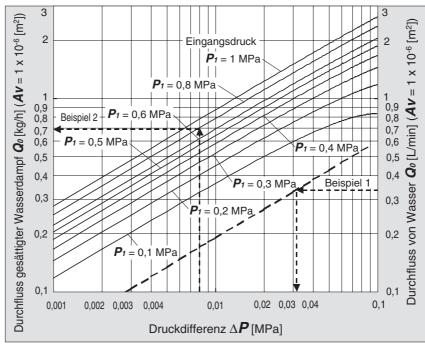


Diagramm (1) Durchflusseigenschaften

Beispiel 1:

Berechnung der Druckdifferenz, wenn Wasser mit 15 [L/min] durch ein Elektromagnetventil fließt, mit $\mathbf{A}\mathbf{v} = 45 \text{ x } 10^{-6} \text{ [m}^2]$. Da $\mathbf{Q}_0 = 15/45 = 0.33$ [L/min], gemäß Diagramm (1), wenn $\Delta \mathbf{P}$ bei \mathbf{Q}_0 gleich 0.33 abgelesen wird, ergibt sich ein Wert von 0.031 [MPa].

Beispiel 2:

Berechnung des Durchflusses für gesättigten Dampf, wenn $P_1 = 0.8$ [MPa], $\Delta P = 0.008$ [MPa] bei einem Magnetventil mit $AV = 1.5 \times 10^{-6}$ [m²]. Gemäß Diagramm (1), wenn Q_0 bei P_1 gleich 0.8 und ΔP gleich 0.08 abgelesen wird, ergibt sich ein Wert von 0.7 [kg/h]. Der Durchfluss ist also $Q = 0.7 \times 1.5 = 1.05$ [kg/h].

(4) Testmethode

Schließen Sie den Prüfling wie in Abb. (2) an. Führen Sie dann Wasser mit 5 bis 40 °C zu und messen Sie den Durchfluss bei einer Druckdifferenz von 0,075 MPa. Die Druckdifferenz muss ausreichend groß sein, damit die Reynoldszahl nicht größer wird als 4 x 10⁴.

Die Messergebnisse werden in Formel (1) eingesetzt, und man erhält **Av**.

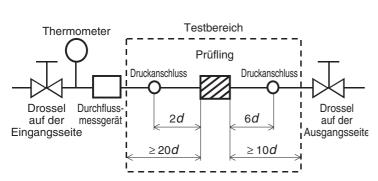
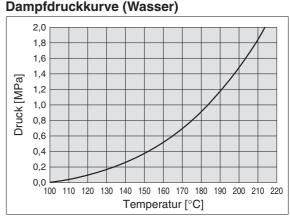
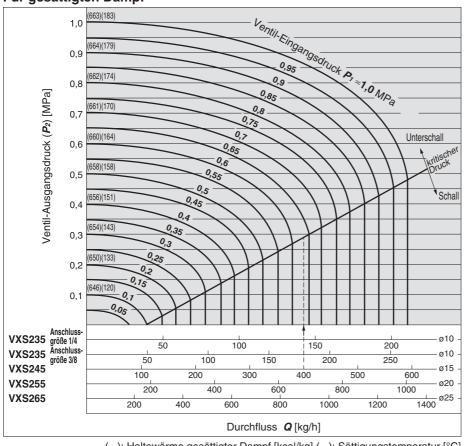



Abb. (2) Prüfschaltung nach IEC60534-2-3, JIS B 2005

Das Diagramm oben wird mit der Antoine-Gleichung berechnet.



Serie VXS

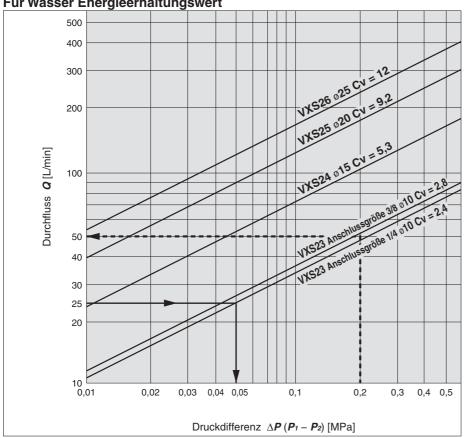
Durchflusseigenschaften

Anm.) Verwenden Sie dieses Diagramm als Richtlinie. Siehe Seiten 10 und 11 zur Ermittlung von exakten Durchflusswerten.

Für gesättigten Dampf

(): Haltewärme gesättigter Dampf [kcal/kg] (): Sättigungstemperatur [°C]

Lesen des Diagramms


Der Druck im Schallbereich für einen Durchfluss von 400 kg/h ist

bei einer Bohrung von Ø 15 (VXS224□-04)

P₁ ≈ 0,64 MPa

Die Haltewärme variiert leicht in Abhängigkeit vom Druck P1, bei 400 kg/h beträgt sie jedoch ca. 25.900 kcal/h.

Lesen des Diagramms

Die Druckdifferenz für einen Durchfluss von 25 L/min ist

bei einer Bohrung von Ø 10 (VXS23/ Anschlussgröße 1/4),

 $\Delta P \approx 0.05 \text{ MPa}$

Als optimale Größe bei einer Druckdifferenz von $\Delta P \approx 0.2$ MPa und einem Durchfluss von 50 L/min ergibt sich das Modell VXS23 (Ø 10-Bohrung, Anschlussgröße 3/8).

Vor der Inbetriebnahme zu beachten:

Die zusätzlichen Sicherheitshinweise auf der Katalogumschlagseite, dem Handbuch "Sicherheitshinweise zum Umgang mit SMC Produkten" (M-EU03-3) und der Installations- und Wartungsanleitung sind ebenfalls zu beachten. Das Handbuch und die Anleitung stehen auf der SMC Homepage "http://www.smc.eu" zum Download bereit.

Design

∆ Warnung

1. Verwenden Sie das Produkt nicht als Notausschaltventil o. Ä.

Die in diesem Katalog beschriebenen Ventile sind nicht für Sicherheitsanwendungen (z. B. zur Verwendung als Notausschaltventil) ausgelegt. Werden die Ventile in derartigen Systemen eingesetzt, müssen zusätzliche verlässliche Sicherheitsvorkehrungen getroffen werden.

2. Langzeitansteuerung

Die Elektromagnetspule erzeugt Wärme, wenn sie dauerhaft bestromt wird. Vermeiden Sie den Einsatz in verschlossenen Behältern. Installieren Sie die Ventile in einer gut belüfteten Umgebung. Berühren Sie es weder während der Einschaltphase noch unmittelbar danach.

3. Flüssigkeitskreislauf

Montieren Sie beim Einsatz des Ventils mit flüssigen Medien ein Überdruckventil im System. Das verhindert, dass Schäden durch thermische Ausdehnung in einem geschlossenen Leitungsabschnitt entstehen.

4. Haltedruck (inkl. Vakuum)

Da Ventile innere Druckluftleckagen aufweisen können, sind sie nicht zur Druck- bzw. Vakuumkonstanthaltung in einem Druckgefäß geeignet.

- Installieren Sie einen Kabeleingang für Schutzrohranschluss, wenn die Ausführung mit Klemmenkasten als Äquivalent für die IP65-Schutzart verwendet werden soll.
- Wenn durch große Druckschwankungen Wasser/-Dampfschlag oder andere Schläge auf das Ventil wirken, kann es beschädigt werden. Vermeiden Sie derartige Anwendungen.

Auswahl

△ Warnung

1. Verwendung mit geringem Durchfluss

Instabiler Schaltvorgänge können folgende Ursachen haben:

• Geringe Förderleistung von Pumpe oder Boiler usw. • Einsatz mehrerer Winkel oder T-Stücke in der Verbohrung oder • dünne Düsen am Ende der Rohrleitung montiert, usw. Dies kann zu Störungen beim Öffnen/Schließen der Ventile oder zum schwingen der Membran führen und Funktionsstörungen der Ventile verursachen.

Prüfen Sie Druckdifferenz und Durchfluss, um die geeignete Ventilgröße unter Bezugnahme auf die Durchflusseigenschaften auf Seite 12 zu bestimmen. Stellen Sie sicher, dass die Druckdifferenz nicht unter 0,01 MPa sinkt, solange das Ventil geöffnet ist.

2. Medium

1) Korrosive Gase

Korrosive Gase können Spannungskorrosion, Risse oder andere Schäden verursachen. Sie sind deshalb nicht für Ventile dieses Katalogs geeignet.

- 2) Bei Verwendung eines Messinggehäuses können je nach der Wasserqualität Korrosion und interne Leckagen auftreten. Falls Probleme auftreten, tauschen Sie das Produkt durch eine Ausführung mit Gehäuse aus rostfreiem Stahl aus.
- 3) Verwenden Sie ein ölfreies Ventil, wenn keine Ölpartikel in den Medienkanal gelangen dürfen.

Auswahl

⚠ Warnung

3. Medienqualität

<Dampf, Wasser>

Die Verwendung von Medien mit Verunreinigungen kann Probleme, wie Betriebsausfall und Leckagen durch Verschleiß des Ventils und des Ankers oder das Anhaften von Fremdkörpern an den beweglichen Teilen des Ankers, hervorrufen. Installieren Sie einen passenden Filter (Sieb) direkt am Ventileingang. Generell ist eine Maschenweite von 100 erforderlich.

Die Standard-Maschenweite für das Sieb ist 100. Die Größe und Form der auftretenden Verunreinigungen ist je nach Betriebsumgebung unterschiedlich. Den Zustand des Mediums prüfen und eine geeignete Maschenweite wählen.

Das zugeführte Wasser beinhaltet Stoffe, die Kalk Ablagerungen oder Schlamm verursachen, wie z. B. Kalzium und Magnesium.

Da diese Ablagerungen die Funktion des Ventils beeinträchtigen können, ist zum Entfernen dieser Stoffe ein Wasserenthärter zu installieren. Keinen Dampf verwenden, der Chemikalien, synthetische Öle mit organischen Lösungsmitteln, Salz oder korrodierende Gase usw. enthält, da dies zu Schäden oder Verschleiß führen kann.

Da dieses Produkt durch das verwendete spezielle FKM im Vergleich zum herkömmlichen FKM eine höhere Alkalibeständigkeit aufweist, kann es mit Dampf verwendet werden. Die Beständigkeit gegenüber anderen Chemikalien, wie z. B. organische Lösungsmittel, ist wie bei standard FKM. Prüfen Sie vor der Verwendung dieses Produkts die Beständigkeit gegenüber allen Medien im System.

4. Umgebungsbedingung

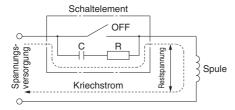
Beachten Sie den Betriebstemperaturbereich. Überprüfen Sie die Verwendbarkeit der Produktmaterialien bei der jeweiligen Umgebungstemperatur. Vermeiden Sie den Kontakt des Betriebsmediums mit der Außenoberfläche des Produkts.

5. Betrieb bei niedrigen Temperaturen

- Das Ventil kann in einer Umgebungstemperatur zwischen –20 und –10 °C betrieben werden. Dennoch müssen Maßnahmen zur Verhinderung des Gefrierens oder der Verfestigung von Verunreinigungen getroffen werden.
- 2) Wenn das Ventil in kalten Klimazonen für Anwendungen mit Wasser verwendet wird, sind geeignete Maßnahmen gegen das Einfrieren der Leitungen zu treffen, nachdem die Pumpe für die Wasserversorgung abgestellt wurde, z. B. Ablassen des Wassers aus den Leitungen usw. Beim Betrieb mit Dampf ist darauf zu achten, dass die Spule nicht mit dem Dampf in Berührung kommt.

Der Einbau eines Lufttrockners und eine Wärmedämmung des Gehäuses sind zu empfehlen, um ein Einfrieren zu verhindern, wenn bei hohem Durchfluss die Taupunkttemperatur hoch und die Umgebungstemperatur niedrig ist.

Vor der Inbetriebnahme zu beachten:


Die zusätzlichen Sicherheitshinweise auf der Katalogumschlagseite, dem Handbuch "Sicherheitshinweise zum Umgang mit SMC Produkten" (M-EU03-3) und der Installations- und Wartungsanleitung sind ebenfalls zu beachten. Das Handbuch und die Anleitung stehen auf der SMC Homepage "http://www.smc.eu" zum Download bereit.

Auswahl

Achtung

1. Restspannung

Wenn ein Widerstand parallel zu einem Schaltelement und ein RC-Glied (Funkenlöschung) zum Schutz des Schaltelements eingesetzt wird, ist zu beachten, dass der Kriechstrom, der durch den Widerstand bzw. das RC-Glied fließt, unter Umständen dazu führen kann, dass sich das Ventil nicht abschaltet.

AC-Spule: max. 5 % der Nennspannung DC-Spule: max. 2 % der Nennspannung

Montage

⚠ Warnung

1. Schalten Sie die Anlage aus, wenn größere Mengen Druckluft entweichen oder das Gerät nicht ordnungsgemäß funktioniert.

Überprüfen Sie nach Montagearbeiten durch entsprechende Funktionskontrollen, dass das Gerät korrekt eingebaut ist.

- 2. Wenden Sie keine äußeren Kräfte auf den Spulenteil an. Setzen Sie beim Festziehen einen Schraubenschlüssel o. Ä. außen an den Leitungsanschlüssen an.
- 3. Montieren Sie Ventile stets so, dass die Spule nach oben gerichtet ist und nicht nach unten.

Wenn Sie ein Ventil nach unten gerichtet einbauen, können im Medium enthaltene Fremdkörper am Eisenkern anhaften und eine Fehlfunktion verursachen. Die Spule muss insbesondere bei geforderter Leckagefreiheit, wie z. B. bei Vakuumanwendungen und Leckagefreien Anwendungen, nach oben gerichtet montiert werden.

4. Bringen Sie am Spulenteil des Geräts keine Wärmeisolierung

Montieren Sie Isolierband, Heizgeräte usw. als Gefrierschutz nur für die Leitungen und den Ventilkörper. Die Spule kann ansonsten durchbrennen.

- Sichern Sie das Produkt mit Befestigungselementen oder Montagegewinden. Bei Verrohrung mit Stahlleitungen und Kupferverschraubungen kann die entfallen
- Vermeiden Sie Vibrationsquellen bzw. montieren Sie das Ventil so nahe wie möglich daran, damit keine Resonanzschwingungen auftreten.
- 7. Auftragen von Farben und Beschichtungen

Auf das Produkt geklebte oder gedruckte Warnungen oder technische Daten dürfen weder abgekratzt noch entfernt oder verdeckt werden.

Leitungsanschluss

Achtung

1. Vorbereitende Maßnahmen

Spülen Sie vor der Installation die Leitung gründlich oder blasen Sie sie mit Druckluft aus, um Späne, Schneidöl und andere Verunreinigungen aus dem Leitungsinnern zu entfernen. Verlegen Sie die Schläuche so, dass auf das Gehäuse keine Zug-, Druck- oder Biegekräfte wirken.

- 2. Zur Vermeidung von elektrolytischer Korrosion dürfen die Leitungen nicht elektr. Potentialausgleich verwendet werden.
- 3. Beachten Sie beim Festziehen von Verschraubungen an Ventilen die folgenden Anzugsdrehmomente.

Die unten stehende Tabelle zeigt die korrekten Anzugsdrehmomente für den Anschluss der Stahlleitungen. Ein zu geringes Anzugsdrehmoment führt zu Medienleckage. Siehe angegebenes Anzugsdrehmoment für die Montage der Schraub-/Steckverbindungen.

Anzugsdrehmomente für Leitungsanschlüsse

Größe des Anschlussgewindes	korrektes Anzugsdrehmoment [N·m]	
Rc1/8	3 bis 5	
Rc1/4	8 bis 12	
Rc3/8	15 bis 20	
Rc1/2	20 bis 25	
Rc3/4	- 20 DIS 25	
Rc1	36 bis 38	

4. Leitungsanschluss an das Produkt

Beachten Sie beim Anschließen der Lleitungen die Angaben im Betriebshandbuch um Fehler bei der Anschlussbelegung zu vermeiden.

5. Verwendung von Dichtband

Achten Sie beim Anschließen der Leitungen, Schraubverbindungen usw. darauf, dass weder Späne von den Leitungsgewinden noch Dichtungsmaterial in das Ventil gelangen.

Lassen Sie außerdem bei Gebrauch von Dichtband am Ende der Leitungen/ Verschraubungen 1,5 bis 2 Gewindegänge frei.

- Überschüssige Mengen an Gewindedichtungsmaterialien, wie z. B. Dichtband oder flüssige Gewindedichtung, können in das Produktinnere geraten und Funktionsstörungen verursachen.
- 7. Dampf aus Kesseln enthält große Mengen an Kondensat. Verwenden Sie einen Wasserabscheider.
- 8. Verlegen Sie die Leitungen so, dass sich kein Kondensat im Elektromagnetventil ansammelt.

Verlegen Sie die Leitungen zum Elektromagnetventil höher als die umliegenden Leitungen. Verlegen Sie die Leitungen zum Elektromagnetventil niemals im unteren Bereich des Leitungssystems. Wenn sich Kondensat im Elektromagnetventil oder in den Leitungen ansammelt, kann es im System zum Wasserhammereffekt kommen. Dies kann zu Beschädigungen und Funktionsstörungen des Elektromagnetventils und der Leitungen führen. Wenn dieses Problem besteht, installieren Sie einen Bypass, um das Kondensat aus den Leitungen abzulassen.

Vor der Inbetriebnahme zu beachten:

Die zusätzlichen Sicherheitshinweise auf der Katalogumschlagseite, dem Handbuch "Sicherheitshinweise zum Umgang mit SMC Produkten" (M-EU03-3) und der Installations- und Wartungsanleitung sind ebenfalls zu beachten. Das Handbuch und die Anleitung stehen auf der SMC Homepage "http://www.smc.eu" zum Download bereit.

Leitungsanschluss

⚠ Achtung

- Ein zu geringer Leitungsquerschnitt an der Ventileingangsseite kann wegen unzureichender Druckdifferenz zu Störungen führen.
- Wartungs- und Reparaturarbeiten sind einfacher durchzuführen, wenn Sie einen Bypass-Kreislauf und eine Steckverbindung für den Leitungsanschluss montieren.
- 11. Schließen Sie zur Kontrolle des Mediums im Behälter die Leitungen oberhalb des Behälterbodens an.

Verdrahtung

Achtung

- 1. Es sollten elektrische Kabel mit einem Querschnitt von 0,5 bis 1,25 mm² zur Verdrahtung verwendet werden.
 - Vermeiden Sie außerdem große Krafteinwirkungen auf die Kabel.
- 2. Verwenden Sie elektrische Schaltelemente mit prellfreien Kontakten.
- 3. Verwenden Sie eine Spannung innerhalb der Toleranz von $\pm 10~\%$ der Nennspannung. Bei DC-Anwendungen, bei denen eine kurze Ansprechzeit erforderlich ist, sollte die Abweichung max. $\pm 5~\%$ der Nennspannung betragen. Der Spannungsabfall ist der in der Leitung gemessene Wert mit angeschlossener Spule.
- 4. Wenn Spannungsspitzen die Funktion des elektrischen Schaltelements beeinträchtigen, ist eine Funkenlöschung parallel zum Elektromagneten zu installieren. Sie können als Alternative eine Ventiloption wählen, die einen Schaltkreis zum Schutz vor Überspannung vorsieht. (Spannungsspitzen können jedoch auch mit Schutzbeschaltung auftreten. Wenden Sie sich für nähere Angaben bitte an SMC.)
- Achten Sie bei der Ausführung für Wechselspannung (AC) darauf, dass der Vollweggleichrichter montiert ist. Die Spule könnte sonst beim anliegen der Wechselspannung,beschädigt werden.

Betriebsumgebungen

⚠ Warnung

- Nicht in der Nähe von korrosiven Gasen, Chemikalien, Salzwasser, Wasser oder Wasserdampf oder in einer Umgebung verwenden, in der das Produkt in direkten Kontakt mit diesen Substanzen kommen kann.
- 2. Setzen Sie die Ventile nicht in explosionsgefährdeten Umgebungen ein.
- Nicht an Orten verwenden, die Vibrationen und Stoßkräften ausgesetzt sind.
- 4. Nicht an Orten verwenden, an denen das Produkt der Wärmestrahlung benachbarter Hitzequellen ausgesetzt ist.
- Treffen Sie ausreichende Schutzmaßnahmen, falls das Produkt mit Wasser, Öl, Schweißfunken o. Ä. in Kontakt kommt.

Wartung

⚠ Warnung

1. Demontage des Produkts

Die Ventile erhitzen sich stark, wenn sie mit Hochtemperaturmedien benutzt werden. Sorgen Sie für eine ausreichende Abkühlung der Ventile, bevor Sie mit der Demontage beginnen. Bei Berührung besteht Verbrennungsgefahr.

- 1) Schalten Sie die Medienzufuhr ab und entlüften Sie das System.
- 2) Schalten Sie die Spannungszufuhr ab.
- 3) Demontieren Sie das Produkt.

2. Betrieb bei geringer Schaltfrequenz

Die Ventile sollten mindestens einmal alle 30 Tage geschaltet werden, um Funktionsstörungen vorzubeugen. Des Weiteren ist alle 6 Monate eine Inspektion durchzuführen, um den optimalen Betrieb zu gewährleisten.

Achtung

1. Filter und Sieb

- 1) Achten Sie darauf, dass die Filter/Siebe nicht verstopfen.
- 2) Reinigen Sie Filter/Siebe spätestens, wenn der Druckabfall 0,1 MPa erreicht hat.

2. Schmierung

Wenn Sie das Produkt schmieren, muss dies dauerhaft fortgeführt werden.

3. Lagerung

Wenn das Ventil für längere Zeit nicht benutzt wird, muss sämtliche Feuchtigkeit beseitigt werden, um Rostbildung sowie Verschleiß der Gummimaterialien zu verhindern.

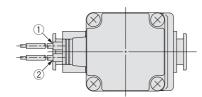
4. Lassen Sie regelmäßig das Kondensat aus den Leitungen ab.

Sicherheitshinweise zum Betrieb

Marnung

- Besteht die Möglichkeit, dass Rückdruck auf das Ventil einwirkt, treffen Sie Gegenmaßnahmen. Montieren Sie beispielsweise ein Rückschlagventil an der Ausgangsseite des Ventils.
- 2. Installieren Sie bei Problemen mit Wasserschlag (Water hammer) ein Gerät zur Dampfstoßentlastung (z. B. Speicher).
- Bei vorgesteuerten 2/2-Wege-Elektromagnetventilen kann bei geschlossenem Ventil durch einen plötzlichen Druckstoß, verursacht durch das Einschalten der Medien-Versorgungsquelle (Kessel usw.) das Ventil kurzzeitig öffnen und es können Leckagen auftreten.
- 4. Wenn das Produkt unter Bedingungen eingesetzt wird, bei denen wiederholt ein schneller Eingangsdruckabfall oder ein schneller Anstieg des Drucks am Ventilausgang, wird der Ventilsitz extrem stark beansprucht. Dies kann zu Beschädigungen und in weiterer Folge zu Betriebsstörungen des Ventils führen. Bitte überprüfen Sie vor dem Einsatz die Betriebsbedingungen.

Vor der Inbetriebnahme zu beachten:

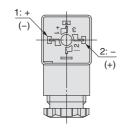

Die zusätzlichen Sicherheitshinweise auf der Katalogumschlagseite, dem Handbuch "Sicherheitshinweise zum Umgang mit SMC Produkten" (M-EU03-3) und der Installations- und Wartungsanleitung sind ebenfalls zu beachten. Das Handbuch und die Anleitung stehen auf der SMC Homepage "http://www.smc.eu" zum Download bereit.

Elektrischer Anschluss

Achtung

■ Eingegossene Kabel

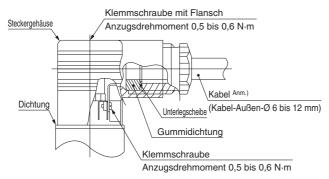
Spule Klasse H: AWG18 Außen-Ø Isolierung 2,1 mm



Nennspannung	Anschlusskabelfarbe	
Nennspannung	1	2
DC	schwarz	rot
100 VAC	blau	blau
200 VAC	rot	rot
andere AC-Nennspannungen	grau	grau

*ohne Polarität

■ DIN-Terminal


Beachten Sie beim Anschließen der DIN-Terminal an die Stromversorgung das unten dargestellte Anschlusschema.

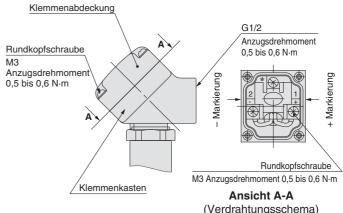
Klemmen-Nr.	1	2
DIN-Terminal	+ (-)	- (+)

^{*}ohne Polarität

- · Verwenden Sie ein Kabel mit einem Außen-Ø von 6 bis 12 mm.
- · Beachten Sie die spezifischen Anzugsdrehmomente.

Anm.) Bei einem Kabel-Außen-Ø von 9 bis 12 mm sind die inneren Gummiteile der Dichtung vor Anschluss zu entfernen.

[Änderung der elektrischen Anschlussrichtung]

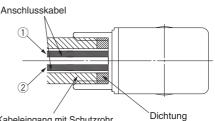

Die Richtung der elektr. Anschlussrichtung kann geändert werden, indem man den Steckereinsatz aus dem Gehäuse löst und diesen in 90° Schritten gedreht wieder einsetzt.

*Achten Sie bei der Variante mit Anzeige darauf, die Anzeige nicht mit den Anschlussdrähten des Kabels zu beschädigen.

■ Klemmenkasten

Achten Sie bei der Verdrahtung mit Klemmenkasten auf die unten angegebenen Markierungen.

- · Beachten Sie die spezifischen Anzugsdrehmomente.
- · Verschließen Sie die Klemmenverbindung (G1/2) ordnungsgemäß mit einem Klemmenkasten o. Ä.



(Verdrahtungsschema)

■ Kabeleingang für Schutzrohranschluss

Wenn der Kabeleingang die Schutzart IP65 erreichen soll, ist eine Dichtung für den Anschluss erforderlich. Beachten Sie das unten angegebene Anzugsdrehmoment für den Kabeleingang an.

Spulen Klasse H: AWG18 Außen-Ø Isolierung 2,1 mm

Kabeleingang mit Schutzrohr (Bohrung G1/2 Anzugsdrehmoment 0.5 bis 0.6 Nm)

Nannanannung	Anschlusskabelfarbe	
Nennspannung	1)	2
DC	schwarz	rot
100 VAC	blau	blau
200 VAC	rot	rot
andere AC-Nennspannungen	grau	grau

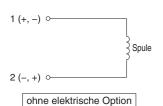
^{*}ohne Polarität

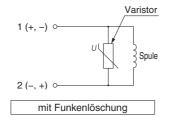
Beschreibung	Bestell-Nr.	
Dichtung	VCW20-15-6	

Anm.) Bitte gesondert bestellen.

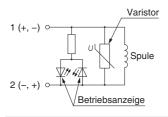
Vor der Inbetriebnahme zu beachten:

Die zusätzlichen Sicherheitshinweise auf der Katalogumschlagseite, dem Handbuch "Sicherheitshinweise zum Umgang mit SMC Produkten" (M-EU03-3) und der Installations- und Wartungsanleitung sind ebenfalls zu beachten. Das Handbuch und die Anleitung stehen auf der SMC Homepage "http://www.smc.eu" zum Download bereit.

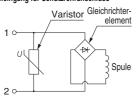

Elektrische Schaltkreise

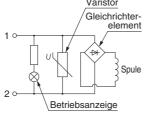

Achtung

[DC-Schaltkreis]


eingegossene Kabel

DIN-Terminal


DIN-Terminal, Klemmenkasten



mit Betriebsanzeige/Funkenlöschung

[AC-Schaltkreis]

eingegossene Kabel, DIN-Terminal Klemmenkasten, DIN-Terminal, Klemmenkasten Kabeleingang für Schutzrohranschluss

mit Funkenlöschung

mit Betriebsanzeige/Funkenlöschung

Das DIN-Terminal für Wechselspannung der Ausführung H verfügt über einen DIN-Stecker mit integriertem Vollweggleichrichter. Die Spule ist nicht mit einem Vollweggleichrichter ausgestattet.

Diese Sicherheitshinweise sollen vor gefährlichen Situationen und/oder Sachschäden schützen. In den Hinweisen wird die Schwere der potentiellen Gefahren durch die Gefahrenworte "Achtung", "Warnung" oder "Gefahr" bezeichnet. Diese wichtigen Sicherheitshinweise müssen zusammen mit internationalen Standards (ISO/IEC)*1) und anderen Sicherheitsvorschriften beachtet werden.

Achtung verweist auf eine Gefahr mit geringem Achtung: Risiko, die leichte bis mittelschwere Verletzungen zur Folge haben kann, wenn sie nicht verhindert wird.

Warnung verweist auf eine Gefahr mit mittlerem Warnung: Risiko, die schwere Verletzungen oder den Tod zur Folge haben kann, wenn sie nicht verhindert wird.

Gefahr verweist auf eine Gefahr mit hohem Risiko. die schwere Verletzungen oder den Tod zur Folge hat, wenn sie nicht verhindert wird.

*1) ISO 4414: Fluidtechnik - Ausführungsrichtlinien Pneumatik ISO 4413: Fluidtechnik – Ausführungsrichtlinien Hydraulik

IEC 60204-1: Sicherheit von Maschinen – Elektrische Ausrüstung von Maschinen (Teil 1: Allgemeine Anforderungen)

ISO 10218-1: Industrieroboter - Sicherheitsanforderungen usw.

1. Verantwortlich für die Kompatibilität des Produktes ist die Person, die das System erstellt oder dessen Spezifikation festlegt.

Da das hier aufgeführte Produkt unter verschiedenen Betriebsbedingungen eingesetzt wird, darf die Entscheidung über dessen Eignung für einen bestimmten Anwendungsfall erst nach genauer Analyse und/oder Tests erfolgen, mit denen die Erfüllung der spezifischen Anforderungen überprüft wird. Die Erfüllung der zu erwartenden Leistung sowie die Gewährleistung der Sicherheit liegen in der Verantwortung der Person, die die Systemkompatibilität festgestellt hat. Diese Person muss anhand der neuesten Kataloginformation ständig die Eignung aller angegebenen Teile überprüfen und dabei im Zuge der Systemkonfiguration alle Möglichkeiten eines Geräteausfalls ausreichend berücksichtigen.

2. Maschinen und Anlagen dürfen nur von entsprechend geschultem Personal betrieben werden.

Das hier angegebene Produkt kann bei unsachgemäßer Handhabung gefährlich sein. Montage-, Inbetriebnahme- und Reparaturarbeiten an Maschinen und Anlagen, einschließlich der Produkte von SMC, dürfen nur von entsprechend geschultem und erfahrenem Personal vorgenommen werden

- 3. Wartungsarbeiten an Maschinen und Anlagen oder der Ausbau einzelner Komponenten dürfen erst dann vorgenommen werden, wenn die Sicherheit gewährleistet ist.
 - 1. Inspektions- und Wartungsarbeiten an Maschinen und Anlagen dürfen erst dann ausgeführt werden, wenn alle Maßnahmen überprüft wurden, die ein Herunterfallen oder unvorhergesehene Bewegungen des angetriebenen Objekts verhindern.
 - 2. Soll das Produkt entfernt werden, überprüfen Sie zunächst die Einhaltung der oben genannten Sicherheitshinweise. Unterbrechen Sie dann die Druckluftversorgung aller betreffenden Komponenten. Lesen Sie die produktspezifischen Sicherheitshinweise aller relevanten Produkte sorgfältig.
 - 3. Vor dem erneuten Start der Maschine bzw. Anlage sind Maßnahmen zu treffen, um unvorhergesehene Bewegungen des Produktes oder Fehlfunktionen zu verhindern.
- 4. Bitte wenden Sie sich an SMC und treffen Sie geeignete Sicherheitsvorkehrungen, wenn das Produkt unter einer der folgenden Bedingungen eingesetzt werden soll:
 - 1. Einsatz- bzw. Umgebungsbedingungen, die von den angegebenen technischen Daten abweichen, oder Nutzung des Produktes im Freien oder unter direkter Sonneneinstrahlung.

⚠ Warnung

- 2. Einbau innerhalb von Maschinen und Anlagen, die in Verbindung mit Kernenergie, Eisenbahnen, Luft- und Raumfahrttechnik, Schiffen, Kraftfahrzeugen, militärischen Einrichtungen, Verbrennungsanlagen, medizinischen Geräten oder Freizeitgeräten eingesetzt werden oder mit Lebensmitteln und Getränken, Notausschaltkreisen, Kupplungs- und Bremsschaltkreisen in Stanz- und Pressanwendungen, Sicherheitsausrüstungen oder anderen Anwendungen in Kontakt kommen, die nicht für die in diesem Katalog aufgeführten technischen Daten geeignet sind.
- 3. Anwendungen, bei denen die Möglichkeit von Schäden an Personen, Sachwerten oder Tieren besteht und die eine besondere Sicherheitsanalyse verlangen.
- 4. Verwendung in Verriegelungssystemen, die ein doppeltes Verriegelungssystem mit mechanischer Schutzfunktion zum Schutz vor Ausfällen und eine regelmäßige Funktionsprüfung erfordern.

Achtung

1. Das Produkt wurde für die Verwendung in der Fertigungsindustrie konzipiert. Das hier beschriebene Produkt wurde für die friedliche Nutzung in Fertigungsunternehmen

Wenn Sie das Produkt in anderen Wirtschaftszweigen verwenden möchten, müssen Sie SMC vorher informieren und bei Bedarf entsprechende technische Daten zur Verfügung stellen. Wenden Sie sich bei Fragen bitte an die nächstgelegene Vertriebsniederlassung.

Einhaltung von Vorschriften

Das Produkt unterliegt den folgenden Bestimmungen zur "Einhaltung von Vorschriften". Lesen Sie diese Punkte durch und erklären Sie Ihr Einverständnis, bevor Sie das Produkt verwenden.

Einhaltung von Vorschriften

- 1. Die Verwendung von SMC-Produkten in Fertigungsmaschinen von Herstellern von Massenvernichtungswaffen oder sonstigen Waffen ist strengstens untersagt.
- 2. Der Export von SMC-Produkten oder -Technologie von einem Land in ein anderes hat nach den an der Transaktion beteiligten Ländern geltenden Sicherheitsvorschriften und -normen zu erfolgen. Vor dem internationalen Versand eines jeglichen SMC-Produktes ist sicherzustellen, dass alle nationalen Vorschriften in Bezug auf den Export bekannt sind und befolgt werden.

SMC Corporation (Europe)

☎+43 (0)2262622800 www.smc.at office@smc.at Austria **3**+32 (0)33551464 Belaium www.smcpneumatics.be info@smconeumatics.be Bulgaria **2** +359 (0)2807670 office@smc.bg www.smc.bg Croatia *****+385 (0)13707288 office@smc.hr www.smc.hr Czech Republic **2** +420 541424611 www.smc.cz office@smc.cz Denmark ★+45 70252900 www.smcdk.com smc@smcdk.com smc@smcpneumatics.ee Estonia ***** +372 6510370 www.smcpneumatics.ee Finland **2** +358 207513513 www.smc.fi smcfi@smc.fi France **1** +33 (0)164761000 www.smc-france.fr promotion@smc-france.fr Germany **2** +49 (0)61034020 www.smc.de info@smc.de Greece **2** +30 210 2717265 www.smchellas.gr sales@smchellas.gr Hungary ***** +36 23511390 www.smc.hu office@smc.hu **2** +353 (0)14039000 Ireland www.smcpneumatics.ie sales@smcpneumatics.ie Italy *****+39 0292711 www.smcitalia.it mailbox@smcitalia.it Latvia **2**+371 67817700 www.smclv.lv info@smclv.lv

Lithuania Netherlands Norway Poland **Portugal** Romania Russia Slovakia Slovenia Spain Sweden

+370 5 2308118 +31 (0)205318888 +47 67129020 +48 (0)222119616 +351 226166570 +40 213205111 +7 8127185445 +421 (0)413213212 ***** +386 (0)73885412 +34 902184100 +46 (0)86031200 Switzerland +41 (0)523963131 Turkey +90 212 489 0 440 ****** +44 (0)845 121 5122

www.smclt.lt www.smcpneumatics.nl www.smc-norge.no www.smc.nl www.smc.eu www.smcromania.ro www.smc.sk www.smc.si

www.smc-pneumatik.ru www.smc.eu www.smc.nu info@smc.ch www.smc.ch www.smcpnomatik.com.tr info@smconomatik.com.tr www.smcpneumatics.co.uk sales@smcpneumatics.co.uk

info@smclt.lt info@smcpneumatics.nl post@smc-norge.no office@smc.pl postpt@smc.smces.es smcromania@smcromania.ro info@smc-pneumatik.ru office@smc.sk office@smc.si post@smc.smces.es post@smc.nu

SMC CORPORATION Akihabara UDX 15F, 4-14-1, Sotokanda, Chiyoda-ku, Tokyo 101-0021, JAPAN Phone: 03-5207-8249 FAX: 03-5298-5362

UK