
Characteristics

At a glance

The servo press kit and its associated application software can be used to respond quickly and flexibly to a range of press processes. It is a great alternative to complex and often oversized presses.

The software can be used for continuously monitoring parameters such as moments of force and displacement during joining and press-fitting processes.

Sample pressing device

Advantages:

- Pressing forces up to 17 kN (higher force ranges on request)
- Very high positioning and repetition accuracy
- Ideal price/performance ratio
- Easy integration into any application

Individual components:

- [1] Servo motor
- [2] Electric cylinder
- [3] Force sensor (incl. inspection record)
- [4] Software package
- [5] Motor controller
- [6] Controller (incl. micro SD memory card)

Motor/encoder cables are included in the scope of delivery.

Areas of application

Bevelling

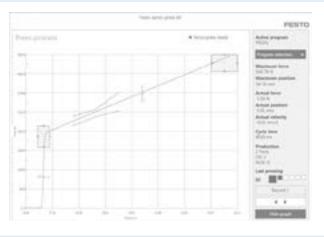
itting

Machining

Ţ

Stamping

Riveting



Characteristics

Modular application software for configuration, operation and visualisation

- The application is controlled via a web interface, which is also used for configuring the application-specific functions
- No programming skills are required to use the pre-installed, ready-to-use software
- A non-platform-specific software display allows visualisation on all kinds of human-machine interfaces (HMIs) with a web browser, such as touchscreens, PCs, iPads, mobile phones, etc.
- The program sequence itself is controlled by variables and digital control inputs, e.g. by the higher-order controller
- All recorded process data can be interchanged individually with the HOST system

The following software functions are av	ailable		
Commissioning	Writing a program	Operation	Diagnostics
 Configuring the hardware Carrying out homing Taring and adjusting the force sensor Moving the press manually in "jog" mode Configuring logging Making fundamental system settings 	 Managing programs Defining press processes and parameterising and configuring them using the sequencer Recording/loading reference curves Configuring the threshold values/ envelopes/windowing evaluation methods Managing individual variables 	 Selecting saved press programs Recording and displaying reference curves Allowing OK/NOK evaluation of pressed parts Logging The interfaces enable the GUI (graphical user interface), the PLC and the host to be selected and defined. 	 Process diagnostics Sensing of various system parameters, system status and statistical values Enabling the display of current data/statuses for the various interfaces, such as digital I/Os or data transferred by a host PLC.

Software functions

Max. number of press programs	20 (expandable using variables)	
Max. number of variables	100	
Number of digital inputs for program control		
Software inputs	8 inputs/8 outputs	
Hardware inputs	8 inputs/4 outputs	
Max. possible measurements ¹⁾	5	
Max. number of measuring points ¹⁾	200000	
Number of envelopes ²⁾	5	
Number of evaluation windows ²⁾	5	
Number of threshold values ²⁾	5	
Max. possible points per envelope	5 top/5 bottom	
Evaluation results via	DIO/fieldbus/PC visualisation	
Data export via	FTP, SMB	

1) Per program

2) Per measurement

Connection to higher-order controller¹⁾

connection to inginer-order controller								
Function	Programming software	Version	Communication	Hardware				
Siemens Host-FB	Step 7 TIA Portal	V14	Profinet IO	S7-300/S7-400, S7-1200/S7-1500				
	Step 7 Classic	V5.5	Profinet IO	S7-300/S7-400				
Allen Bradley Host-FB	Studio 5000	V26.01	EtherNet/IP	CompactLogix 1769-L24ER-QB1B				
OMRON Host-FB	Sysmac Studio	V1.17	EtherNet/IP	NJ101-9000				
Codesys Host-FB	Codesys V3	V3.5.7 SP2	Modbus TCP	CPX-CEC-M1-V3				
Mitsubishi Host-FB	Melsec Studio GX Works 2	V1.551Z	Modbus TCP	Q03UDVCPU				
Beckhoff Host-FB	TwinCat 3	V12.0.21005.1	Modbus TCP	CX5130-0155				

1) The function modules can be downloaded for free from the Support Portal.

T

T

Characteristics

Ordering via the configurator

It is very easy to put together and order a wide range of servo press kits using the configurator.

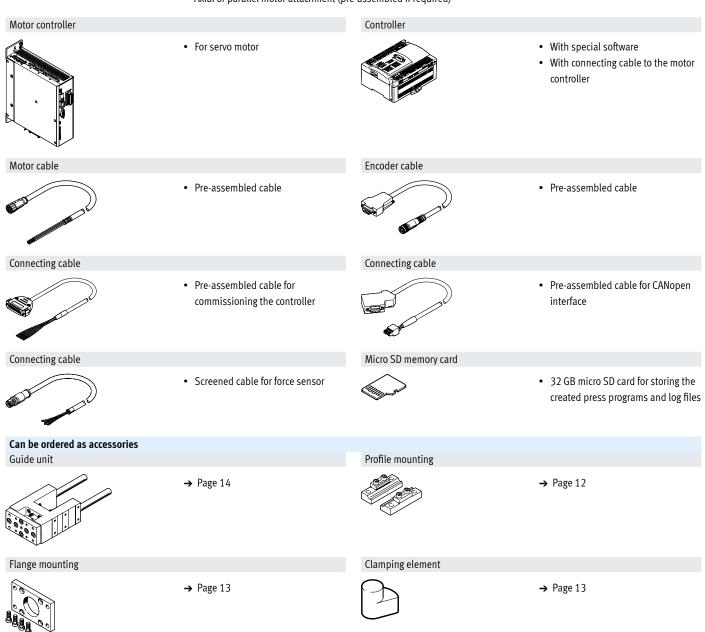
The "Configuration", "Preassembly" and "Accessories" tabs are used to select the combinations and display them with the correct configuration. CAD files and ePLAN macros included.

Ordering data – Product options

Configurable product This product and all its product options can be ordered using the configurator.

The configurator can be found under Products on the DVD or at → www.festo.com/catalogue/...

Part no. Туре 8077950 YJKP

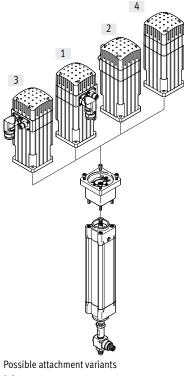

ePLAN® is a registered trademark of its respective trademark holder in certain countries.

System components

Included in the scope of delivery of the servo press kit

Electric cylinder

- With force sensor
- Connecting cable to controller (cable lengths of 5, 10, 15 m)
- Optionally with:
- Motors with absolute displacement encoder:
 - Single-turn
 - Multi-turn
- Motors with/without holding brake
- Axial or parallel motor attachment (pre-assembled if required)



System components

Possible combinations of kit and motor, depending on mounting position Optionally pre-assembled

The electric cylinder, axial and parallel kit and servo motor are assembled in one application-specific module. This reduces the number of individual components to be managed. This module can be directly integrated in the system thanks to defined mechanical and electrical interfaces. After completion, a full performance test is performed. There is thus no need for the customer to carry out any assembly process.

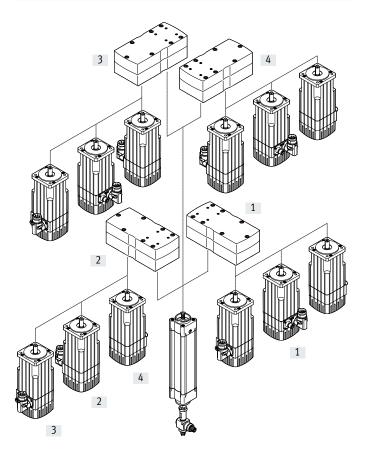
With axial kit

- [1] Front
- [2] Rear
- [3] Left
- [4] Right

Advanced software package

The software package with selected functions makes it possible to adapt the servo press kit even more specifically to the application and the specific task, such as:

- Force control
- Step function with comparison operations
- OPC-UA connection


Part no. 8082745 Type GSAY-A4-F0-Z4-L-Y1

Available to purchase via the App World.

www.festo.com/appworld

With parallel kit

→ Internet: www.festo.com/catalogue/...

Data sheet

Bus protocols

EtherNet/IP

Note

Following information are reference values. The individual values depend on your configuration.

General technical data

	[LN]	0.8	1.4		7	12	17	
Force range up to	[kN]		1.5	4	/	12	17	
Protection against torsion/guide	With plain-bea	aring guide						
Working stroke	[mm]	100, 200, 300	0,400					
Pressing force ¹⁾	[kN]	0.8	1.5	4	7	12	17	
Max. payload ²⁾	[kg]	19.5	19.5	48	48	95	95	
Max. feed speed	[mm/s]	250				160		
Acceleration								
For positioning phase	[m/s ²]	2						
For cushioning phase	[m/s ²]	2				·		
Repetition accuracy	[mm]	±0.01			±0.015	±0.01		
Scanning frequency of the force sensor	[Hz]	1000						
FS accuracy of the force measurement ³⁾	[%]	±0.25						
Parameterisation interface		Ethernet						
Fieldbus interface		Modbus TCP						
		EtherNet/IP						
		EtherNet TCP/IP						
		PROFINET IO						
Configuration via visualisation system		Force/displacement diagrams						
		Specification for good/defective parts						
		Visualisation						
Evaluation methods		Threshold value						
		Envelopes						
		Windowing						
Visualisation		At the customer's premises via a web browser						
Mounting position		Any						

1) Applications in combination with tensile forces on request

2) Caused by tool weight, for example

3) Related to the calibration range of the force sensor and/or the force measurement range of the software for the complete system. Example for YJKP with a force range of 0.8 kN: 0.25% x 1200 N

Technical data – Force sensor

reclinicat data – rorce sensor							
Force range up to	[kN]	0.8	1.5	4	7	12	17
Force measuring range of software	[kN]	-0.2 1	-0.2 2	-0.5 4.5	-0.5 7.5	-1 13	-1 18
Max. overload	[kN]	1.5	3.75	11.25	15	30	37.5
Analogue output	[mA]	4 20					

- 🕴 - Note

The accuracy of the force measurement is influenced by the following properties of the force sensor:

- Accuracy
- Calibration range
- Nominal signal range
- Overload range

Transverse loads on the force sensor should be avoided as they may lead to false measurement results or damage the sensor.

Modbus®, PROFINET® and EtherNet/IP® are registered trademarks of the respective trademark holder in certain countries.

I

Data sheet

Electrical data							
Force range up to	[kN]	0.8	1.5	4	7	12	17
Motor controller							
Input voltage range	[V AC]	100 230 :	±10%		3x 230 4	80 ±10%	
Max. nominal input current	[A]	3		6	5.5		11
Nominal power	[VA]	500		1000	3000		6000
Controller							
Operating voltage	[V DC]	24					
Current consumption	[mA]	200					
Force sensor							
Operating voltage range	[V DC]	10 30					

Safety characteristics of the motor controller	
Safety function to EN 61800-5-2	Safe torque off (STO)
Performance Level (PL) to EN ISO 13849-1	Category 4, Performance Level e
Safety Integrity Level (SIL) to EN 61800-5-2, EN 62061, EN 61508	SIL 3
Certificate issuing authority	German Technical Control Board (TÜV) 0 1/20 5/5262.0 1/14
Proof test interval	20a
Diagnostic coverage [%]	97
Safe failure fraction (SFF) [%]	99.2
Hardware fault tolerance	1

Operating and environmental conditions

Ambient temperature	[°C]	0 40
Storage temperature	[°C]	-10 +60
Relative humidity	[%]	0 90
Degree of protection		IP20
Duty cycle	[%]	100
Note on materials		Contains paint-wetting impairment substances
		RoHS-compliant

Weights [kg]						
Force range up to	0.8	1.5	4	7	12	17
Electric cylinder						
Basic weight with 0 mm stroke	0.78	1.24	1.98	3.16	7.39	11.12
Additional weight per 100 mm stroke	0.33	0.47	0.65	0.87	1.55	1.93
Kit						
Parallel kit	1.05	2.45	4.99	4.95	11.9	11.8
Axial kit	0.26	0.41	1.14	1.17	2.92	3.46
Motor						
Basic weight	1.6	2.1	4.8	6.9	16.2	16.2
Additional weight of brake	0.1	0.2	0.5	0.6	0.8	0.8
Force sensor						
Product weight	0.2	0.2	0.3	0.3	0.7	0.7
Motor controller						
Product weight	2.1	2.1	2.2	3.8	3.8	3.8
Controller						
Product weight	0.4	0.4	0.4	0.4	0.4	0.4

Data sheet

Service life

The service life of the servo press kit depends to a large extent on the lead screw of the cylinder.

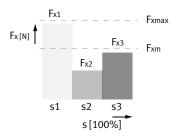
To ensure that the balls of the ball screw drive can reliably realign, a stroke of at least 12.5 mm must be carried out at regular intervals (typically during the retracting phase, ideally after each pressing process).

The service life ends after 10 million switching cycles or when the maximum running performance (L) has been reached.

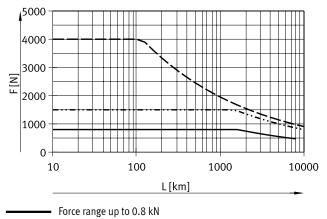
Calculation of the mean feed force F_{xm}

$$F_{xm} = \sqrt[3]{\frac{F_{x1}^{3} \cdot s_{1} + \ldots + F_{n}^{3} \cdot s_{n}}{s_{1} + \ldots + s_{n}}}$$

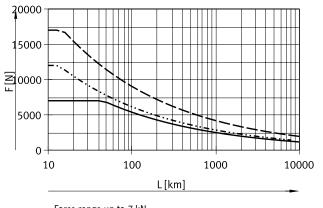
Fxm = Mean feed force

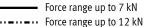

Fx1/n = Feed force of section

----- Force range up to 1.5 kN


Force range up to 4 kN

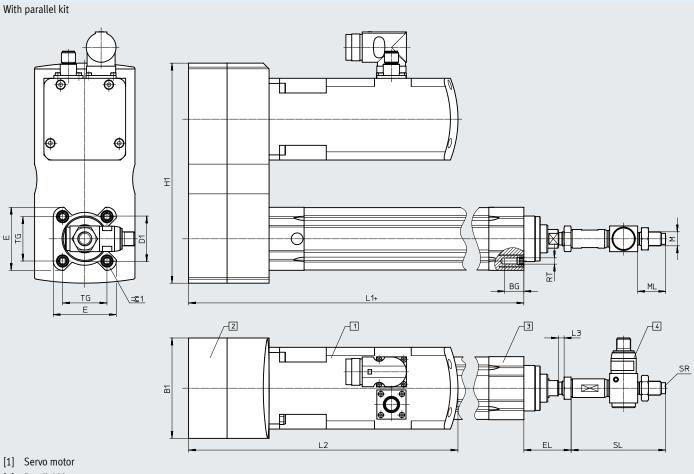
s1/n = Part of movement cycle that is travel


The specifications for running performance (L) are based on experimentally determined and theoretically calculated data (at room temperature). The running performance that can be achieved in practice can deviate considerably from the specified curves under different parameters (e.g. dirt, temperature).



Mean feed force F_{xm} as a function of running performance L and room temperature Γ_{xm}	erature
Force range up to 0.8/1.5/4	

Force range up to 7/1 2/17

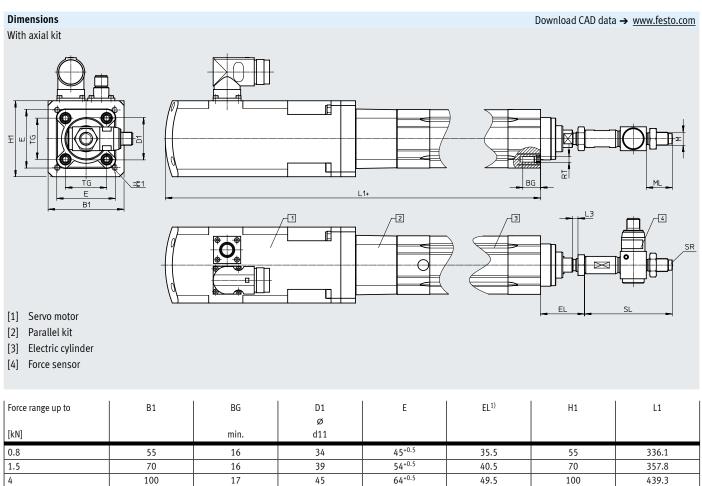


——— Force range up to 17 kN

Data sheet

Dimensions

Download CAD data → <u>www.festo.com</u>


- [2] Parallel kit
- [3] Electric cylinder
- [4] Force sensor

+ = plus stroke length

Force range up to	B1	BG	D1	E	EL ¹⁾	H1	L1	L2
			ø					
[kN]		min.	d11					
0.8	60	16	34	45 ^{+0.5}	35.5	157	178.5	220.4
1.5	86	16	39	54 ^{+0.5}	40.5	188.5	213	230.8
4	110	17	45	64+0.5	49.5	225	245	274.3
7	110	17	52	75+0.5/-0.1	50	225	253	325.3
12	145	17	60	93+0.5/-0.1	61	348	303.5	385
17	145	17	70	110+0.5/-0.1	66	348	323.5	385
Force range up to	L3	М	ML	RT	SL	SR	TG	=©1
[kN]								
0.8	5	M10x1.25	22	M6	78	60	32.5	6
1.5	5	M12x1.25	24	M6	81	60	38	6
			24					v
4	5	M16x1.5	32	M8	107	100	46.5	8
4 7	-			-	-			
	5	M16x1.5	32	M8	107	100	46.5	8

1) With a spacing of 5 mm to the lock nut (in the retracted state)

Data sheet

52

60

70

ML

22

24

32

32

40

40

75+0.5/-0.1

93+0.5/-0.1

110+0.5/-0.1

SL

78

81

107

107

140.5

140.5

RT

M6

Μ6

M8

M8

M10

M10

50

61

66

SR

60

60

100

100

150

150

100

140

140

TG

32.5

38

46.5

56.5±0.5

72±0.5

89±0.5

492.5

591.5

619

=©1

6

6

8

8

6

6

1) With a spacing of 5 mm to the lock nut (in the retracted state)

100

140

140

L3

5

5

5

5

5

5

17

17

17

Μ

M10x1.25

M12x1.25

M16x1.5

M16x1.5

M20x1.5

M20x1.5

7

12

17

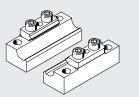
[kN] 0.8

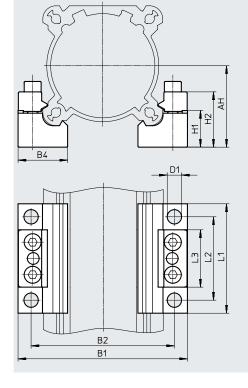
1.5

4

7

12

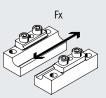

17


Force range up to

Accessories

Profile mounting EAHF

Material: Plate: anodised aluminium Clamping piece: coated steel



- Note

-

Several profile mountings may have to be used depending on the pressing force.

I

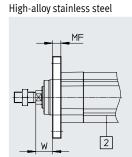
Dimensions and ordering data

Dimensions and ordering	, uala						
For force range up to	AH	B1	B2	B4	D1 Ø	H1	H2
[kN]					p p		
0.8	32	76	60	26	9	16	23.6
1.5	36	84.5	68	26	9	16	23.6
4	44.5	94	81	30	9	22.8	30.4
7	50	105	92	30	9	22.8	30.4
12	62.5	130	110	38	11	28.1	42.5
17	71	147	127	38	11	28.1	42.5
						1-	
For force range up to	L1	L2	L3	Weight	Part no.	Туре	

RoHS-compliant

[kN]				[g]		
0.8, 1.5	80	60	34	218	2838839	EAHF-V2-3 2/40-P
4,7	80	60	41	340	1547781	EAHF-V2-5 0/63-P
12, 17	84	64	44	570	1547780	EAHF-V2-8 0/100-P

Number of profile mountings depending on the stroke


Force range	Max. possible force peak	Transferable axial force F _x	Stroke [mm]			
			100	200	300	400
	[N]	[kN]				
0.8	1.6	1.6	1	1	1	1
1.5	3.2	1.6	2	2	2	2
4	7.2	3.6	2	2	2	2
7	10.8	3.6	-1)	3	3	3
12	16	4	-1)	-1)	4	4
17	20	4	-1)	_1)	5	5

1) Mounting via profile mounting not possible as the required number cannot be attached to the profile.

Accessories

Flange mounting EAHH

Material:

Free of copper and PTFE

6

Ð

⊕

•

FΒ

RoHS-compliant

Dimensions and ordering data

For force range up to	E	FB Ø	MF	R	TF	UF	W
[kN]		H13	js14			±1	
0.8	45	7	10	32	64	80	15.5
1.5	54	9	10	36	72	90	19.5
4	64	9	12	45	90	110	24.5
7	75	9	12	50	100	120	25
12	93	12	16	63	126	150	30
17	110	14	16	75	150	175	35

For force range up to	Max. load capacity	CRC ¹⁾	Weight	Part no.	Туре
[kN]	[kN]		[g]		
0.8	1	4	206	2827587	EAHH-V2-32-R1
1.5	3	4	275	2827588	EAHH-V2-40-R1
4	5	4	496	2827589	EAHH-V2-50-R1
7	7	4	633	1502305	EAHH-V2-63-R1
12	12	4	1360	1502306	EAHH-V2-80-R1
17	17	4	1880	1502307	EAHH-V2-100-R1

1) Corrosion resistance class CRC 4 to Festo standard FN 940070

Particularly high corrosion stress. Outdoor exposure under extreme corrosive conditions. Parts exposed to aggressive media, e.g. in the chemical or food industries. Such applications may need to be safeguarded by means of special testing (
ad also FN 940082), using appropriate media.

Clamping element EADT

Material: Plastic RoHS-compliant

In conjunction with parallel kits, for setting the toothed belt pretension for force ranges 4, 7, 12 and 17 kN.

High toothed belt pretension forces can be generated with low torques at the clamping element.

Ordering data	
---------------	--

Туре	Weight [g]	Part no.	Туре
EADT-E-U1-110	9	1461069	EADT-E-U1-110

Accessories

Ordering data – Guide	units					Data sheets → Internet: eagf	
	Stroke	Part no.	Туре	Stroke	Part no.	Туре	
	[mm]			[mm]			
	For force range	up to 0.8 kN		For force range	up to 1.5 kN		
	100	3038083	EAGF-V2-KF-32-170	100	3038089	EAGF-V2-KF-40-170	
	200	3038083	EAGF-V2-KF-32-270	200	3038089	EAGF-V2-KF-40-270	
	300	3038083	EAGF-V2-KF-32-370	300	3038089	EAGF-V2-KF-40-370	
	400	3038083	EAGF-V2-KF-32-470	400	3038089	EAGF-V2-KF-40-470	
	For force range	up to 4 kN		For force range	up to 7 kN		
	100	3038094	EAGF-V2-KF-50-190	100	2608521	EAGF-V2-KF-63-190	
	200	3038094	EAGF-V2-KF-50-290	200	2608521	EAGF-V2-KF-63-290	
	300	3038094	EAGF-V2-KF-50-390	300	2608521	EAGF-V2-KF-63-390	
	400	3038094	EAGF-V2-KF-50-490	400	2608521	EAGF-V2-KF-63-490	
	For force range up to 12 kN			For force range up to 17 kN			
	100	2608528	EAGF-V2-KF-80-220	100	2608532	EAGF-V2-KF-100-220	
	200	2608528	EAGF-V2-KF-80-320	200	2608532	EAGF-V2-KF-100-320	
	300	2608528	EAGF-V2-KF-80-420	300	2608532	EAGF-V2-KF-100-420	
	400	2608528	EAGF-V2-KF-80-520	400	2608532	EAGF-V2-KF-100-520	