Electric Actuators

Battery-less Absolute Encoder Type

Restart from the last stop position is possible aftier recovery of the power supply.

Easy operation restart after recovery of the power supply

The position information is held by the encoder even when the power supply is turned off. A return to origin operation is not necessary when the power supply is recovered.

Compatible Actuators

Slider Type LEF Series
Rod Type/Guide Rod Type LEY/LEYG Series
Slide Table/High Precision Type LESYH Series
Slide Table LES Series
Gripper LEHF Series
Rotary Table LER Series
Does not require the use of batteries.

Reduced maintenance

> Step Motor Controller JXC \square Series p. 164
> Battery-less Absolute Type
> (Step Motor 24 VDC)

Batteries are not used to store the position information.
Therefore, there is no need to store spare batteries or replace dead batteries.

New - Size 16 has been added to the LEFS, LEFB, LEY, and LEYG series.

- The high precision type slide table LESYH series has been added.

CAT.ES100-136B

Compatible Actuators

Type

*1 The numerical values vary depending on the controller/driver type, work load, speed, and specifications.
For details, refer to the "Speed-work load graph (Guide)," "Allowable moment," and "Specifications" of each actuator.

*1 The numerical values vary depending on the controller/driver type, work load, speed, and specifications.
For details, refer to the "Speed-work load graph (Guide)," "Allowable moment," and "Specifications" of each actuator.
*2 The values in parentheses are for the long stroke type.
*3 The values in parentheses are for the table accuracy of the high-precision type.

Compatible Controllers

Battery-less Absolute Type (Step Motor 24 VDC)
Step Motor Controller JXC \square Series p. 164

Step Data Input Type JXC51/61 Series p. 165

Simple setting allows for immediate use!
 () "Easy Mode" for simple setting

For immediate use, select "Easy Mode."

JXC51/61
<When a PC is used> Controller setting software

- Step data setting, test drive, jogging, and move for the constant rate can be set and operated on one screen.

<When a TB (teaching box) is used>
- The simple screen without scrolling promotes ease of setting and operation.
- Choose an icon from the first screen to select a function.
- Set the step data and check the monitor on the second screen.

Example of setting the step data

Step	Axis 1
Step No.	0
Posn 50.00 mm Speed $200 \mathrm{~mm} / \mathrm{s}$	

© "Normal Mode" for detailed setting

Select "Normal Mode" when detailed setting is required.

- Step data can be set in detail.
- Parameters can be set.
- Signals and terminal status can be monitored.
- JOG and constant rate movement, return to origin, test drive, and testing of forced output can be performed.

<When a PC is used>

 Controller setting software- Step data setting, parameter setting, monitoring, teaching, etc., are displayed in different windows.

<When a TB (teaching box) is used>
- Multiple step data can be stored in the teaching box and transferred to the controller.
- Continuous test drive by up to 5 step data

Teaching box screen

- Each function (step data setting, test drive, monitoring, etc.) can be selected from the main menu.

The actuator and controller are provided as a set. (They can be ordered separately as well.)
Confirm that the combination of the controller and actuator is correct.
<Check the following before use.>
(1) Check the actuator label for the model number. This number should match that of the controller.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

Step Motor Controller JXC \square Series

Function

Item	Step data input type JXC51/61
Step data and parameter setting	- Input from controller setting software (PC) - Input from teaching box
Step data "position" setting	- Numerical value input from controller setting software (PC) or teaching box - Input numerical value - Direct teaching - JOG teaching
Number of step data	64 points
Operation command (I/O signal)	Step No. [IN*] input \Rightarrow [DRIVE] input
Completion signal	[INP] output

Setting Items

	Item	Contents	Easy Mode		Normal Mode	Step data input type JXC51/61
			TB	PC	TB/PC	
Step data setting (Excerpt)	Movement MOD	Selection of "absolute position" and "relative position"	\triangle	\bigcirc	-	Set at ABS/INC
	Speed	Transfer speed	\bigcirc	-	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}$
	Position	[Position]: Target position [Pushing]: Pushing start position	\bigcirc	\bigcirc	\bigcirc	Set in units of 0.01 mm
	Acceleration/Deceleration	Acceleration/deceleration during movement	\bigcirc	-	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}^{2}$
	Pushing force	Rate of force during pushing operation	\bigcirc	\bigcirc	\bigcirc	Set in units of 1\%
	Trigger LV	Target force during pushing operation	\triangle	\bigcirc	\bigcirc	Set in units of 1\%
	Pushing speed	Speed during pushing operation	\triangle	-	\bigcirc	Set in units of $1 \mathrm{~mm} / \mathrm{s}$
	Moving force	Force during positioning operation	\triangle	-	-	Set to 100\%
	Area output	Conditions for area output signal to turn ON	\triangle	\bigcirc	-	Set in units of 0.01 mm
	In position	[Position]: Width to the target position [Pushing]: How much it moves during pushing	\triangle	\bigcirc	\bigcirc	Set to 0.5 mm or more (Units: 0.01 mm)
Parameter setting (Excerpt)	Stroke (+)	+ side position limit	\times	\times	-	Set in units of 0.01 mm
	Stroke (-)	- side position limit	\times	\times	-	Set in units of 0.01 mm
	ORIG direction	Direction of the return to origin can be set.	\times	\times	\bigcirc	Compatible
	ORIG speed	Speed during return to origin	\times	\times	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}$
	ORIG ACC	Acceleration during return to origin	\times	\times	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}^{2}$
Test	JOG		\bigcirc	-	\bigcirc	Continuous operation at the set speed can be tested while the switch is being pressed.
	MOVE		\times	\bigcirc	\bigcirc	Operation at the set distance and speed from the current position can be tested.
	Return to ORIG		-	\bigcirc	-	Compatible
	Test drive	Operation of the specified step data	\bigcirc	\bigcirc	(Continuous operation)	Compatible
	Forced output	ON/OFF of the output terminal can be tested.	\times	\times	-	Compatible
Monitor	DRV mon	Current position, speed, force, and the specified step data can be monitored.	\bigcirc	-	\bigcirc	Compatible
	In/Out mon	Current ON/OFF status of the input and output terminal can be monitored.	\times	\times	\bigcirc	Compatible
ALM	Status	Alarm currently being generated can be confirmed.	\bigcirc	-	-	Compatible
	ALM Log record	Alarms generated in the past can be confirmed.	\times	\times	-	Compatible
File	Save/Load	Step data and parameters can be saved, forwarded, and deleted.	\times	\times	\bigcirc	Compatible
Other	Language	Can be changed to Japanese or English	\bigcirc	\bigcirc	-	Compatible

Δ : Can be set from TB Ver. 2.** (The version information is displayed on the initial screen.)

Fieldbus Network

EtherCAT® ${ }^{\circledR}$ /EtherNet/IPTМ/PROFINET/

 DeviceNet ${ }^{\text {TM } / I O-L i n k / C C-L i n k ~ D i r e c t ~ I n p u t ~ T y p e ~}$ Step Motor Controller/JXC \square Series $\mathbf{D . 1 7 2}$
()Two types of operation command

Step no. defined operation: Operate using the preset step data in the controller.
Numerical data defined operation: The actuator operates using values such as position and speed from the PLC.
ONumerical monitoring available
Numerical information, such as the current speed, current position, and alarm codes, can be monitored on the PLC.
DeviceiNet

IO-Link

CC-Link

© Transition wiring of communication cables
Two communication ports are provided.

* For DeviceNet ${ }^{\text {TM }}$ and CC-Link, transition wiring is possible using a branch connector.
* 1 to 1 in the case of IO-Link

Application

Communication protocols

Both air and electric systems can be established under the same protocol.

Can be additionally installed in an existing network

<Applicable Electric Actuators>

System Construction/General Purpose I/O

System Construction/Fieldbus Network (EtherCAT®/EtherNetIPTM/PROFINET/DeviceNet ${ }^{\text {TM } / I O-L i n k / C C-L i n k ~ D i r e c t ~ I n p u t ~ T y p e) ~}$

[^0]
Electric Actuators

Battery-less Absolute Encoder Type LE \square Series

Battery-less Absolute (Step Motor 24 VDC)

Slider Type/Ball Screw Drive LEFS Series Batien-less Absolute (sep Maor 24voc) p. 12

Slider Type/Belt Drive LEFB Series Batery-less Absolute (sep Noier 2 voco) p. 12

Model Selection ... p. 13
How to Order ... p. 43
Specifications .. p. 45
Weight ... p. 45
Construction .. p. 46
Dimensions .. p. 47
Rod Type LEY Series Battery-less Absolute (Step Molor 24 VDC) p. 54

Guide Rod Type LEYG Series Battery-less Absolute (Step Moor 24 VDC) p. 54

	Model Selection	p. 73
	How to Order	p. 79
	Specifications	p. 81
	Weight	p. 82
	Construction	p. 83
	Dimensions	p. 85

Slide Table/High Precision Type LESYH Series Batien-less Absolute (see Moor 24voc) p. 90

How to Order ... 99
Specifications .. p. 101
Weight .. p. 101
Construction .. p. 102
Dimensions .. p. 103
Slide Table/Compact Type LES Series Batien-less Absolute (sep Moor 24voc) p. 90

	Model Selection	p. 107
	How to Order	p. 115
-	Specifications	p. 117
	Weight	p. 117
	Construction	p. 118
	Dimensions	p. 120

Slide Table／High Rigidity Type LESH Series Batery－less Absolute（ssep wara4 voc）p． 90

Model Selection p． 125
How to Order p． 133
Specifications p． 135
Weight p． 135
Construction p． 136
Dimensions p． 138
Gripper LEHF Series Battery－less Absolute（Step Motor 24 VDC） p． 142
Model Selection p． 143
How to Order p． 147
Specifications p． 149
Construction p． 150
Dimensions p． 151
Rotary Table LER Series Batien－less Absolute（ssep Moor 24 vooc）p． 154
 Model Selection p． 155
How to Order p． 159
Specifications p． 161
Construction p． 162
Dimensions p． 163
Controllers JXC \square Series ${ }^{\text {®．} 164}$

Controllers JXC■ Series p． 164

Controller（Step Data Input Type）JXC51／61 Series Batien－less Absolute（step Nocer 24voc）
How to Order p． 165
Specifications p． 165
Dimensions p． 167
Options p． 171
Actuator Cable p． 178

$$
1+2-2
$$

Step Motor Controller JXCE1／91／P1／D1／L1／M1 Series Battery－less Absolute（Siep Moor 24 vDC）
Specifications p． 173
Dimensions p． 175
Options p． 177
Actuator Cable p． 178
Specific Product Precautions p． 181
CE／UL－compliance List p． 182

Battery-less Absolute Encoder Type

Slider Type

Model Selection

Selection Procedure

Selection Example

Operating

Step 1
Check the work load-speed. <Speed-Work load graph> (pages 14 to 16) Select a model based on the workpiece mass and speed while referencing the speed-work load graph.
Selection example) The LEFS25EA-200 can be temporarily selected as a possible candidate based on the graph shown on the right side.

Calculation example)
T1 to T4 can be calculated as follows.

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}], \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{200-0.5 \cdot 300 \cdot(0.1+0.1)}{300} \\
& =0.57[\mathrm{~s}] \\
\mathrm{T} 4 & =0.2[\mathrm{~s}]
\end{aligned}
$$

The cycle time can be found as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.1+0.57+0.1+0.2 \\
& =0.97[\mathrm{~s}]
\end{aligned}
$$

<Speed-Work load graph> (LEFS25/Battery-less absolute)

Step 2 Check the cycle time.

Calculate the cycle time using the
following calculation method.

Cycle time:

T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

-T1: Acceleration time and T3: Deceleration time can be found by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

-T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the conditions such as motor types, load and in position of the step data. Therefore, calculate the settling time while referencing the following value.

$$
\mathrm{T} 4=0.2[\mathrm{~s}]
$$

L : Stroke [mm] ... (Operating condition)
V : Speed [mm/s] … (Operating condition)
a1: Acceleration [mm/s²] (Operating condition) a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)

T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until positioning is completed

Check the allowable moment. <Static allowable moment> (page 16) <Dynamic allowable moment> (page 17) Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Based on the above calculation result, the LEFS25EA-200 should be selected.

For Battery-less Absolute (Step Motor 24 VDC), In-line Motor Type

* The following graphs show the values when the moving force is 100%.

LEFS16/Ball Screw Drive

Horizontal

LEFS25/Ball Screw Drive

Horizontal

LEFS32/Ball Screw Drive

Vertical

Vertical

Vertical

Vertical

LEF Series

Battery-less Absolute (Step Motor 24 VDC)

Speed-Work Load Graph (Guide)
 For Battery-less Absolute (Step Motor 24 VDC), Motor Parallel Type

The following graphs show the values when the moving force is 100%.

LEFS16(L/R)/Ball Screw Drive

Vertical

LEFS25(L/R)/Ball Screw Drive

Horizontal

Vertical

LEFS32(L/R)/Ball Screw Drive

Vertical

LEFS40(L/R)/Ball Screw Drive

Horizontal

Vertical

Speed－Work Load Graph（Guide）

For Battery－less Absolute（Step Motor 24 VDC）
LEFB／Belt Drive
Horizontal

Static Allowable Moment＊${ }^{* 1}$

［N．m］					
Model	Size	Pitching	Yawing	Rolling	
	$\mathbf{1 6}$	10.0	10.0	20.0	
	$\mathbf{2 5}$	27.0	27.0	52.0	
	$\mathbf{3 2}$	46.0	46.0	101.0	
	$\mathbf{4 0}$	110.0	110.0	207.0	

＊1 The static allowable moment is the amount of static moment which can be applied to the actuator when it is stopped．
If the product is exposed to impact or repeated load，be sure to take adequate safety measures when using the product．

\section*{| エ |
| :---: |
| ய |}

LEF Series

Battery-less Absolute (Step Motor 24 VDC)

Dynamic Allowable Moment

* These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

Acceleration/Deceleration \qquad $1000 \mathrm{~mm} / \mathrm{s}^{2}$

- - - $3000 \mathrm{~mm} / \mathrm{s}^{2}$

＊These graphs show the amount of allowable overhang（guide unit）when the center of gravity of the workpiece overhangs in one direction．When selecting the overhang，refer to the＂Calculation of Guide
Dynamic Allowable Moment Load Factor＂or the Electric Actuator Model Selection Software for confirmation：https：／／www．smcworld．com

Calculation of Guide Load Factor

1．Decide operating conditions．
Model：LEFS／LEFB
Size：16／25／32／40
Acceleration［mm／s²］：a
Mounting orientation：Horizontal／Bottom／Wall／Vertical
Work load［kg］：m
Work load center position［mm］：Xc／Yc／Zc
2．Select the target graph while referencing the model，size，and mounting orientation．
3．Based on the acceleration and work load，find the overhang［mm］：Lx／Ly／Lz from the graph．
4．Calculate the load factor for each direction．

$$
\alpha \mathbf{x}=\mathrm{Xc} / \mathrm{Lx}, \alpha \mathbf{y}=\mathrm{Yc} / \mathrm{Ly}, \alpha \mathbf{z}=\mathrm{Zc} / \mathrm{Lz}
$$

5．Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$ ，and $\alpha \mathbf{z}$ is 1 or less．

$$
\alpha \mathbf{x}+\alpha \mathbf{y}+\alpha \mathbf{z} \leq \mathbf{1}
$$

When 1 is exceeded，please consider a reduction of acceleration and work load，or a change of the work load center position and series．

Example

1．Operating conditions
Model：LEFS40
Size： 40
Mounting orientation：Horizontal
Acceleration［mm／s²］： 3000
Work load［kg］： 20
Work load center position［mm］：Xc＝0，Yc＝50，Zc＝200
2．Select the graphs for horizontal of the LEF40 on page 17.
5．$\alpha x+\alpha y+\alpha z=0.33 \leq 1$

3．$L x=400 \mathrm{~mm}, L y=250 \mathrm{~mm}, L z=1500 \mathrm{~mm}$
4．The load factor for each direction can be found as follows．

$$
\begin{aligned}
& \alpha x=0 / 400=0 \\
& \alpha y=50 / 250=0.2 \\
& \alpha z=200 / 1500=0.13
\end{aligned}
$$

LEF Series

Table Accuracy (Reference Value)

Model	Traveling parallelism [mm] (Every 300 mm)	
	1) C side traveling parallelism to A side	(2) D side traveling parallelism to B side
LEF16	0.05	0.03
LEF25	0.05	0.03
LEF32	0.05	0.03
LEF40	0.05	0.03

* Traveling parallelism does not include the mounting surface accuracy. (Excludes when the stroke exceeds 2000 mm)

Table Displacement (Reference Value)

* This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table.
* Check the clearance and play of the guide separately.

Overhang Displacement Due to Table Clearance (Initial Reference Value)

Basic type

High-precision type

For details on controllers, refer to the next page.

Battery-less Absolute Encoder Type Slider Type/Ball Screw Drive

- Communication plug connector, I/O cable*9

Symbol	Type	Applicable interface
$\mathbf{N i l}$	Without accessory	-
\mathbf{S}	Straight type communication plug connector	DeviceNet ${ }^{\mathrm{TM}}$
\mathbf{T}	T-branch type communication plug connector	CC-Link Ver. 1.10
$\mathbf{1}$	I/O cable $(1.5 \mathrm{~m})$	Parallel input (NPN)
$\mathbf{3}$	I/O cable $(3 \mathrm{~m})$	
$\mathbf{5}$	I/O cable $(5 \mathrm{~m})$	

*7 Produced upon receipt of order
*8 The DIN rail is not included. It must be ordered separately.
*9 Select "Nil" for anything other than DeviceNet™, CC-Link, or parallel input.
Select "Nil," "S," or "T" for DeviceNet™ or CC-Link.
Select "Nil," "1," "3," or " 5 " for parallel input. changed to have auto switch compatibility after purchase.

\triangle Caution

[CE-compliant products]

EMC compliance was tested by combining the electric actuator LEF series and the controller JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
[Precautions relating to differences in controller versions]
When the JXC series is to be used in combination with the battery-less absolute encoder, use a controller that is version V3.4 or S3.4 or higher. For details, refer to pages 179 and 180.

[UL certification]

The JXC series controllers used in combination with electric actuators are UL certified.

The actuator and controller are sold as a package.
Confirm that the combination of the controller and actuator is correct.
<Check the following before use.>
(1) Check the actuator label for the model number. This number should match that of the controller.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

* Refer to the Operation Manual for using the products.

Please download it via our website: https://www.smcworld.com

Type	Step data input type	EtherCAT ${ }^{\circledR}$ direct input type	EtherNet/IPTM direct input type	PROFINET direct input type	DeviceNet ${ }^{\text {TM }}$ direct input type	IO-Link direct input type	CC-Link direct input type
Series	$\begin{aligned} & \text { JXC51 } \\ & \text { JXC61 } \end{aligned}$	JXCE1	JXC91	JXCP1	JXCD1	JXCL1	JXCM1
Features	Parallel I/O	EtherCAT® ${ }^{\circledR}$ direct input	EtherNet/IPTM direct input	PROFINET direct input	DeviceNet ${ }^{\text {TM }}$ direct input	IO-Link direct input	CC-Link direct input
Compatible motor	Battery-less absolute (Step motor 24 VDC)						
Max. number of step data	64 points						
Power supply voltage	24 VDC						
Reference page	165	172					

LEFS Series

Battery-less Absolute (Step Motor 24 VDC)

Specifications

Battery-less Absolute (Step Motor 24 VDC)

Model					LEFS16 \square E		LEFS25 $\square \mathrm{E}$			LEFS32 \square E			LEFS40 \square E		
	Stroke [m	m]*1			50 to 500		50 to 800			50 to 1000			150 to 1200		
	Work load [kg]*2	Horizontal			14	15	12	25	30	20	45	50	25	55	65
		Vertical			2	4	0.5	7.5	15	4	10	20	2	2	23
	Speed*2 [mm/s]	In-line	Stroke range	Up to 450	10 to 700	5 to 360	20 to 1100	12 to 750	6 to 400	24 to 1200	16 to 800	8 to 400	30 to 1200	20 to 850	10 to 300
				451 to 500	10 to 600	5 to 300	20 to 1100	12 to 750	6 to 400	24 to 1200	16 to 800	8 to 400	30 to 1200	20 to 850	10 to 300
				501 to 600	-	-	20 to 900	12 to 540	6 to 270	24 to 1200	16 to 800	8 to 400	30 to 1200	20 to 850	10 to 300
				601 to 700	-	-	20 to 630	12 to 420	6 to 230	24 to 930	16 to 620	8 to 310	30 to 1200	20 to 850	10 to 300
				701 to 800	-	-	20 to 550	12 to 330	6 to 180	24 to 750	16 to 500	8 to 250	30 to 1140	20 to 760	10 to 300
				801 to 900	-	-	-	-	-	24 to 610	16 to 410	8 to 200	30 to 930	20 to 620	10 to 300
				901 to 1000	-	-	-	-	-	24 to 500	16 to 340	8 to 170	30 to 780	20 to 520	10 to 250
				1001 to 1100	-	-	-	-	-	-	-	-	30 to 660	20 to 440	10 to 220
				1101 to 1200	-	-	-	-	-	-	-	-	30 to 570	20 to 380	10 to 190
		Parallel	Stroke range	Up to 450	10 to 700	5 to 360	20 to 900	12 to 600	6 to 300	24 to 800	16 to 650	8 to 325	30 to 750	20 to 550	10 to 300
				451 to 500	10 to 600	5 to 300	20 to 900	12 to 600	6 to 300	24 to 800	16 to 650	8 to 325	30 to 750	20 to 550	10 to 300
				501 to 600	-	-	20 to 900	12 to 540	6 to 270	24 to 800	16 to 650	8 to 325	30 to 750	20 to 550	10 to 300
				601 to 700	-	-	20 to 630	12 to 420	6 to 230	24 to 800	16 to 620	8 to 310	30 to 750	20 to 550	10 to 300
				701 to 800	-	-	20 to 550	12 to 330	6 to 180	24 to 750	16 to 500	8 to 250	30 to 750	20 to 550	10 to 300
				801 to 900	-	-	-	-	-	24 to 610	16 to 410	8 to 200	30 to 750	20 to 550	10 to 300
				901 to 1000	-	-	-	-	-	24 to 500	16 to 340	8 to 170	30 to 750	20 to 520	10 to 250
				1001 to 1100	-	-	-	-	-	-	-	-	30 to 660	20 to 440	10 to 220
				1101 to 1200	-	-	-	-	-	-	-	-	30 to 570	20 to 380	10 to 190
	Max. acceleration/deceleration [mm/s ${ }^{2}$]				3000										
	Positioning repeatability [mm]			Basic type	± 0.02										
				High-precision type	± 0.015 (Lead H: ± 0.02)										
	Lost motion [mm]*3			Basic type	0.1 or less										
				High-precision type	0.05 or less										
	Lead [mm]				10	5	20	12	6	24	16	8	30	20	10
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{* 4}$				50/20										
	Actuation type				Ball screw (LEFS \square), Ball screw + Belt (LEFS $\square_{\mathrm{L}}^{\mathrm{R}}$)										
	Guide type				Linear guide										
	Operating temperature range [${ }^{\circ} \mathrm{C}$]				5 to 40										
	Operating humidity range [\%RH]				90 or less (No condensation)										
	Motor size				$\square 28$		$\square 42$			$\square 56.4$					
	Motor type				Battery-less absolute (Step motor 24 VDC)										
	Encoder				Battery-less absolute										
	Power supply voltage [V]				24 VDC $\pm 10 \%$										
	Power [W] ${ }^{* 5 * 7}$				Max. power 51		Max. power 57			Max. power 123			Max. power 141		
	Type*6				Non-magnetizing lock										
	Holding force [N]				20	39	47	78	157	72	108	216	75	113	225
	Power [W] ${ }^{* 7}$				2.9		5			5			5		
	Rated voltage [V]				24 VDC $\pm 10 \%$										

*1 Please contact SMC for non-standard strokes as they are produced as special orders
*2 Speed changes according to the work load. Check the "Speed-Work Load Graph (Guide)" on pages 14 and 15.
Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m .
*3 A reference value for correcting errors in reciprocal operation
*4 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*5 Indicates the max. power during operation (including the controller). This value can be used for the selection of the power supply.
*6 With lock only
*7 For an actuator with lock, add the power for the lock.

Battery－less Absolute Encoder Type
 Slider Type／Ball Screw Drive LEFS Series

Battery－less Absolute（Step Motor 24 VDC）

Weight

Series	LEFS16 \square E									
Stroke［mm］	50	100	150	200	250	300	350	400	450	500
Product weight［kg］	0.83	0.90	0.98	1.05	1.13	1.20	1.28	1.35	1.43	1.50
Additional weight with lock［kg］	0.12									

Series	LEFS25 \square E															
Stroke［mm］	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
Product weight［kg］	1.70	1.84	1.98	2.12	2.26	2.40	2.54	2.68	2.82	2.96	3.10	3.24	3.38	3.52	3.66	3.80
Additional weight with lock［kg］	0.26															

Series	LEFS40 $\square \mathrm{E}$																			
Stroke［mm］	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1100	1200
Product weight［kg］	5.37	5.65	5.93	6.21	6.49	6.77	7.15	7.33	7.61	7.89	8.17	8.45	8.73	9.01	9.29	9.57	9.85	10.13	10.69	11.25
Additional weight with lock［kg］	0.53																			

LEFS Series

Battery-less Absolute (Step Motor 24 VDC)

Construction: In-line Motor

LEFS16, 25, 32, 40

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Rail guide	-	
$\mathbf{3}$	Ball screw assembly	-	
$\mathbf{4}$	Table	Aluminum alloy	Anodized
$\mathbf{5}$	Blanking plate	Aluminum alloy	Anodized
$\mathbf{6}$	Seal band holder	Synthetic resin	
$\mathbf{7}$	Housing A	Aluminum die-casted	Coating
$\mathbf{8}$	Housing B	Aluminum die-casted	Coating
$\mathbf{9}$	Bearing stopper	Aluminum alloy	
$\mathbf{1 0}$	Motor mount	Aluminum alloy	Coating/Anodized
$\mathbf{1 1}$	Coupling	-	
$\mathbf{1 2}$	Motor cover	Aluminum alloy	Anodized

No.	Description		Material	Note
13	End cover		Aluminum alloy	Anodized
14	Motor		-	
15	Rubber bushing		NBR	
16	Band stopper		Stainless steel	
17	Dust seal band		Stainless steel	
18	Seal magnet	LEFS40	-	
19	Bearing		-	Stroke 250 mm or more
20	Bearing		-	
21	Magnet		-	With auto switch compatibility
22	Roller assembly		-	Without grease application
23	Heat dissipation sheet	LEFS16	-	

Battery-less Absolute Encoder Type Slider Type/Ball Screw Drive

Construction: Motor Parallel

Component Parts

No.	Description		Material	Note
1	Body		Aluminum alloy	Anodized
2	Rail guide		-	
3	Ball screw assembly		-	
4	Table		Aluminum alloy	Anodized
5	Blanking plate		Aluminum alloy	Anodized
6	Seal band holder		Synthetic resin	
7	Housing A		Aluminum die-casted	Coating
8	Housing B		Aluminum die-casted	Coating
9	Bearing stopper		Aluminum alloy	
10	Return plate		Aluminum alloy	Coating/Anodized
11	Pulley		Aluminum alloy	
12	Pulley		Aluminum alloy	
14	Cover plate		Aluminum alloy	Anodized
15	Table spacer	LEFS32	Aluminum alloy	Anodized (LEFS32 only)
16	Motor		-	
17	Motor cover	LEFS16	Aluminum alloy	Anodized
		LEFS25/32/40	Synthetic resin	
18	Motor cover with lock	LEFS25/32/40	Aluminum alloy	Anodized

No.	Description	Material	Note	
$\mathbf{1 9}$	End cover	LEFS16	Aluminum alloy	Anodized
$\mathbf{2 0}$	Rubber bushing	LEFS16	NBR	
$\mathbf{2 1}$	Band stopper		Stainless steel	
$\mathbf{2 2}$	Dust seal band	Stainless steel		
$\mathbf{2 3}$	Seal magnet	LEFS40	-	
$\mathbf{2 4}$	Bearing	-	Stroke 250 mm or more	
$\mathbf{2 5}$	Bearing	-		
$\mathbf{2 6}$	Magnet		-	With auto switch compatibility
$\mathbf{2 7}$	Roller assembly	-	Without grease application	
$\mathbf{2 8}$	Heat dissipation sheet	LEFS16	-	

Replacement Parts/Belt

No.	Size	Order no.
13	16	LE-D-6-5
	25	LE-D-6-2
	32	LE-D-6-3
	40	LE-D-6-4

LEFS Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions: In-line Motor

LEFS16E

Dimensions								[m
Model	L		A	B	n	D	E	F
	Without lock	With lock						
LEFS16E \square-50 \square	254.5	298.5	56	130	4	-	-	15
LEFS16E \square-100 \square	304.5	348.5	106	180				40
LEFS16E \square-150 \square	354.5	398.5	156	230				
LEFS16E \square-200 \square	404.5	448.5	206	280	6	2	200	
LEFS16E \square-250 \square	454.5	498.5	256	330				
LEFS16E \square-300 \square	504.5	548.5	306	380	8	3	300	
LEFS16E \square-350 \square	554.5	598.5	356	430				
LEFS16E \square-400 \square	604.5	648.5	406	480	10	4	400	
LEFS16E \square-450 \square	654.5	698.5	456	530				
LEFS16E \square-500 \square	704.5	748.5	506	580	12	5	500	

Battery－less Absolute Encoder Type
 Slider Type／Ball Screw Drive LEFS Series

Dimensions：In－line Motor

LEFS16E

Positioning pin hole（Option）：Body bottom

Dimensions
$\mathrm{mm}]$

Model	Positioning pin hole： \mathbf{K}	
	G	H
LEFS16E \square－50 \square	80	25
LEFS16E \square－100 \square		50
LEFS16E \square－150 \square		
LEFS16E \square－200 \square	180	
LEFS16E \square－250 \square		
LEFS16E \square－300 \square	280	
LEFS16E \square－350 \square		
LEFS16E \square－400 \square	380	
LEFS16E \square－450 \square		
LEFS16E \square－500 \square	480	

LEFS Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions: In-line Motor

LEFS25E

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of round chamfering. (Recommended height: 5 mm)
In addition, be aware that surfaces other than the body mounting reference plane (B dimension range) may slightly protrude from the body mounting reference plane. Be sure to provide a clearance of 1 mm or more to avoid interference with workpieces, facilities, etc.
*2 This is the distance within which the table can move when it returns to origin.
Make sure workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*3 Position after returning to origin
*4 [] for when the direction of return to origin has changed

Dimensions					n	D	E	[mm
	L		A	B				
	Without lock	With lock						F
LEFS25E \square-50 \square	285.5	330.5	56	160	4	-	-	20
LEFS25E \square-100 \square	335.5	380.5	106	210	4	-	-	35
LEFS25E \square-150 \square	385.5	430.5	156	260	4	-	-	
LEFS25E \square-200 \square	435.5	480.5	206	310	6	2	240	
LEFS25E \square-250 \square	485.5	530.5	256	360	6	2	240	
LEFS25E \square-300 \square	535.5	580.5	306	410	8	3	360	
LEFS25E \square-350 \square	585.5	630.5	356	460	8	3	360	
LEFS25E \square-400 \square	635.5	680.5	406	510	8	3	360	
LEFS25E \square-450 \square	685.5	730.5	456	560	10	4	480	
LEFS25E \square-500 \square	735.5	780.5	506	610	10	4	480	
LEFS25E \square-550 \square	785.5	830.5	556	660	12	5	600	
LEFS25E \square-600 \square	835.5	880.5	606	710	12	5	600	
LEFS25E \square-650 \square	885.5	930.5	656	760	12	5	600	
LEFS25E \square-700 \square	935.5	980.5	706	810	14	6	720	
LEFS25E \square-750 \square	985.5	1030.5	756	860	14	6	720	
LEFS25E \square-800 \square	1035.5	1080.5	806	910	16	7	840	

Battery－less Absolute Encoder Type
 Slider Type／Ball Screw Drive LEFS Series

Battery－less Absolute（Step Motor 24 VDC）

Dimensions：In－line Motor

LEFS25E

Positioning pin hole＊1（Option）：Body bottom

＊1 When using the body bottom positioning pin holes，do not simultaneously use the housing B bottom pin hole．

With auto switch（Option）

＊For strokes of 99 mm or less，only 2 auto switch mounting brackets can be installed on the motor side．

Dimensions		［m
Model	G	H
LEFS25E \square－50 \square	100	30
LEFS25E \square－100 \square	100	45
LEFS25E \square－150 \square	100	45
LEFS25E \square－200 \square	220	45
LEFS25E \square－250 \square	220	45
LEFS25E \square－300 \square	340	45
LEFS25E \square－350 \square	340	45
LEFS25E \square－400 \square	340	45
LEFS25E \square－450 \square	460	45
LEFS25E \square－500 \square	460	45
LEFS25E \square－550 \square	580	45
LEFS25E \square－600 \square	580	45
LEFS25E \square－650 \square	580	45
LEFS25E \square－700 \square	700	45
LEFS25E \square－750 \square	700	45
LEFS25E \square－800 \square	820	45

노플

舀

LEFS Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions: In-line Motor
LEFS32E

Lock cable (ø3.5)

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of round chamfering. (Recommended height: 5 mm) In addition, be aware that surfaces other than the body mounting reference plane (B dimension range) may slightly protrude from the body mounting reference plane. Be sure to provide a clearance of 1 mm or more to avoid interference with workpieces, facilities, etc.
*2 This is the distance within which the table can move when it returns to origin.
Make sure workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*3 Position after returning to origin
*4 [] for when the direction of return to origin has changed

Dimensions

Model	L		A	B	n	D	E
	Without lock	With lock					
LEFS32E \square-50 \square	332	384	56	180	4	-	-
LEFS32E \square-100 \square	382	434	106	230	4	-	-
LEFS32E \square-150 \square	432	484	156	280	4	-	-
LEFS32E \square-200 \square	482	534	206	330	6	2	300
LEFS32E \square-250 \square	532	584	256	380	6	2	300
LEFS32E \square-300 \square	582	634	306	430	6	2	300
LEFS32E \square-350 \square	632	684	356	480	8	3	450
LEFS32E \square-400 \square	682	734	406	530	8	3	450
LEFS32E \square-450 \square	732	784	456	580	8	3	450
LEFS32E \square-500 \square	782	834	506	630	10	4	600
LEFS32E \square-550 \square	832	884	556	680	10	4	600
LEFS32E \square-600 \square	882	934	606	730	10	4	600
LEFS32E \square-650 \square	932	984	656	780	12	5	750
LEFS32E \square-700 \square	982	1034	706	830	12	5	750
LEFS32E \square-750 \square	1032	1084	756	880	12	5	750
LEFS32E \square-800 \square	1082	1134	806	930	14	6	900
LEFS32E \square-850 \square	1132	1184	856	980	14	6	900
LEFS32E \square-900 \square	1182	1234	906	1030	14	6	900
LEFS32E \square-950 \square	1232	1284	956	1080	16	7	1050
LEFS32E \square-1000 \square	1282	1334	1006	1130	16	7	1050

Dimensions：In－line Motor

LEFS32E

Positioning pin hole＊1（Option）：Body bottom

＊1 When using the body bottom positioning pin holes，do not simultaneously use the housing B bottom pin hole．

With auto switch（Option）

＊For strokes of 99 mm or less，only 2 auto switch mounting brackets can be installed on the motor side．

Dimensions	
Model	G
LEFS32E－50］	130
LEFS32ED－100	30
LEFS32E－150	
LEFS32E－－200■	280
LEFS32ED－250	
LEFS32E］－300	
LEFS32E－35	
LEFS32E－400	
LEFS32E－450］	430
LEFS32E－500	580
LEFS32E－550］	
LEFS32E］－600］	
LEFS32ED－650］	
LEFS32ED－700］	730
LEFS32E－750■	
LEFS32E］－800］	
LEFS32ED－850■	
LEFS32ED－900］	880
LEFS32E］－950］	103
LEFS32E－1000	

LEFS Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions: In-line Motor
LEFS40E

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of round chamfering. (Recommended height: 5 mm) In addition, be aware that surfaces other than the body mounting reference plane (B dimension range) may slightly protrude from the body mounting reference plane. Be sure to provide a clearance of 1 mm or more to avoid interference with workpieces, facilities, etc.
*2 This is the distance within which the table can move when it returns to origin.
Make sure workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*3 Position after returning to origin
*4 [] for when the direction of return to origin has changed

Dimensions							[mm]
Model	L		A	B	n	D	E
	Without lock	With lock					
LEFS40E \square-150 \square	506	555	156	328	4	-	150
LEFS40E \square-200 \square	556	605	206	378	6	2	300
LEFS40E \square-250 \square	606	655	256	428	6	2	300
LEFS40E \square-300 \square	656	705	306	478	6	2	300
LEFS40E \square-350 \square	706	755	356	528	8	3	450
LEFS40E \square-400 \square	756	805	406	578	8	3	450
LEFS40E \square-450 \square	806	855	456	628	8	3	450
LEFS40E \square-500 \square	856	905	506	678	10	4	600
LEFS40E \square-550 \square	906	955	556	728	10	4	600
LEFS40E \square-600 \square	956	1005	606	778	10	4	600
LEFS40E \square-650 \square	1006	1055	656	828	12	5	750
LEFS40E \square-700 \square	1056	1105	706	878	12	5	750
LEFS40E \square-750 \square	1106	1155	756	928	12	5	750
LEFS40E \square-800 \square	1156	1205	806	978	14	6	900
LEFS40E \square-850 \square	1206	1255	856	1028	14	6	900
LEFS40E \square-900 \square	1256	1305	906	1078	14	6	900
LEFS40E \square-950 \square	1306	1355	956	1128	16	7	1050
LEFS40E \square-1000 \square	1356	1405	1006	1178	16	7	1050
LEFS40E \square-1100 \square	1456	1505	1106	1278	18	8	1200
LEFS40E \square-1200 \square	1556	1605	1206	1378	18	8	1200

Battery－less Absolute Encoder Type
 Slider Type／Ball Screw Drive LEFS Series

Battery－less Absolute（Step Motor 24 VDC）

Dimensions：In－line Motor

LEFS40E

Positioning pin hole＊1（Option）：Body bottom

＊1 When using the body bottom positioning pin holes，do not simultaneously use the housing B bottom pin hole．
With auto switch（Option）

Dimensions	［mm］
Model	G
LEFS40E］－150］	130
LEFS40E］－200］	280
LEFS40ED－250］	280
LEFS40ED－300］	280
LEFS40E］－350］	430
LEFS40ED－400］	430
LEFS40ED－450］	430
LEFS40ED－500］	580
LEFS40ED－550］	580
LEFS40E］－600］	580
LEFS40E］－650］	730
LEFS40ED－700］	730
LEFS40ED－750］	730
LEFS40ED－800］	880
LEFS40E］－850］	880
LEFS40E］－900］	880
LEFS40E］－950］	1030
LEFS40E］－1000	1030
LEFS40E］－1100］	1180
LEFS40E］－1200］	1180

LEFS Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions: Motor Parallel

LEFS16RE

With lock

L

Dimensions

Dimensions							[m
Model	L	A	B	n	D	E	F
LEFS16 \square E \square-50 \square	166.5	56	130	4	-	-	15
LEFS16 \square E \square-100 \square	216.5	106	180				40
LEFS16 \square E \square-150 \square	266.5	156	230				
LEFS16 \square E \square-200 \square	316.5	206	280	6	2	200	
LEFS16 \square E \square-250 \square	366.5	256	330				
LEFS16 \square E \square-300 \square	416.5	306	380	8	3	300	
LEFS16 \square E \square-350 \square	466.5	356	430				
LEFS16 \square E \square-400 \square	516.5	406	480	10	4	400	
LEFS16 \square E \square-450 \square	566.5	456	530				
LEFS16 \square E \square-500 \square	616.5	506	580	12	5	500	

Battery－less Absolute Encoder Type
 Slider Type／Ball Screw Drive LEFS Series

Dimensions：Motor Parallel

LEFS16R

Positioning pin hole（Option）：Body bottom

Dimensions		
Model	Positioning pin hole： \mathbf{K}	
	G	H
LEFS16 \square E \square－50 \square	80	25
LEFS16 \square E \square－100 \square		50
LEFS16 \square E \square－150 \square		
LEFS16 \square E \square－200 \square	180	
LEFS16 \square E \square－250 \square		
LEFS16 \square E \square－300 \square	280	
LEFS16 \square E \square－350 \square		
LEFS16 \square E \square－400 \square	380	
LEFS16 \square E \square－450 \square		
LEFS16 \square E \square－500 \square	480	

Dimensions
mm］

LEFS Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions: Motor Parallel

LEFS25R

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height: 5 mm) In addition, be aware that surfaces other than the body mounting reference plane (B dimension range) may slightly protrude from the body mounting reference plane. Be sure to provide a clearance of 1 mm or more to avoid interference with workpieces, facilities, etc.
*2 This is the distance within which the table can move when it returns to origin.
Make sure workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*3 Position after returning to origin
*4 [] for when the direction of return to origin has changed

[mm]							
Model	L	A	B	n	D	E	F
LEFS25 \square E \square-50 \square	210.5	56	160	4	-	-	20
LEFS25 \square E \square-100 \square	260.5	106	210	4	-	-	35
LEFS25 \square E \square-150 \square	310.5	156	260	4	-	-	
LEFS25 \square E \square-200 \square	360.5	206	310	6	2	240	
LEFS25 \square E \square-250 \square	410.5	256	360	6	2	240	
LEFS25 \square E \square-300 \square	460.5	306	410	8	3	360	
LEFS25 \square E \square-350 \square	510.5	356	460	8	3	360	
LEFS25 \square E \square-400 \square	560.5	406	510	8	3	360	

[mm]							
Model	L	A	B	n	D	E	F
LEFS25 \square E \square-450 \square	610.5	456	560	10	4	480	35
LEFS25 \square E \square-500 \square	660.5	506	610	10	4	480	
LEFS25 \square E \square-550 \square	710.5	556	660	12	5	600	
LEFS25 \square E \square-600 \square	760.5	606	710	12	5	600	
LEFS25 \square E \square-650 \square	810.5	656	760	12	5	600	
LEFS25 \square E \square-700 \square	860.5	706	810	14	6	720	
LEFS25 \square E \square-750 \square	910.5	756	860	14	6	720	
LEFS25 \square E \square-800 \square	960.5	806	910	16	7	840	

Dimensions: Motor Parallel

LEFS25R

Positioning pin hole*1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

l	Dimensions	
Model	G	H
LEFS25 $\square \mathrm{E} \square-50 \square$	100	30
LEFS25 $\square \mathrm{E} \square-100 \square$	100	45
LEFS25 $\square \square-150 \square$	100	45
LEFS25 $\square \square-200 \square$	220	45
LEFS25 $\square \square \square-250 \square$	220	45
LEFS25 $\square \mathrm{E} \square$-300 \square	340	45
LEFS25 $\square \square-350 \square$	340	45
LEFS25 $\square \square \square-400 \square$	340	45

l	Dimensions	
Model	G	H
LEFS25 $\square \mathrm{E} \square-450 \square$	460	45
LEFS25 $\square \mathrm{E} \square-500 \square$	460	45
LEFS25 $\square \mathrm{E} \square-550 \square$	580	45
LEFS25 $\square \square \square-600 \square$	580	45
LEFS25 $\square \mathrm{E} \square-650 \square$	580	45
LEFS25 $\square \square \square-700 \square$	700	45
LEFS25 $\square \square \square-750 \square$	700	45
LEFS25 $\square \mathrm{E} \square-800 \square$	820	45

LEFS Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions: Motor Parallel

LEFS32R

Motor mounting position: Rights side parallel LEFS32R \square

$4 \times \mathrm{M} 6 \times 1$
thread depth 12.5 (Depth of counterbore 3)
Body mounting reference plane
(B dimension range)*1

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height: 5 mm) In addition, be aware that surfaces other than the body mounting reference plane (B dimension range) may slightly protrude from the body mounting reference plane. Be sure to provide a clearance of 1 mm or more to avoid interference with workpieces, facilities, etc.
*2 This is the distance within which the table can move when it returns to origin.
Make sure workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*3 Position after returning to origin
*4 [] for when the direction of return to origin has changed

Dimensions						[mm]
	L	A	B	n	D	E
LEFS32 \square E \square-50 \square	245	56	180	4	-	-
LEFS32 \square E \square-100 \square	295	106	230	4	-	-
LEFS32 \square E \square-150 \square	345	156	280	4	-	-
LEFS32 \square E \square-200 \square	395	206	330	6	2	300
LEFS32 \square E \square-250 \square	445	256	380	6	2	300
LEFS32 \square E \square-300 \square	495	306	430	6	2	300
LEFS32 \square E \square-350 \square	545	356	480	8	3	450
LEFS32 \square E \square-400 \square	595	406	530	8	3	450
LEFS32 \square E \square-450 \square	645	456	580	8	3	450
LEFS32 \square E \square-500 \square	695	506	630	10	4	600

Dimensions	[mm]					
	L	A	B	n	D	E
LEFS32 \square E \square-550 \square	745	556	680	10	4	600
LEFS32 \square E \square-600 \square	795	606	730	10	4	600
LEFS32 \square E \square-650 \square	845	656	780	12	5	750
LEFS32 \square E \square-700 \square	895	706	830	12	5	750
LEFS32 \square E \square-750 \square	945	756	880	12	5	750
LEFS32 \square E \square-800 \square	995	806	930	14	6	900
LEFS32 \square E \square-850 \square	1045	856	980	14	6	900
LEFS32 \square E \square-900 \square	1095	906	1030	14	6	900
LEFS32 \square E \square-950 \square	1145	956	1080	16	7	1050
LEFS32 \square E \square-1000 \square	1195	1006	1130	16	7	1050

Dimensions: Motor Parallel

LEFS32R

Positioning pin hole*1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

Dimensions	[mm]
Model	G
LEFS32 \square E \square-50 \square	130
LEFS32 \square E \square-100 \square	130
LEFS32 \square E \square-150 \square	130
LEFS32 \square E \square-200 \square	280
LEFS32 \square E \square-250 \square	280
LEFS32 \square E \square-300 \square	280
LEFS32 \square E \square-350 \square	430
LEFS32 \square E \square-400 \square	430
LEFS32 \square E \square-450 \square	430
LEFS32 \square E \square-500 \square	580

Dimensions	$[\mathrm{mm}]$
Model	G
LEFS32 \square E $\square-550 \square$	580
LEFS32 $\square \square-600 \square$	580
LEFS32 \square E $\square-650 \square$	730
LEFS32 $\square \square-700 \square$	730
LEFS32 $\square \square-750 \square$	730
LEFS32 $\square \square-\mathbf{8 0 0} \square$	880
LEFS32 \square E $\square \mathbf{- 8 5 0} \square$	880
LEFS32 \square E $\square-900 \square$	880
LEFS32 $\square \square-950 \square$	1030
LEFS32 \square E $\square-1000 \square$	1030

LEFS Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions: Motor Parallel

LEFS40R

Motor mounting position: Left side parallel
LEFS40L \square

Motor mounting position: Right side parallel LEFS4OR \square

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height: 5 mm) In addition, be aware that surfaces other than the body mounting reference plane (B dimension range) may slightly protrude from the body mounting reference plane. Be sure to provide a clearance of 1 mm or more to avoid interference with workpieces, facilities, etc.
*2 This is the distance within which the table can move when it returns to origin.
Make sure workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*3 Position after returning to origin
*4 [] for when the direction of return to origin has changed

Dimensions						
Model	L	A	B	n	D	E
LEFS40 \square E \square-150 \square	403.4	156	328	4	-	150
LEFS40 \square E \square-200 \square	453.4	206	378	6	2	300
LEFS40 \square E \square-250 \square	503.4	256	428	6	2	300
LEFS40 \square E \square-300 \square	553.4	306	478	6	2	300
LEFS40 \square E \square-350 \square	603.4	356	528	8	3	450
LEFS40 \square E \square-400 \square	653.4	406	578	8	3	450
LEFS40 \square E \square-450 \square	703.4	456	628	8	3	450
LEFS40 \square E \square-500 \square	753.4	506	678	10	4	600
LEFS40 \square E \square-550 \square	803.4	556	728	10	4	600
LEFS40 \square E \square-600 \square	853.4	606	778	10	4	600

Model					[mm]	
	L	A	B	n	D	E
LEFS40 \square E \square-650 \square	903.4	656	828	12	5	750
LEFS40 \square E \square-700 \square	953.4	706	878	12	5	750
LEFS40 \square E \square-750 \square	1003.4	756	928	12	5	750
LEFS40 \square E \square-800 \square	1053.4	806	978	14	6	900
LEFS40 \square E \square-850 \square	1103.4	856	1028	14	6	900
LEFS40 \square E \square-900 \square	1153.4	906	1078	14	6	900
LEFS40 \square E \square-950 \square	1203.4	956	1128	16	7	1050
LEFS40 \square E \square-1000 \square	1253.4	1006	1178	16	7	1050
LEFS40 \square E \square-1100 \square	1353.4	1106	1278	18	8	1200
LEFS40 \square E \square-1200 \square	1453.4	1206	1378	18	8	1200

Dimensions：Motor Parallel

LEFS40R

Positioning pin hole＊1（Option）：Body bottom

＊1 When using the body bottom positioning pin holes，do not simultaneously use the housing B bottom pin hole．

Dimensions	［mm］
Model	G
LEFS40］ED－150	130
	280
LEFS40 ${ }^{\text {a }}$－$-250 \square$	28
LEFS40］ED－300	280
LEFS40］ED－350］	430
LEFS40］ED－400	430
LEFS40］E］－450	430
LEFS40ПED－500 \square	580
LEFS40］ED－550 \square	580
LEFS40］ED－600	580

Dimensions	m
Model	G
LEFS40 \square E－650 \square	730
LEFS40ПED－700	730
LEFS40ロED－750］	730
LEFS40IED－800］	880
LEFS40］ED－850 \square	880
LEFS40 \square E－900 \square	880
LEFS40 $\square \square-950 \square$	10
LEFS40ПED－1000	1030
LEFS40］ED－1100］	1180
LEFS40ПED－1200	

For details on controllers, refer to the next page.

1 Size
16
25
32

(4) Stroke ${ }^{* 1}$ [mm]

Stroke	Note	
	Size	Applicable stroke
$\mathbf{3 0 0}$ to $\mathbf{1 0 0 0}$	$\mathbf{1 6}$	$300,500,600,700,800,900,1000$
$\mathbf{3 0 0}$ to $\mathbf{2 0 0 0}$	$\mathbf{2 5}$	$300,500,600,700,800,900,1000$, $1200,1500,1800,2000$
$\mathbf{3 0 0}$ to $\mathbf{2 0 0 0}$	$\mathbf{3 2}$	$300,500,600,700,800,900,1000$, $1200,1500,1800,2000$

5 Motor option

Nil	Without option
\mathbf{B}	With lock

8 Positioning pin hole

6 Auto switch compatibility*2*3*4*5

Nil	None
C	With (Includes 1 mounting bracket)

7 Grease application (Seal band part)

$\mathbf{N i l}$	With
\mathbf{N}	Without (Roller specification)

(9) Actuator cable type/length

Robotic cable

Nil	None	R8	$8 * 7$
R1	1.5	RA	$10^{* 7}$
R3	3	RB	$15^{* 7}$
R5	5	RC	$20 * 7$

The belt drive actuator cannot be used for vertical applications.

Battery-less Absolute Encoder Type
 Slider Type/Belt Drive
 Battery-less Absolute (Step Motor 24 VDC)

Interface (Input/Output/ © Communication protocol)

$\mathbf{5}$	Parallel input (NPN)
$\mathbf{6}$	Parallel input (PNP)
\mathbf{E}	EtherCAT $^{\circledR}$
$\mathbf{9}$	EtherNet/P $^{\text {TM }}$
\mathbf{P}	PROFINET
\mathbf{D}	DeviceNet $^{\text {TM }}$
\mathbf{L}	IO-Link
\mathbf{M}	CC-Link Ver. 1.10

Communication plug connector, I/O cable*9

*1 Please contact SMC for non-standard strokes as they are produced as special orders.
*2 Excludes the LEF16
*3 If 2 or more are required, please order them separately. (Part no.: LEF-D-2-1 For details, refer to the Web Catalog.)
*4 Order auto switches separately. (For details, refer to the Web Catalog.)
*5 When "Nil" is selected, the product will not come with a built-in magnet for an auto switch, and so a mounting bracket cannot be secured. Be sure to select an appropriate model initially as the product cannot be changed to have auto switch compatibility after purchase.

\triangle Caution

[CE-compliant products]

EMC compliance was tested by combining the electric actuator LEF series and the controller JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
[Precautions relating to differences in controller versions]
When the JXC series is to be used in combination with the battery-less absolute encoder, use a controller that is version V3.4 or S3.4 or higher. For details, refer to pages 179 and 180.

[UL certification]

The JXC series controllers used in combination with electric actuators are UL certified.
*6 For details on the mounting method, refer to the Web Catalog
*7 Produced upon receipt of order
*8 The DIN rail is not included. It must be ordered separately.
*9 Select "Nil" for anything other than DeviceNet™, CC-Link, or parallel input.
Select "Nil," "S," or "T" for DeviceNet™ or CC-Link.
Select "Nil," "1," "3," or " 5 " for parallel input.

The actuator and controller are sold as a package.
Confirm that the combination of the controller and actuator is correct.
<Check the following before use.>
(1) Check the actuator label for the model number. This number should match that of the controller.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

Refer to the Operation Manual for using the products.
Please download it via our website: https://www.smcworld.com

Type	Step data input type	EtherCAT® direct input type	EtherNet/IPim direct input type	PROFINET direct input type	DeviceNet ${ }^{\text {™ }}$ direct input type	IO-Link direct input type	CC-Link direct input type
Series	$\begin{aligned} & \text { JXC51 } \\ & \text { JXC61 } \end{aligned}$	JXCE1	JXC91	JXCP1	JXCD1	JXCL1	JXCM1
Features	Parallel I/O	EtherCAT ${ }^{\circledR}$ direct input	EtherNet/IPTM direct input	PROFINET direct input	DeviceNet ${ }^{\text {TM }}$ direct input	IO-Link direct input	CC-Link direct input
Compatible motor	Battery-less absolute (Step motor 24 VDC)						
Max. number of step data	64 points						
Power supply voltage	24 VDC						
Reference page	165	172					

LEFB Series

Battery-less Absolute (Step Motor 24 VDC)

Specifications

Battery-less Absolute (Step Motor 24 VDC)

Model		LEFB16E	LEFB25E	LEFB32E
	Stroke [mm]*1	$\begin{gathered} 300,500,600,700 \\ 800,900,1000 \end{gathered}$	$\begin{aligned} & 300,500,600,700,800,900 \\ & 1000,1200,1500,1800,2000 \end{aligned}$	$\begin{gathered} 300,500,600,700,800,900 \\ 1000,1200,1500,1800,2000 \end{gathered}$
	Work load [kg]*2 ${ }^{*}$ Horizontal	1	10	19
	Speed [mm/s]*2	48 to 1100	48 to 1400	48 to 1500
	Max. acceleration/deceleration [mm/s²]	3000		
	Positioning repeatability [mm]	± 0.08		
	Lost motion [mm]*3	0.1 or less		
	Equivalent lead [mm]	48	48	48
	Impact/Vibration resistance [$\left.\mathrm{m} / \mathrm{s}^{2}\right]^{* 4}$	50/20		
	Actuation type	Belt		
	Guide type	Linear guide		
	Operating temperature range [${ }^{\circ} \mathrm{C}$]	5 to 40		
	Operating humidity range [\%RH]	90 or less (No condensation)		
	Motor size	$\square 28$	$\square 42$	$\square 56.4$
	Motor type	Battery-less absolute (Step motor 24 VDC)		
	Encoder	Battery-less absolute		
	Power supply voltage [V]	24 VDC $\pm 10 \%$		
	Power [W] ${ }^{* 5 * 7}$	Max. power 51	Max. power 60	Max. power 127
	Type*6	Non-magnetizing lock		
	Holding force [N]	4	19	36
	Power [W]*7	2.9	5	5
	Rated voltage [V]	24 VDC $\pm 10 \%$		

*1 Please contact SMC for non-standard strokes as they are produced as special orders.
*2 Speed changes according to the controller/driver type and work load. Check the "Speed-Work Load Graph (Guide)" on page 16.
Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . Cannot be used for vertical applications
*3 A reference value for correcting errors in reciprocal operation
*4 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*5 Indicates the max. power during operation (including the controller). This value can be used for the selection of the power supply.
*6 With lock only
*7 For an actuator with lock, add the power for the lock.

Weight

Series	LEFB16E							
Stroke [mm]	300	500	600	700	800	900	1000	
Product weight [kg]	1.19	1.45	1.58	1.71	1.84	1.97	2.10	
Additional weight with lock [kg]	0.12							

Series	LEFB25E										
Stroke [mm]	300	500	600	700	800	900	1000	1200	1500	1800	2000
Product weight [kg]	2.39	2.85	3.08	3.31	3.54	3.77	4.00	4.46	5.15	5.84	6.30
Additional weight with lock [kg]	0.26										

Series	LEFB32E										
Stroke [mm]	300	500	600	700	800	900	1000	1200	1500	1800	2000
Product weight [kg]	4.12	4.80	5.14	5.48	5.82	6.16	6.50	7.18	8.20	9.22	9.90
Additional weight with lock [kg]						0.53					

Battery－less Absolute Encoder Type

Construction

LEFB Series

Component Parts

No．	Description		Material	Note
1	Body		Aluminum alloy	Anodized
2	Rail guide		－	
3	Belt		－	
4	Belt holder		Carbon steel	Chromating
5	Belt stopper		Aluminum alloy	Anodized
6	Table		Aluminum alloy	Anodized
7	Blanking plate		Aluminum alloy	Anodized
8	Seal band holder		Synthetic resin	
9	Housing A		Aluminum die－cast	Coating
10	Pulley holder		Aluminum alloy	
11	Pulley shaft		Stainless steel	
12	End pulley		Aluminum alloy	Anodized
13	Motor pulley		Aluminum alloy	Anodized
14	Motor mount		Aluminum alloy	Coating／Anodized
15	Motor cover		Aluminum alloy	Anodized
16	End cover		Aluminum alloy	Anodized
17	Band stopper		Stainless steel	
18	Motor		－	
19	Rubber bushing		NBR	
20	Stopper		Aluminum alloy	
21	Dust seal band		Stainless steel	
22	Bearing		－	
23	Bearing		－	
24	Tension adjustment cap screw		Chromium molybdenum steel	Chromating
25	Pulley retaining screw		Chromium molybdenum steel	Chromating
26	Magnet		－	With auto switch compatibility
27	Roller assembly		－	Without grease application
28	Heat dissipation sheet	LEFB16	－	

LEFB Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions: Belt Drive

LEFB16E

Dimensions						[mm]
Model	L	A	B	n	D	E
LEFB16ET-300 \square	495	306	435	6	2	300
LEFB16ET-500 \square	695	506	635	10	4	600
LEFB16ET-600 \square	795	606	735	10	4	600
LEFB16ET-700 \square	895	706	835	12	5	750
LEFB16ET-800 \square	995	806	935	14	6	900
LEFB16ET-900 \square	1095	906	1035	14	6	900
LEFB16ET-1000 \square	1195	1006	1135	16	7	1050

Battery－less Absolute Encoder Type
 Slider Type／Belt Drive LEFB Series

Dimensions：Belt Drive

LEFB16E

Positioning pin hole（Option）：Body bottom

Dimensions
［mm］

| Model | |
| :---: | :---: | | Positioning pin hole： \mathbf{K} |
| :---: |
| \mathbf{G} |
| LEFB16ET－300 \square |
| LEFB16ET－500 \square |

LEFB Series

Dimensions: Belt Drive

LEFB25E

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of round chamfering. (Recommended height: 5 mm)
*2 This is the distance within which the table can move when it returns to origin.
Make sure workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*3 Position after returning to origin
*4 [] for when the direction of return to origin has changed

Dimensions：Belt Drive

LEFB25E

Positioning pin hole＊1（Option）：Body bottom

＊1 When using the body bottom positioning pin holes，do not simultaneously use the housing B bottom pin hole．

With auto switch（Option）

Dimensions	［mm］
Model	\mathbf{G}
LEFB25ET－300	320
LEFB25ET－500	490
LEFB25ET－600 \square	660
LEFB25ET－700 \square	660
LEFB25ET－800 \square	830
LEFB25ET－900 \square	1000
LEFB25ET－1000	1000
LEFB25ET－1200	1170
LEFB25ET－1500 \square	1510
LEFB25ET－1800 \square	1850
LEFB25ET－2000	2020

LEFB Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions: Belt Drive

LEFB32E

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of round chamfering. (Recommended height: 5 mm)
*2 This is the distance within which the table can move when it returns to origin.
Make sure workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*3 Position after returning to origin
*4 [] for when the direction of return to origin has changed
Dimensions

Model	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
LEFB32ET-300 \square	585.6	306	489	6	2	400
LEFB32ET-500 \square	785.6	506	689	8	3	600
LEFB32ET-600 \square	885.6	606	789	8	3	600
LEFB32ET-700 \square	985.6	706	889	10	4	800
LEFB32ET-800 \square	1085.6	806	989	10	4	800
LEFB32ET-900 \square	1185.6	906	1089	12	5	1000
LEFB32ET-1000 \square	1285.6	1006	1189	12	5	1000
LEFB32ET-1200 \square	1485.6	1206	1389	14	6	1200
LEFB32ET-1500 \square	1785.6	1506	1689	18	8	1600
LEFB32ET-1800 \square	2085.6	1806	1989	20	9	1800
LEFB32ET-2000 \square	2285.6	2006	2189	22	10	2000

Battery－less Absolute Encoder Type
 Slider Type／Belt Drive LEFB Series

Battery－less Absolute（Step Motor 24 VDC ）

Dimensions：Belt Drive

LEFB32E

Positioning pin hole＊1（Option）：Body bottom

＊1 When using the body bottom positioning pin holes，do not simultaneously use the housing B bottom pin hole．

With auto switch（Option）

خ

Dimensions	$[\mathrm{mm}]$
Model	\mathbf{G}
LEFB32ET－300 \square	380
LEFB32ET－500 \square	580
LEFB32ET－600 \square	580
LEFB32ET－700 \square	780
LEFB32ET－800 \square	780
LEFB32ET－900 \square	980
LEFB32ET－1000 \square	980
LEFB32ET－1200 \square	1180
LEFB32ET－1500 \square	1580
LEFB32ET－1800 \square	1780
LEFB32ET－2000 \square	1980

Rod Type/Guide Rod Type

Selection Procedure

Positioning Control Selection Procedure

Check the work load-speed. (Vertical transfer)

Step 2 Check the cycle time.

Selection Example

Operating conditions

- Workpiece mass: $4[\mathrm{~kg}] \quad$ - Speed: $100[\mathrm{~mm} / \mathrm{s}]$	W
- Acceleration/Deceleration: $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	
- Stroke: $200[\mathrm{~mm}]$	
- Workpiece mounting condition:Vertical upward downward transfer	

Check the work load-speed. <Speed-Vertical work load graph>
Select a model based on the workpiece mass and speed while referencing the speed-vertical work load graph.
Selection example) The LEY16EB can be temporarily selected as a possible candidate based on the graph shown on the right side.

* It is necessary to mount a guide outside the actuator when used for horizontal transfer. When selecting the target model, refer to the horizontal work load in the specifications

<Speed-Vertical work load graph> (LEY16/Battery-less absolute) on page 63 and the precautions.

Step 2

Check the cycle time.

Calculate the cycle time using the following calculation method.

Cycle time:

T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

-T1: Acceleration time and T3: Deceleration time can be found by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

-T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the conditions such as motor types, load and in position of the step data. Therefore, calculate the settling time while referencing the following value.

$$
\mathrm{T} 4=0.2[\mathrm{~s}]
$$

Calculation example)
T1 to T4 can be calculated as follows.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=100 / 3000=0.033[\mathrm{~s}], \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=100 / 3000=0.033[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}=\frac{200-0.5 \cdot 100 \cdot(0.033+0.033)}{100}=1.97[\mathrm{~s}]$
$\mathrm{T} 4=0.2[\mathrm{~s}]$
The cycle time can be found as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4=0.033+1.967+0.033+0.2=2.233$ [s]

Based on the above calculation result, the LEY16EB-200 should be selected.

Selection Procedure

Pushing Control Selection Procedure

＊The duty ratio is a ratio of the operation time in one cycle．

Selection Example

Operating conditions

\bullet Mounting condition：Horizontal（pushing）	\bullet Duty ratio： $18[\%]$
\bullet－Jig weight： $0.2[\mathrm{~kg}]$	\bullet Speed： $100[\mathrm{~mm} / \mathrm{s}]$
\bullet Pushing force： $68[\mathrm{~N}]$	\bullet Stroke： $200[\mathrm{~mm}]$

Check the duty ratio．
＜Conversion table of pushing force－duty ratio＞
Select the［Pushing force］from the duty ratio while referencing the conversion table of pushing force－duty ratio．
Selection example）
Based on the table below，
－Duty ratio： 18 ［\％］
The pushing force set value will be 60 ［\％］．
＜Conversion table of pushing force－duty ratio＞
（LEY16／Battery－less absolute）

Pushing force set value［\％］	Duty ratio $[\%]$	Continuous pushing time［min］
40 or less	100	-
50	30	45 or less
60	18	15 or less
65	15	10 or less

＊［Pushing force set value］is one of the step data input to the controller．
＊［Continuous pushing time］is the time that the actuator can continuously keep pushing．

Step 2 Check the pushing force．

＜Force conversion graph＞
Select a model based on the pushing force set value and force while referencing the force conversion graph．
Selection example）
Based on the graph shown on the right side，
－Pushing force set value： 60 ［\％］
－Pushing force： 68 ［N］
The LEY16EB can be temporarily selected as a possible candidate．
Step 3
Check the lateral load on the rod end．
＜Graph of allowable lateral load on the rod end＞
Confirm the allowable lateral load on the rod end of the actuator： LEY16 \square ，which has been selected temporarily while referencing the graph of allowable lateral load on the rod end．
Selection example）
Based on the graph shown on the right side，
－Jig weight： $0.2[\mathrm{~kg}] \sim 2[\mathrm{~N}]$
－Product stroke： 200 ［mm］
The lateral load on the rod end is in the allowable range．

Based on the above calculation result，the LEY16EB－200 should be selected．

 （LEY16／Battery－less absolute）
＊1 Set values for the controller

＜Graph of allowable lateral load on the rod end＞

LEY Series

Battery-less Absolute (Step Motor 24 VDC)

Speed-Work Load Graph (Guide)

For Battery-less Absolute (Step Motor 24 VDC)

Horizontal

LEY16 \square E $\quad \square \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEY25 $\square E$
$\nabla \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEY32 $\square E$
$\nabla \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEY40 $\square E$

Z \backslash for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

Vertical

LEY16 \square E

LEY25 $\square E$

LEY32 $\square E$

LEY40 $\square E$

Model Selection $L E Y$ Series

Battery－less Absolute（Step Motor 24 VDC）

Force Conversion Graph（Guide）

Battery－less Absolute（Step Motor 24 VDC）
LEY16 $\square E$

LEY25 $\square E$

Ambient temperature	Pushing force set value［\％］	Duty ratio［\％］	Continuous pushing time［min］
40°			

$$
\begin{array}{|l|c|c|c}
\hline 40^{\circ} \mathrm{C} \text { or less } & 50 \text { or less } & 100 & \text { No restriction } \\
\hline
\end{array}
$$

LEY32 $\square E$

Ambient temperature	Pushing force set value［\％］	Duty ratio［\％］	Continuous pushing time［min］
$\mathbf{4 0} \mathbf{0}$ or less	70 or less	100	No restriction

LEY40 $\square E$

[^1]＜Limit Values for Pushing Force and Trigger Level in Relation to Pushing Speed＞

Model	Lead	Pushing speed ［mm／s］	Pushing force （Setting input value）
LEY16 $\square \mathbf{E}$	A／B／C	21 to 50	45 to 65%
LEY25 $\square \mathbf{E}$	A／B／C	21 to 35	40 to 50%
LEY32 $\square \mathbf{E}$	A	24 to 30	50 to 70%
	B／C	21 to 30	
LEY40 $\square \mathbf{E}$	A	24 to 30	50 to 65%
	B／C	21 to 30	

＜Set Values for Vertical Upward Transfer Pushing Operations＞

Model	LEY16 \square			LEY25 $\square \mathbf{E}$			LEY32 $\square \mathbf{E}$			LEY40 $\square \mathbf{E}$		
Lead	A	B	C	A	B	C	A	B	C	A	B	C
Work load $[\mathrm{kg}]$	1	1.5	3	2.5	5	10	4.5	9	18	7	14	28
Pushing force	65%				50%				70%			
65%												

LEY Series

Battery-less Absolute (Step Motor 24 VDC)

Graph of Allowable Lateral Load on the Rod End (Guide)

[Stroke] $=$ [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]

Rod Displacement: δ [mm]

Size	30	50	100	150	200	250	300	350	400	450	500
$\mathbf{1 6}$	± 0.4	± 0.5	± 0.9	± 0.8	± 1.1	± 1.3	± 1.5	-	-	-	-
$\mathbf{2 5}$	± 0.3	± 0.4	± 0.7	± 0.7	± 0.9	± 1.1	± 1.3	± 1.5	± 1.7	-	-
$\mathbf{3 2 , 4 0}$	± 0.3	± 0.4	± 0.7	± 0.6	± 0.8	± 1.0	± 1.1	± 1.3	± 1.5	± 1.7	± 1.8

* The values without a load are shown.

Non-rotating Accuracy of Rod

Size	Non-rotating accuracy θ
16	$\pm 1.1^{\circ}$
25	$\pm 0.8^{\circ}$
32	$\pm 0.7^{\circ}$
40	

* Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod.
Failure to do so may result in the deformation of the non-rotating guide, abnormal auto switch responses, play in the internal guide, or an increase in the sliding resistance.

Battery-less Absolute Encoder Type Rod Type

\triangle Caution

[CE-compliant products

EMC compliance was tested by combining the electric actuator LEY series and the controller JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
[Precautions relating to differences in controller versions]
When the JXC series is to be used in combination with the battery-less absolute encoder, use a controller that is version V3.4 or S3.4 or higher. For details, refer to pages 179 and 180.

[UL certification]

The JXC series controllers used in combination with electric actuators are UL certified

Communication plug connector, I/O cable*12

Symbol	Type	Applicable interface
Nil	Without accessory	-
\mathbf{S}	Straight type communication plug connector	DeviceNet ${ }^{\text {TM }}$
\mathbf{T}	T-branch type communication plug connector	CC-Link Ver. 1.10
$\mathbf{1}$	I/O cable $(1.5 \mathrm{~m})$	Parallel input (NPN)
$\mathbf{3}$	I/O cable $(3 \mathrm{~m})$	
$\mathbf{5}$	I/O cable $(5 \mathrm{~m})$	

Refer to the Operation Manual for using the products.
Please download it via our website: https://www.smcworld.com

Type	Step data input type	EtherCAT® ${ }^{\circledR}$ direct input type	EtherNet/IPTM direct input type	PROFINET direct input type	DeviceNet ${ }^{\text {TM }}$ direct input type	IO-Link direct input type	CC-Link direct input type
Series	$\begin{aligned} & \text { JXC51 } \\ & \text { JXC61 } \end{aligned}$	JXCE1	JXC91	JXCP1	JXCD1	JXCL1	JXCM1
Features	Parallel I/O	EtherCAT ${ }^{\circledR}$ direct input	EtherNet//PTM direct input	PROFINET direct input	DeviceNet ${ }^{\text {TM }}$ direct input	IO-Link direct input	CC-Link direct input
Compatible motor	Battery-less absolute (Step motor 24 VDC)						
Max. number of step data	64 points						
Power supply voltage	24 VDC						
Reference page	165	172					

Specifications

Battery-less Absolute (Step Motor 24 VDC)

Model				LEY16■E			LEY25 $\square \mathrm{E}$			LEY32 $\square \mathrm{E}$			LEY40 $\square \mathrm{E}$		
Actuator specifications	Work load [kg]* ${ }^{*}$	Hor	($3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$)	6	17	30	20	40	60	30	45	60	50	60	80
		Horizontar	(2000 [mm/s $\left.{ }^{2}\right]$)	10	23	35	30	55	70	40	60	80	60	70	90
		Vertical	(3000 [mm/s $\left.{ }^{2}\right]$)	2	4	8	8	16	30	11	22	43	13	27	53
	Pushing force [N$]^{* 2 * 3 * 4}$			14 to 38	27 to 74	51 to 141	63 to 122	126 to 238	232 to 452	80 to 189	156 to 370	296 to 707	132 to 283	266 to 553	562 to 1058
	Speed [mm/s]*4			15 to 500	8 to 250	4 to 125	18 to 500	9 to 250	5 to 125	24 to 500	12 to 300	6 to 150	24 to 500	12 to 300	6 to 150
	Max. acceleration/deceleration [mm/s ${ }^{2}$]								300	00					
	Pushing speed [mm/s]*5			50 or less			35 or less			30 or less			30 or less		
	Positioning repeatability [mm]			± 0.02											
	Lost motion [mm]*6			0.1 or less											
	Screw lead [mm]			10	5	2.5	12	6	3	16	8	4	16	8	4
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{* 7}$			50/20											
	Actuation type			Ball screw + Belt (LEY \square)/Ball screw (LEY $\square \mathrm{D}$)											
	Guide type			Sliding bushing (Piston rod)											
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40											
	Operating humidity range [\%RH]			90 or less (No condensation)											
	Motor size			$\square 28$			$\square 42$			$\square 56.4$			$\square 56.4$		
	Motor type			Battery-less absolute (Step motor 24 VDC)											
	Encoder			Battery-less absolute											
	Power supply voltage [V]			24 VDC $\pm 10 \%$											
	Power [W] ${ }^{* 8}$ *10			Max. power 43			Max. power 48			Max. power 104			Max. power 106		
-	Type*9			Non-magnetizing lock											
雺	Holding force [N]			20	39	78	78	157	294	108	216	421	127	265	519
或:	Power [W]*10			2.9			5			5			5		
	Rated voltage [V]			24 VDC $\pm 10 \%$											

*1 Horizontal: The maximum value of the work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load and transfer speed change according to the condition of the external guide. Also, speed changes according to the work load. Check the "Model Selection" on pages 56 and 57.
Vertical: Speed changes according to the work load. Check the "Model Selection" on pages 55 and 57.
The values shown in () are the acceleration/deceleration.
Set these values to be $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ or less.
*2 Pushing force accuracy is $\pm 20 \%$ (F.S.).
*3 The pushing force values for LEY16 $\square E$ are 20% to 65%, for LEY25 $\square E$ are 30% to 50%, for LEY32 $\square E$ are 30% to 70%, and for LEY40 $\square E$ are 35% to 65%. The pushing force values change according to the duty ratio and pushing speed. Check the "Model Selection" on page 58.
*4 The speed and force may change depending on the cable length, load, and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20\%)
*5 The allowable speed for pushing operation. When push conveying a workpiece, operate at the vertical work load or less.
*6 A reference value for correcting errors in reciprocal operation
*7 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*8 Indicates the max. power during operation (including the controller). This value can be used for the selection of the power supply.
*9 With lock only
*10 For an actuator with lock, add the power for the lock.

Weight

Weight：Top Side Parallel Motor Type

Series	LEY16E							LEY25E									LEY32E										
Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product weight［kg］	0.75	0.79	0.9	1.04	1.15	1.26	1.37	1.21	1.28	1.45	1.71	1.89	2.06	2.24	2.41	2.59	2.13	2.24	2.53	2.81	3.21	3.5	3.78	4.07	4.36	4.64	4.93

Weight：In－line Motor Type

Series	LEY16DE							LEY25DE									LEY32DE										
Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product weight［kg］	0.72	0.76	0.87	1.01	1.12	1.23	1.34	1.2	1.27	1.44	1.7	1.88	2.05	2.23	2.4	2.58	2.12	2.23	2.52	2.8	3.2	3.49	3.77	4.06	4.35	4.63	4.92

Series	LEY40DE										
Stroke［mm］	30	50	100	150	200	250	300	350	400	450	500
Product weight［kg］	2.43	2.54	2.83	3.11	3.51	3.8	4.08	4.37	4.66	4.94	5.24

Additional Weight

Additional Weight

Size		$\mathbf{1 6}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$					
Lock／Motor cover	0.16	0.29	0.57	0.57						
Rod end male thread	Male thread	0.01	0.03	0.03	0.03					
	Nut	0.01	0.02	0.02	0.02					
Foot bracket（2 sets including mounting bolt）	0.06	0.08	0.14	0.14						
Rod flange（including mounting bolt）							0.13	0.17	0.20	0.20
Head flange（including mounting bolt）										
Double clevis（including pin，retaining ring，and mounting bolt）		0.08	0.16	0.22	0.22					

LEY Series

Construction

25
Top side parallel motor type: LEY 32E 40

Top side parallel motor type, With lock/motor cover

Top side parallel motor type: LEY16E

Construction

In－line motor type：LEY16DE

Component Parts

No．	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Ball screw shaft	Alloy steel	
3	Ball screw nut	Synthetic resin／Alloy steel	
4	Piston	Aluminum alloy	
5	Piston rod	Stainless steel	Hard chrome plating
6	Rod cover	Aluminum alloy	
7	Bearing holder	Aluminum alloy	
8	Rotation stopper	Synthetic resin	
9	Socket	Free cutting carbon steel	Nickel plating
10	Connected shaft	Free cutting carbon steel	Nickel plating
11	Bushing	Bearing alloy	
12	Bearing	－	
13	Return box	Aluminum die－cast	Coating
14	Return plate	Aluminum die－cast	Coating
15	Magnet	－	
16	Wear ring holder	Stainless steel	Stroke 101 mm or more
17	Wear ring	Synthetic resin	Stroke 101 mm or more
18	Screw shaft pulley	Aluminum alloy	
19	Motor pulley	Aluminum alloy	
20	Belt	－	
21	Seal	NBR	
22	Retaining ring	Steel for spring	Phosphate coating
23	Motor	－	
24	Motor cover	Aluminum alloy	Anodized／LEY16 only
		Synthetic resin	
25	Grommet	Synthetic resin	Only＂With motor cover＂

No．	Description	Material	Note
$\mathbf{2 6}$	Motor block	Aluminum alloy	Anodized
$\mathbf{2 7}$	Motor adapter	Aluminum alloy	Anodized／LEY16，25 only
$\mathbf{2 8}$	Hub	Aluminum alloy	
$\mathbf{2 9}$	Spider	NBR	
$\mathbf{3 0}$	Motor cover with lock	Aluminum alloy	Only＂With lock／motor cover＂／LEY25，32，40
$\mathbf{3 1}$	Cover support	Aluminum alloy	Only＂With lock／motor cover＂／LEY25，32，40
$\mathbf{3 2}$	Socket（Male thread）	Free cutting carbon steel	Nickel plating
$\mathbf{3 3}$	Nut	Alloy steel	Zinc chromating
$\mathbf{3 4}$	End cover	Aluminum alloy	Anodized／LEY16 only
$\mathbf{3 5}$	Rubber bushing	NBR	LEY16 only

Replacement Parts（Top side parallel only）／Belt

No．	Size	Order no．
$\mathbf{2 0}$	$\mathbf{1 6}$	LE－D－2－7
	$\mathbf{2 5}$	LE－D－2－2
	$\mathbf{3 2 , 4 0}$	LE－D－2－3

Replacement Parts／Grease Pack

Applied portion	Order no．
Piston rod	GR－S－010 $(10 \mathrm{~g})$

LEY Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions: Top Side Parallel Motor

Size	Stroke range	A	B	C	D	EH	EV	H	J	K	L	M	O	R	S	T	T2	U	V			Y
	[mm]	A	B	C	D			H	J	K	L	M		R	S	T	T2	U	V	Without lock	With lock	Y
16	10 to 100	101	90.5	10	16	34	34.3	M5 x 0.8	18	14	10.5	25.5	M4 x 0.7	7	35	90.5	-	0.5	28	100.5	145.5	22.5
	101 to 300	121	110.5																			
25	15 to 100	130.5	116	13	20	44	45.5	M8 $\times 1.25$	24	17	14.5	34	M5 x 0.8	8	46	92	7.5	1	42	88.5	129	26.5
	101 to 400	155.5	141																			
32	20 to 100	148.5	130	13	25	51	56.5	M8x 1.25	31	22	18.5	40	M6 x 1.0	10	60	118	8.5	1	56.4	98.5	141.5	34
	101 to 500	178.5	160																			
40	20 to 100	148.5	130	13	25	51	56.5	M8 x 1.25	31	22	18.5	40	M6 x 1.0	10	60	118	8.5	1	56.4	120.5	163.5	34
	101 to 500	178.5	160																			

Body Bottom Tapped

Size	Stroke range [mm]	MA	MB	MC	MD	MH	ML	MO	MR	XA	XB
16	10 to 35	15	35.5	17	23.5	23	40	M4 x 0.7	5.5	3	4
	40 to 100			32	31						
	105 to 300			62	46		60				
25	15 to 35	20	46	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100				41						
	105 to 120			42			75				
	125 to 200			59	49.5						
	205 to 400			76	58						
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	20 to 35	25	55	22	36	30	50	M6x 1	8.5	5	6
	40 to 100			36	43						
	105 to 120			36			80				
	125 to 200			53	51.5						
	205 to 500			70	60						

Dimensions：Top Side Parallel Motor

25 A
With lock／motor cover：LEY 32 EB－\square W
40 C

With lock／motor cover：LEY16EB－$-\square$ W

LEY Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions: In-line Motor

*1 This is the range within which the rod can move when it returns to origin. Make sure workpieces mounted on the rod do not interfere with other workpieces or the facilities around the rod.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.
*5 Refer to page 70 for motor cover dimensions of the LEY16.

mm]																								
Size	Stroke range [mm]	A		B	C	CL	CV	D	EH	EV	H	J	K	L	M	O1	R	S	T	T2	U	X2		Y
		Without lock	With lock																			Without lock	With lock	
16	30 to 100	186.5	231.5	94	10	-	*6	16	34	34.3	M5 x 0.8	18	14	10.5	25.5	M4 x 0.7	7	$\begin{aligned} & * 5 \\ & 35 \end{aligned}$	35.5	-	0.5	82	127	26
	105 to 300	206.5	251.5	114																				
25	15 to 100	198.5	239	115.5	13	46	54.5	20	44	45.5	M8 x 1.25	24	17	14.5	34	M5 x 0.8	8	45	46.5	7.5	1.5	68.5	109	26
	101 to 400	223.5	264	140.5																				
32	20 to 100	220	263	128	13	60	69.5	25	51	56.5	M8 x 1.25	31	22	18.5	40	M6x 1	10	60	61	8.5	1	73.5	116.5	32
	101 to 500	250	293	158																				
40	20 to 100	242	285	128	13	60	69.5	25	51	56.5	M8 x 1.25	31	22	18.5	40	M6 x 1	10	60	61	8.5	1	95.5	1385	32
	101 to 500	272	315	158															61	8.5	1	95.5	138.5	32

*6 Refer to page 70.

Body Bottom Tapped

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
16	10 to 35	15	17	23.5	23	40	M4 x 0.7	5.5	3	4
	40 to 100		32	31		40				
	105 to 300		62	46		60				
25	15 to 35	20	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100		42	41		50				
	105 to 120		42	41		75				
	125 to 200		59	49.5						
	205 to 400		76	58						
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	20 to 35	25	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100		36	43						
	105 to 120		36	43						
	125 to 200		53	51.5		80				
	205 to 500		70	60						

Battery-less Absolute Encoder Type

Rod Type

Dimensions: In-line Motor

Motor Cover Direction

CV Dimensions (Size 16)

Motor cover direction	$\mathbf{C V}$
$\mathbf{D}_{\mathbf{1}}$	35.5
$\mathbf{D}_{\mathbf{2}}$	35.5
$\mathbf{D}_{\mathbf{3}}$	48.3
$\mathbf{D}_{\mathbf{4}}$	40.2

LEY Series

Dimensions

Size	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{1}}$	$\boldsymbol{\varnothing D}$	$\mathbf{H}_{\mathbf{1}}$	\mathbf{K}	$\mathbf{L}_{\mathbf{1}}$	$\mathbf{L}_{\mathbf{2}}$	$\mathbf{M M}$
$\mathbf{1 6}$	13	12	16	5	14	24.5	14	$\mathrm{M} 8 \times 1.25$
$\mathbf{2 5}$	22	20.5	20	8	17	38	23.5	$\mathrm{M} 14 \times 1.5$
$\mathbf{3 2 , 4 0}$	22	20.5	25	8	22	42.0	23.5	$\mathrm{M} 14 \times 1.5$

* The L_{1} measurement is when the unit is in the original position. At this position, 2 mm at the end.

Foot: $\operatorname{LEY}_{32}^{16} \underset{40}{25} \underset{C}{\text { A }}-\square \square \square L$

Included parts
• Foot bracket
• Body mounting bolt

Outward mounting

[mm]														
Size	Stroke range [mm]	A	LS	LS 1	LL	LD	LG	LH	LT	LX	LY	LZ	X	Y
16	10 to 100	106.1	76.7	16.1	5.4	6.6	2.8	24	2.3	48	40.3	62	9.2	5.8
16	101 to 300	126.1	96.7											
25	15 to 100	136.6	98.8	19.8	8.4	6.6	3.5	30	2.6	57	51.5	71	11.2	5.8
	101 to 400	161.6	123.8											
32	20 to 100	155.7	114	19.2	11.3	6.6	4	36	3.2	76	61.5	90	11.2	7
40	101 to 500	185.7	144											

[^2]* The A measurement is when the unit is in the original position. At this position, 2 mm at the end.

Dimensions

Rod flange：LEY16 $\square \mathrm{EB} \stackrel{\mathrm{B}}{\mathrm{C}} \square \square \square \mathrm{F}$

Rod flange：LEY | 25 |
| :---: |
| 32 |
| 40 | $\mathrm{~EB}-\square \square \square \mathrm{F}$

25 A
Double clevis：LEY 32 EB－$\square \square \square$ D

SSMC

A
Head flange：LEY16EB－$\square \square \square G$

A
Head flange：LEY25EB－$\square \square \square G$

The head flange type is not available for the LEY32／40．

Included parts
－Flange
－Body mounting bolt

Rod／H	ea	Fla					［mm］
Size	FD	FT	FV	FX	FZ	LL	M
16	6.6	8	39	48	60	2.5	－
25	5.5	8	48	56	65	6.5	34
32， 40	5.5	8	54	62	72	10.5	40
Material：Carbon steel（Nickel plating）							

Included parts
－Double clevis
Body mounting bolt
Clevis pin
Retaining ring

Refer to the Web Catalog for details on the rod end nut and mounting bracket．
Double Clevis［mm］

Size	Stroke range ［mm］	A		CL	CB	CD	CT
16	10 to 100	128		119	20	8	5
25	15 to 100	160.5		150.5	－	10	5
	101 to 200	185.		175.5			
32	20 to 100	180.5		170.5	－	10	6
40	101 to 200	210.		200.5			
Size	Stroke range ［mm］	CU	CW	CX	CZ	L	RR
16	10 to 100	12	18	8	16	10.5	9
25	15 to 100	14	20	18	36	14.5	10
	101 to 200						
32	20 to 100	14	22	18	36	18.5	10
40	101 to 200						

Material：Cast iron（Coating）
＊The A and CL measurements are when the unit is in the original position．At this position， 2 mm at the end．

Guide Rod Type
LEYG Series
Model Selection

Moment Load Graph

Selection conditions

Mounting position		Vertical	Horizontal	
Max. speed [mm/s]		"Speed-Work Load Graph"	200 or less	Over 200
Bearing	Sliding bearing	Graphs (1), (2)	Graphs (5), (6)*1	-
	Ball bushing bearing	Graphs (3), (4)	Graphs (7), 8)	Graphs (9), 10)

*1 For the sliding bearing type, the speed is restricted with a horizontal/moment load.

Vertical Mounting, Sliding Bearing

(2) Over 75 mm stroke

* The limit of vertical load mass varies depending on "lead" and "speed."

Check the "Speed-Work Load Graph" on page 75.
Vertical Mounting, Ball Bushing Bearing

Moment Load Graph
Horizontal Mounting, Sliding Bearing

Horizontal Mounting, Ball Bushing Bearing

(9) $L=\mathbf{5 0} \mathbf{~ m m ~ M a x . ~ s p e e d ~}=$ Over $\mathbf{2 0 0 ~ m m / s ~}$

(10) $L=100 \mathrm{~mm}$ Max. speed $=$ Over $200 \mathrm{~mm} / \mathrm{s}$

Operating Range when Used as a Stopper

LEYG $\square \mathbf{M}$ (Sliding bearing)

\triangle Caution

Handling Precautions

* When used as a stopper, select a model with a stroke of 30 mm or less.
* LEYG $\square \mathrm{L} \square E$ (ball bushing bearing) cannot be used as a stopper.
* Workpiece collision in series with guide rod cannot be permitted (Fig. a).
* The body should not be mounted on the end. It must be mounted on the top or bottom (Fig. b).

Fig. b

LEYG Series

Battery-less Absolute (Step Motor 24 VDC)

Speed-Work Load Graph (Guide)

For Battery-less Absolute (Step Motor 24 VDC)

Horizontal

LEYG16M $\square \mathrm{E}$
$\nabla \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEYG25 ${ }^{\text {M }} \square E$
$\mathrm{Z} \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEYG32M ${ }^{\text {M }} \square \mathrm{E}$
$\mathrm{Z} \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEYG40 ${ }_{\mathrm{L}}^{\mathrm{M}} \square \mathrm{E}$
Z \backslash for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

Vertical

LEYG16 ${ }_{\text {M }} \square \mathrm{E}$

LEYG25 ${ }_{\text {M }} \square \mathrm{E}$

LEYG32M \square E

LEYG40 ${ }_{\text {M }} \square \mathrm{E}$

Force Conversion Graph（Guide）

Battery－less Absolute（Step Motor 24 VDC）
LEYG16 ${ }_{\mathrm{L}}^{\mathrm{M}} \square \mathrm{E}$

Ambient temperature	Pushing force set value［\％］	Duty ratio［\％］	Continuous pushing time［min］
$\mathbf{3 0}^{\circ} \mathbf{C}$ or less	65 or less	100	-
$\mathbf{4 0} \mathbf{4 0}^{\circ} \mathbf{C}$	40 or less	100	-
	50	30	45 or less
	60	18	15 or less
	65	15	10 or less

LEYG25 ${ }_{\mathrm{L}}^{\mathrm{M}} \square \mathrm{E}$

| Ambient temperature | Pushing force set value［\％］ | Duty ratio［\％］ | Continuous pushing time［min］ |
| :--- | :--- | :--- | :--- | | $40^{\circ} \mathrm{C}$ or less | 50 or less | 100 | No restriction |
| :--- | :--- | :--- | :--- |

LEYG32 ${ }_{\mathrm{L}}^{\mathrm{M}} \square \mathrm{E}$

Ambient temperature	Pushing force set value［\％］	Duty ratio［\％］
Continuous pushing time［min］		

$$
\begin{array}{|l|c|c|c|}
\hline 40^{\circ} \mathrm{C} \text { or less } & 70 \text { or less } & 100 & \text { No restriction } \\
\hline
\end{array}
$$

[^3]＜Limit Values for Pushing Force and Trigger Level in Relation to Pushing Speed＞

Model	Lead	Pushing speed ［ mm / s ］	Pushing force （Setting input value）
LEYG16 ${ }_{\text {M }} \square \mathrm{D}$	A／B／C	21 to 50	45 to 65\％
LEYG25 ${ }_{\text {L }} \square \mathrm{\square E}$	A／B／C	21 to 35	40 to 50\％
LEYG32 ${ }_{\text {L }} \square^{\text {}}$ E	A	24 to 30	50 to 70\％
	B／C	21 to 30	
LEYG40 ${ }_{\mathrm{L}}^{\mathrm{M}} \square \mathrm{E}$	A	24 to 30	50 to 65\％
	B／C	21 to 30	

＜Set Values for Vertical Upward Transfer Pushing Operations＞

Model	LEYG16M $\square \mathrm{E}$			LEYG25 ${ }_{\text {M }} \square \mathrm{E}$			LEYG32M $\square \mathrm{E}$			LEYG40M $\square \mathrm{E}$		
Lead	A	B	C	A	B	C	A	B	C	A	B	C
Work load［kg］	0.5	1	2.5	1.5	4	9	2.5	7	16	5	12	26
Pushing force	65\％			50\％			70\％			65\％		

LEYG Series

Battery-less Absolute (Step Motor 24 VDC)

Allowable Rotational Torque of Plate: T

Model	T $[\mathrm{N} \cdot \mathrm{m}]$				
	30	50	100	200	300
LEYG16M	0.70	0.57	1.05	0.56	-
LEYG16L	0.82	1.48	0.97	0.57	-
LEYG25M	1.56	1.29	3.50	2.18	1.36
LEYG25L	1.52	3.57	2.47	2.05	1.44
LEYG32M	2.55	2.09	5.39	3.26	1.88
LEYG32L	2.80	5.76	4.05	3.23	2.32
LEYG40M	2.55	2.09	5.39	3.26	1.88
LEYG40L	2.80	5.76	4.05	3.23	2.32

Non-rotating Accuracy of Plate: θ

Size	Non-rotating accuracy θ	
	LEYG $\square \square \square \mathbf{E}$	
$\mathbf{1 6}$	0.06°	0.05°
$\mathbf{3 2}$	0.05°	0.04°
$\mathbf{4 0}$		

Plate Displacement: δ

* The values without a load are shown.

How to Order

For details on controllers, refer to the next page.

(2) Bearing type*1

\mathbf{M}	Sliding bearing
\mathbf{L}	Ball bushing bearing

(3) Mot	r mounting positio	n/Motor cover direction
Symbol	Motor mounting position	Motor cover direction
Nil	Top side parallel	-
D	In-line	-*2
D1		Left*3
D2		Right*3
D3		Top*3
D4		Bottom*3

4 Motor type

\mathbf{E}	Battery-less absolute (Step motor 24 VDC)

5 Lead [mm]

Symbol	LEYG16	LEYG25	LEYG32/40
A	10	12	16
B	5	6	8
C	2.5	3	4

6 Stroke ${ }^{* 4 * 5}[\mathrm{~mm}]$

Stroke	Note	
	Size	Applicable stroke
$\mathbf{3 0}$ to $\mathbf{2 0 0}$	16	$30,50,100,150,200$
$\mathbf{3 0}$ to $\mathbf{3 0 0}$	$25 / 32 / 40$	$30,50,100,150,200,250,300$

C	With motor cover
\mathbf{W}	With lock/motor cover

8 Guide option ${ }^{* 7}$

Nil	Without option
F	With grease retaining function

9 Actuator cable type/length

Robotic cable

Nil	None	R8	$8 * 8$
R1	1.5	RA	$10 * 8$
R3	3	RB	$15 * 8$
R5	5	RC	$20 * 8$

For details on auto switches, refer to the Web Catalog.
Use of auto switches for the guide rod type LEYG series

- Auto switches must be inserted from the front side with the rod (plate) sticking out.
- Auto switches cannot be fixed with the parts hidden behind the guide attachment (the side of the rod that sticks out).
- Please consult with SMC when using auto switches on the side of the rod that sticks out, as it is produced as a special order.

Battery－less Absolute Encoder Type
 Guide Rod Type LEYG Series
 Battery－less Absolute（Step Motor 24 VDC）

\triangle Caution

［CE－compliant products］

EMC compliance was tested by combining the electric actuator LEY series and the controller JXC series．
The EMC depends on the configuration of the customer＇s control panel and the relationship with other electrical equipment and wiring．Therefore， compliance with the EMC directive cannot be certified for SMC components incorporated into the customer＇s equipment under actual operating conditions．As a result，it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole．
［Precautions relating to differences in controller versions］
When the JXC series is to be used in combination with the battery－less absolute encoder，use a controller that is version V3．4 or S3．4 or higher． For details，refer to pages 179 and 180.
［UL certification］
The JXC series controllers used in combination with electric actuators are UL certified．
type，the motor body will stick out from the end of the body for size 16 with strokes of 50 mm or less and size 40 with strokes of 30 mm or ess．Check for interference with workpieces before selecting a model．
＊7 Only available for size 25，32，and 40 sliding bearings（Refer to the ＂Construction＂on page 84．）
＊8 Produced upon receipt of order
＊9 The DIN rail is not included．It must be ordered separately．
＊10 Select＂Nil＂for anything other than DeviceNet™，CC－Link，or parallel input．
Select＂Nil，＂＂S，＂or＂T＂for DeviceNet ${ }^{\text {TM }}$ or CC－Link．
Select＂Nil，＂＂1，＂＂3，＂or＂ 5 ＂for parallel input

The actuator and controller are sold as a package．
Confirm that the combination of the controller and actuator is correct．

＜Check the following before use．＞

（1）Check the actuator label for the model number． This number should match that of the controller．
（2）Check that the Parallel I／O configuration matches（NPN or PNP）．

Refer to the Operation Manual for using the products．
Please download it via our website：https：／／www．smcworld．com

Type	Step data input type	EtherCAT ${ }^{\text {® }}$ direct input type	EtherNet／IPim direct input type	PROFINET direct input type	DeviceNet ${ }^{\text {m }}$ direct input type	IO－Link direct input type	CC－Link direct input type
Series	$\begin{aligned} & \text { JXC51 } \\ & \text { JXC61 } \end{aligned}$	JXCE1	JXC91	JXCP1	JXCD1	JXCL1	JXCM1
Features	Parallel I／O	EtherCAT® direct input	EtherNet／IPTM direct input	PROFINET direct input	DeviceNet ${ }^{\text {TM }}$ direct input	IO－Link direct input	CC－Link direct input
Compatible motor	Battery－less absolute （Step motor 24 VDC）						
Max．number of step data	64 points						
Power supply voltage	24 VDC						
Reference page	165	172					

Battery-less Absolute (Step Motor 24 VDC)

Specifications

Battery-less Absolute (Step Motor 24 VDC)

Model				LEYG16 ${ }_{\text {L }} \square \mathrm{E}$			LEYG25 ${ }_{\text {L }} \square \mathrm{E}$			LEYG32 ${ }_{\text {L }} \square \mathrm{D}$			LEYG40 ${ }_{\text {L }} \square \mathrm{D}$		
	Work load [kg] ${ }^{* 1}$	Horizontal	Acceleration/Deceleration at $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	6	17	30	20	40	60	30	45	60	50	60	80
			Acceleration/Deceleration at $2000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	10	23	35	30	55	70	40	60	80	60	70	90
		Vertical	Acceleration/Deceleration at $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	1.5	3.5	7.5	7	15	29	9	20	41	11	25	51
	Pushing force [N * ${ }^{*}$ *3*4			14 to 38	27 to 74	51 to 141	63 to 122	126 to 238	232 to 452	80 to 189	156 to 370	296 to 707	132 to 283	266 to 553	562 to 1058
	Speed [mm/s]*4			15 to 500	8 to 250	4 to 125	18 to 500	9 to 250	5 to 125	24 to 500	12 to 300	6 to 150	24 to 500	12 to 300	6 to 150
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			3000											
	Pushing speed [mm/s]*5			50 or less			35 or less			30 or less			30 or less		
	Positioning repeatability [mm]			± 0.02											
	Lost motion [mm]*6			0.1 or less											
	Screw lead [mm]			10	5	2.5	12	6	3	16	8	4	16	8	4
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{* 7}$			50/20											
	Actuation type			Ball screw + Belt (LEYG $\square \square$), Ball screw (LEYG $\square \square \mathrm{D}$)											
	Guide type			Sliding bearing (LEYG $\square \mathrm{M}$), Ball bushing bearing (LEYG $\square \mathrm{L}$)											
	Operating temp. range [${ }^{\circ} \mathrm{C}$]			5 to 40											
	Operating humidity range [\%RH]			90 or less (No condensation)											
	Motor size			$\square 28$			$\square 42$			$\square 56.4$			$\square 56.4$		
	Motor type			Battery-less absolute (Step motor 24 VDC)											
	Encoder			Battery-less absolute											
	Power supply voltage [V]			24 VDC $\pm 10 \%$											
	Power [W]*8*10			Max. power 43			Max. power 48			Max. power 104			Max. power 106		
	Type*9			Non-magnetizing lock											
	Holding force [N]			20	39	78	78	157	294	108	216	421	127	265	519
	Power [W]*10			2.9			5			5			5		
	Rated voltage [V]			24 VDC $\pm 10 \%$											

*1 Horizontal: An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load and transfer speed change according to the condition of the external guide. Also, speed changes according to the work load. Check the "Model Selection" on pages 73 to 75.
Vertical: Speed changes according to the work load. Check the "Model Selection" on pages 73 to 75.
Set the acceleration/deceleration values to be 3000 [$\mathrm{mm} / \mathrm{s}^{2}$] or less.
*2 Pushing force accuracy is $\pm 20 \%$ (F.S.).
*3 The pushing force values for LEYG16 $\square \square$ E are 20% to 65%, for LEYG25 $\square \square E$ are 30% to 50%, for LEYG32 $\square \square E$ are 30% to 70%, and for LEYG40 $\square \square E$ are 35% to 65%.
The pushing force values change according to the duty ratio and pushing speed. Check the "Model Selection" on page 76.
*4 The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
When [M: Sliding bearing] is selected, the maximum speed of lead [A] is $400 \mathrm{~mm} / \mathrm{s}$ (at no-load, horizontal mounting).
The speed is also restricted with a horizontal/moment load. For details, refer to the "Model Selection" on page 74.
*5 The allowable speed for the pushing operation
*6 A reference value for correcting errors in reciprocal operation
*7 Impact resistance: No malfunction occurred when it was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*8 Indicates the max. power during operation (including the controller). This value can be used for the selection of the power supply.
*9 With lock only
*10 For an actuator with lock, add the power for the lock.

Weight

Weight：Top Side Parallel Motor Type

Series	LEYG16MDE					LEYG25MDE							LEYG32MDE						
Stroke［mm］	30	50	100	150	200	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight［kg］	1	1.14	1.37	1.66	1.83	1.7	1.89	2.21	2.63	2.97	3.31	3.57	2.95	3.21	3.76	4.32	4.99	5.48	5.92

Series	LEYG16L \square E					LEYG25L \square E							LEYG32L \square E						
Stroke［mm］	30	50	100	150	200	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight［kg］	1.01	1.14	1.31	1.6	1.75	1.71	1.92	2.16	2.59	2.85	3.17	3.41	2.95	3.22	3.61	4.16	4.7	5.21	5.6

Series	LEYG40M $\square \mathbf{E}$					LEYG40L \square E								
Stroke $[\mathrm{mm}]$	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight［kg］	3.26	3.52	4.07	4.63	5.3	5.79	6.23	3.26	3.53	3.92	4.47	5.01	5.52	5.91

Weight：In－line Motor Type

Series	LEYG16M $\square \mathrm{E}$					LEYG25MDE							LEYG32M $\square \mathrm{E}$						
Stroke［mm］	30	50	100	150	200	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight［kg］	0.97	1.11	1.34	1.68	1.8	1.09	1.88	2.20	2.62	2.96	3.30	3.56	2.96	3.20	3.75	4.81	4.98	5.47	5.91

Series	LEYG16L $\square \mathrm{E}$					LEYG25L \square E							LEYG32LロE						
Stroke［mm］	30	50	100	150	200	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight［kg］	0.98	1.11	1.28	1.57	1.72	1.70	1.91	2.15	2.58	2.84	3.16	3.40	2.54	3.21	3.60	4.15	4.69	5.20	5.59

Series	LEYG40M $\square \mathbf{E}$					LEYG40L $\square \mathrm{E}$								
Stroke $[\mathrm{mm}]$	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight［kg］	3.25	3.51	4.06	4.62	5.25	5.78	6.22	3.25	3.52	3.91	4.46	5.00	5.51	5.90

Additional Weight

Size	$\mathbf{1 6}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Lock／Motor cover	0.16	0.29	0.57	0.57

LEYG Series

Battery-less Absolute (Step Motor 24 VDC)

Construction

Top side parallel motor type: LEYG ${ }_{32} \mathbf{2 5}$

 40

Top side parallel motor type, With lock/motor cover

Top side parallel motor type: LEYG16E

In-line motor type, With lock/motor cover

In-line motor type: LEYG16E

LEYG $\square M$

LEYG $\mathrm{G}_{32}^{165} \mathbf{1 6}$: Over 50st

LEYG \square

LEYG16L: 30st or less

When grease retaining function selected LEYG ${ }_{32}^{25} \mathrm{M} \square \square{ }_{\mathrm{C}}^{\mathrm{B}}-\square \square \mathrm{F}$: 50st or less

LEYG ${ }_{30}^{25} \mathbf{M} \square \square{ }_{\mathrm{C}}^{\mathrm{A}}-\square \square \mathrm{F}$: Over 50st

* Felt material is inserted to retain grease at the sliding part of the sliding bearing. This lengthens the life of the sliding part, but does not guarantee it permanently.

LEYG ${ }_{40}^{25} \mathrm{~L}: 100$ st or less

LEYG16L: Over 30st, 100st or less

LEYG ${ }_{40}^{165} \mathrm{~L}$: Over 100st

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw shaft	Alloy steel	
3	Ball screw nut	Synthetic resin/Alloy steel	
4	Piston	Aluminum alloy	
$\mathbf{5}$	Piston rod	Stainless steel	Hard chrome plating
6	Rod cover	Aluminum alloy	
$\mathbf{7}$	Bearing holder	Aluminum alloy	
$\mathbf{8}$	Rotation stopper	Synthetic resin	
9	Socket	Free cutting carbon steel	Nickel plating
10	Connected shaft	Free cutting carbon steel	Nickel plating
11	Bushing	Bearing alloy	
12	Bearing	-	
13	Return box	Aluminum die-cast	Coating
14	Return plate	Aluminum die-cast	Coating
15	Magnet	-	
16	Wear ring holder	Stainless steel	Stroke 101 mm or more
17	Wear ring	Synthetic resin	Stroke 101 mm or more
18	Screw shaft pulley	Aluminum alloy	
19	Motor pulley	Aluminum alloy	
20	Belt	-	
21	Seal	NBR	
22	Retaining ring	Steel for spring	Phosphate coating
23	Motor	-	
24	Motor cover	Aluminum alloy	Anodized/LEY16 only
	Synthetic resin		
25	Grommet	Synthetic resin	Only "With motor cover"
26	Guide attachment	Aluminum alloy	Anodized
27	Guide rod	Carbon steel	

No.	Description	Material	Note
$\mathbf{2 8}$	Plate	Aluminum alloy	Anodized
$\mathbf{2 9}$	Plate mounting cap screw	Carbon steel	Nickel plating
$\mathbf{3 0}$	Guide cap screw	Carbon steel	Nickel plating
$\mathbf{3 1}$	Sliding bearing	Bearing alloy	
$\mathbf{3 2}$	Lube-retainer	Felt	
$\mathbf{3 3}$	Holder	Synthetic resin	
$\mathbf{3 4}$	Retaining ring	Steel for spring	Phosphate coating
$\mathbf{3 5}$	Ball bushing	-	
$\mathbf{3 6}$	Spacer	Aluminum alloy	Chromating
$\mathbf{3 7}$	Motor block	Aluminum alloy	Anodized
$\mathbf{3 8}$	Motor adapter	Aluminum alloy	Anodized/LEY16, 25 only
$\mathbf{3 9}$	Hub	Aluminum alloy	
$\mathbf{4 0}$	Spider	NBR	
$\mathbf{4 1}$	Motor cover with lock	Aluminum alloy	Only "With lock/motor cover"/LEY25, 32, 40
$\mathbf{4 2}$	Cover support	Aluminum alloy	Only "With lock/motor cover"/LEY25, 32, 40
$\mathbf{4 3}$	End cover	Aluminum alloy	Anodized/LEY16 only
$\mathbf{4 4}$	Rubber bushing	NBR	LEY16 only

Replacement Parts/Belt Replacement Parts/Grease Pack

No.	Size	Order no.
$\mathbf{2 0}$	$\mathbf{1 6}$	LE-D-2-7
	$\mathbf{2 5}$	LE-D-2-2
	$\mathbf{3 2 , 4 0}$	LE-D-2-3

Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$
Guide rod	GR-S-020 $(20 \mathrm{~g})$

* Apply grease to the piston rod periodically. Grease should be applied when 1 million cycles or 200 km have been reached, whichever comes first.

LEYG Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions: Top Side Parallel Motor
*1 This is the range within which the rod can move when it returns to origin.

Make sure workpieces mounted on the rod do not interfere with other workpieces or the facilities around the rod.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 Through holes cannot be used for size $32 / 40$ with strokes of 50 mm or less.

$4 \times$ OA through

ФXA H9 depth XA

Section Y details

LEYG \square M, LEYG \square L Common

Size	Stroke range	A	B	C	DA	EA	EB	EH	EV	FA	FB	FC	G G	GA	H	J	K	M	NA	NB	NC	
16	39st or less	109	90.5	37	16	35	69	83	41.1	8	10.5	8.5	4.3	31.8	97.3	24.8	23	25.5	M 4×0.7	7	5.5	
	40 st or more, 100st or less			52																		
	101st or more, 200st or less	129	110.5	82																		
25	39st or less	141.5	116	50	20	46	85	103	52.3	11	14.5	12.5	5.4	40.3	98.8	30.8	29	34	M5 x 0.8	8	6.5	
	40st or more, 100st or less	166.5	141	67.5																		
	125st or more, 200st or less			84.5																		
	201st or more, 300st or less			102																		
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	39st or less	160.5	130	55	25	60	101	123	63.8	12	18.5	16.5	5.4	50.3	125.3	38.3	30	40	M6 x 1.0	10	8.5	
	40st or more, 100st or less	190.5	160	68																		
	125st or more, 200st or less			85																		
	201st or more, 300st or less			102																		
Size	Stroke range	OA	OB	P	Q	S	T	T2	U	WA	WB	WC	X2			X	XA	XB	Y	Z		
	Stroke range												With motor cover	ver WWith 0	Whnotr cover							
16	30st or more, 100st or less	M5 x 0.8	10	65	15	25	79	-	6.8		19	55	100.5	145.5		44	3	4	22.5	6.5		
	40st or more, 100st or less									40	26.5											
25	39st or less	M6x 1.0	12	80	18	30	95	7.5	6.8	35	26	70	88.5	129			54	4	5	26.5	8.5	
	40st or more, 100st or less									50	33.5											
	$\begin{array}{\|l\|} \hline \text { 101st or more, 124st or less } \\ \hline \text { 125st or more, 200st or less } \\ \hline \end{array}$									70	43.5	95										
	201 st or more, 300st or less									85	51											
32	39st or less	M6x 1.0	12	95	28	40	117	8.5	7.3	40	28.5	75	98.5		41.5	64	5	6	34			
	40st or more, 100st or less									50	33.5	105								8.5		
	125st or more, 200st or less									70	43.5											
	201st or more, 300st or less									85	51											
40	39st or less	M6x 1.0	12	95	28	40	117	8.5	7.3	40	28.5	75	120.5	163.5		64	5	6	34	8.5		
	40st or more, 100st or less									50	33.5											
	125st or more, 200st or less									70	43.5	105										
	201 st or more, 300st or less									85	51											

Dimensions：Top Side Parallel Motor

25 A

With lock／motor cover： $\mathrm{LEYG} 32 \mathrm{E} \square \mathrm{B}-\square \mathrm{C}$

A
With motor cover：LEYG16EB－\square C

LEYG Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions: In-line Motor
*1 This is the range within which the rod can move when it returns to origin.
Make sure workpieces mounted on the rod do not interfere with other workpieces or the facilities around the rod.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed

LEYG $\square \mathrm{L}$ (Ball bushing bearing) [mm]

Size	Stroke range	L	DB
16	90st or less	75	8
	91st or more, 100st or less	95	
	101st or more, 200st or less	105	
25	114st or less	91	10
	115st or more, 190st or less	115	
	191st or more, 300st or less	133	
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	114st or less	97.5	13
	115st or more, 190st or less	116.5	
	191st or more, 300st or less	134	

Section Y details

LEYG \square M, LEYG \square L Common

Size	Stroke range	A			B	C	CL	CV	DA	EB	EH	EV	FA	FB	FC	G	GA	H	J	K	NA	NC
		Without loc	Wh With	lock																		
16	39st or less	194.5	239.5		94	37	-	-	16	69	83	41.1	8	10.5	8.5	4.3	31.8	42.3	24.8	23	M4 x 0.7	5.5
	40st or more, 100st or less			9.5	114	52 82																
	39st or less	2095			115	50																
	40 st or more, 100st or less	209.5			115.5	67.5																
25	101st or more, 124 st or less	234.5			140.5	84.5	46	54.5	20	85	103	52.3	11	14.512	12.5	5.4	40.3	61.3	30.8	29	M5 x 0.8	6.5
	201st or more, 300st or less					102																
	39st or less	232			128	55																
32	$\frac{40 \text { st or more, } 100 \text { st or less }}{\text { 101st or more }}$					68	60	68.5	25	101	123	63.8	12	18.51	16.5	5.4	50.3	75.8	38.3	30	M6 $\times 1.0$	8.5
	125st or more, 200st or less	262			158	85																
	201st or more, 300st or less					102																
	39st or less	254			128	55																
40	40st or more, 100st or less					68	60	68.5	25	101	123	63.8	12	18.51	16.5	5.4	50.3	75.8	38.3	30	M6 x 1.0	8.5
	125st or more, 200st or less	284			158	85																
	201st or more, 300st or less					102																
Size	Stroke range	OA	OB	P	Q	S	T	T2	U	WA	WB	WC	X		X2		XA	XB	YD	Z	*1	to
														With motor cover	ver With	exmator cover						
	39st or less									25	19	55										
16	40st or more, 100st or less	M5 0.8	10	65	15	25	79	-	6.8	$\begin{aligned} & 40 \\ & \hline 70 \\ & \hline \end{aligned}$		75	44	82		27	3	4	24	6.5		
	39st or less									35	26	70										
25	40st or more, 100st or less 101st or more, 124st or less	M6 x 1.0	12	80	18	30	95	7.5	6.8	50	33.5		54	68.5		09	4	5	26	8.5		
	125st or more, 200st or less									70	43.5	95										
	201st or more, 300st or less									85	51											
	39st or less									40	28.5	75										
32	40st or more, 100st or less 101st or more, 124st or less	M6 x 1.0	12	95	28	40	117	8.5	7.3	50	33.5		64	73.5		16.5	5	6	32	8.5		
	125st or more, 200st or less									70	43.5	105										
	201st or more, 300st or less									85	51											
	39st or less									40	28.5	75										
40	40st or more, 100st or less 101st or more, 124st or less	M6 x 1.0	12	95	28	40	117	8.5	7.3	50	33.5		64	95.5		38.5	5	6	32	8.5		
	125st or more, 200st or less									70	43.5	105										
	201st or more, 300st or less									85	51											

Dimensions：In－line Motor

With lock／motor cover：LEYG32DE \quad| A |
| :---: |
| 40 |
| C $-\square W$ |

Size	Stroke range	T2	X2	L	H	CV
16	100st or less	7.5	108	35	$42.3^{* 1}$	－
	101st or more，300st or less					
25	100st or less	7.5	109	46	61.3	54.4
	101st or more，300st or less					
32	100st or less	7.5	116.5	60	75.8	68.5
	101st or more，300st or less					
40	100st or less	7.5	138.5	60	75.8	68.5
	101st or more，300st or less					

＊1 Refer to the table below．

A
With motor cover：LEYG16D $\square E B-\square C$

H Dimensions（Size 16）

Motor cover direction	\mathbf{H}
\mathbf{D}_{1}	42.3
\mathbf{D}_{2}	42.3
\mathbf{D}_{3}	55.1
\mathbf{D}_{4}	47

Motor Cover Direction

LEYG Series

Support Block

-Guide for support block application

When the stroke exceeds 100 mm and the mounting orientation is horizontal, the body will be bent. Mounting the support block is recommended. (Please order it separately from the models shown below.)

Support Block Model

LEYG-S016

\triangle Caution

Do not install the body using only a support block.
The support block should be used only for support.

Size	Model	Stroke range	EB	G	GA	OA	OB	ST	WC	X
16	LEYG-S016	100st or less	69	4.3	31.8	M5 x 0.8	10	16	55	44
		101st or more, 200st or less							75	
25	LEYG-S025	100st or less	85	5.4	40.3	M6 $\times 1.0$	12	20	70	54
		101st or more, 300st or less							95	
32	LEYG-S032	100st or less	101	(5.4)	(50.3)	M6 x 1.0	12	22	75	64
40		101st or more, 300st or less							105	

* Two body mounting screws are included with the support block.
* The through holes of the LEYG-S032 cannot be used for the top side parallel motor type. Use taps on the bottom.

Battery-less Absolute Encoder Type

Slide Tables

Controllers p. 164

Selection Procedure

Positioning Control Selection Procedure

Selection Example

Step 1

(herk load-speed. <Speed-Work load graph> (page 93
Select a model based on the workpiece mass and speed while referencing the speed-work load graph.
Selection example) The LESYH16 \square EB-50 can be temporarily selected as a possible candidate based on the graph shown on the right side.

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method.
Cycle time:
T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$

- T1: Acceleration time and T3: Deceleration time can be found by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

- T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

- T4: Settling time varies depending on the conditions such as motor types, load, and in position of the step data. Therefore, calculate the settling time while referencing the following value.
T4 = $0.15[\mathrm{~s}]$

Calculation example)
T1 to T4 can be calculated as follows.

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=200 / 3000=0.07[\mathrm{~s}] \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=200 / 3000=0.07[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{50-0.5 \cdot 200 \cdot(0.07+0.07)}{200} \\
& =0.18[\mathrm{~s}] \\
\mathrm{T} 4 & =0.15[\mathrm{~s}]
\end{aligned}
$$

The cycle time can be found as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4$
$=0.07+0.18+0.07+0.15$
$=0.47$ [s]

Operating conditions

- Workpiece mass: 1 [kg] - Workpiece mounting
- Speed: 200 [mm/s] condition:
- Mounting orientation: Vertical
- Stroke: 50 [mm]
- Acceleration/Deceleration: 3000 [mm/s ${ }^{2}$]
- Cycle time: 0.5 s

<Speed-Work load graph>

Step 3 Check the allowable moment.

<Static allowable moment> (page 93) <Dynamic allowable moment> (pages 95, 96)
Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

LESYH16/Pitching

<Dynamic allowable moment>

Selection Procedure

Pushing Control Selection Procedure

Selection Example

Operating conditions

- Pushing force: 150 N	\bullet Mounting position: Vertical upward	$\underline{1010}$		
- Workpiece mass: 1 kg	- Pushing time + Operation (A): 1.5 s	$\\|_{\\|}$		
- Speed: $100 \mathrm{~mm} / \mathrm{s}$	- Full cycle time (B): 10 s	咗		
- Stroke: 100 mm		\because		

Step 1 Check the required force.
Calculate the approximate required force for a pushing operation.
Selection example) • Pushing force: 150 [N]

- Workpiece mass: 1 [kg]

The approximate required force can be found to be $150+10=160[\mathrm{~N}]$.
Select a model based on the approximate required force while referencing the specifications (page 101).
Selection example based on the specifications)

- Approximate required force: 160 [N]
- Speed: 100 [mm/s]

The LESYH16 \square EA can be temporarily selected as a possible candidate.
Then, calculate the required force for a pushing operation. If the mounting position is vertical upward, add the actuator table weight.
Selection example based on the table weight)

- LESYH16 \square EA table weight: 0.7 [kg]

The required force can be found to be $160+7=167[\mathrm{~N}]$.

Step 2 Check the pushing force.
<Pushing force set value-Force graph> (page 94)
Select a model based on the required force while referencing the pushing force set value-force graph, and confirm the pushing force set value. Selection example based on the graph shown on the right side)

- Required force: 167 [N]

The LESYH16 \square EA can be temporarily selected as a possible candidate.
The pushing force set value is 64 [\%].

Step 3

Check the duty ratio.

Confirm the allowable duty ratio based on the pushing force set value while referencing the allowable duty ratio. Selection example based on the allowable duty ratio) - Pushing force set value: 64 [\%]

The allowable duty ratio can be found to be 20 [\%]. Calculate the duty ratio for the operating conditions, and confirm it does not exceed the allowable duty ratio.
Selection example) • Pushing time + Operation (A): 1.5 s

- Full cycle time (B): 10 s

The duty ratio can be found to be $1.5 / 10 \times 100=15$ [$\%$], and this is within the allowable range.

Step 4 Check the allowable moment.

<Static allowable moment> (page 93)
<Dynamic allowable moment> (pages 95, 96)
Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Table Weight Unit [kg]

Model	Stroke [mm]			
	50	75	100	150
LESYH8	0.2	0.3	-	-
LESYH16	0.4	-	0.7	-
LESYH25	0.9	-	1.3	1.7

* If the mounting position is vertical upward, add the table weight.

LESYH16 \square E \square /Battery-less Absolute

<Pushing force set value-Force graph>
Allowable Duty Ratio
Battery-less Absolute

Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
35	-	-
50 or less	30 or less	5 or less
70 or less	20 or less	3 or less

LESYH16/Pitching

<Dynamic allowable moment>

LESYH Series

Battery-less Absolute (Step Motor 24 VDC)

Speed-Work Load Graph (Guide)

LESYH8 \square E

LESYH16■E

Horizontal

Vertical

LESYH25 $\square E$

Horizontal

Vertical

Static Allowable Moment

Model	LESYH8		LESYH16		LESYH25		
Stroke [mm]	50	75	50	100	50	100	150
Pitching [$\mathrm{N} \cdot \mathrm{m}$]	11		26	43	77	112	155
Yawing [$\mathrm{N} \cdot \mathrm{m}$]							
Rolling [$\mathrm{N} \cdot \mathrm{m}$]	12		48		146	177	152

Pushing Force Set Value－Force Graph

LESYH8 \square E \square

LESYH16 $\square \square$

LESYH25 \square E \square

Dynamic Allowable Moment

* These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LESYH
Size: 16
Acceleration [mm/s²]: a
Work load [kg]: m
Work load center position [mm]: Xc/Yc/Zc
. Select the target graph while referencing the model, size, and mounting orientation.
3. Based on the acceleration and work load, find the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.
$\alpha x=X c / L x, \alpha y=Y c / L y, \alpha z=Z c / L z$
5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$, and $\alpha \mathbf{z}$ is 1 or less.
$\alpha x+\alpha y+\alpha z \leq 1$
When 1 is exceeded, consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LESYH
Size: 16
Mounting orientation: Horizontal
Acceleration [mm/s²]: 5000
Work load [kg]: 4.0
Work load center position [mm]: $\mathbf{X c}=\mathbf{8 0}, \mathbf{Y c}=\mathbf{5 0}, \mathbf{Z c}=\mathbf{6 0}$
2. Select three graphs from the top of the second row on page 95.

$\alpha x=80 / 250=0.32$
$\alpha y=50 / 160=0.32$
$\alpha z=60 / 700=0.09$
5. $\alpha \mathbf{x}+\alpha \mathbf{y}+\alpha z=0.73 \leq 1$

Mounting orientation

3. $L x=\mathbf{2 5 0} \mathbf{~ m m}, L y=160 \mathbf{~ m m}, L z=700 \mathrm{~mm}$
4. The load factor for each direction can be found as follows.

LESYH Series

Table Accuracy

Model	LESYH8	LESYH16	LESYH25
B side parallelism to A side $[\mathrm{mm}]$	Refer to Table 1.		
B side traveling parallelism to A side [mm]	Refer to Graph 1.		
C side perpendicularity to A side [mm]	0.05	0.05	0.05
M dimension tolerance [mm]	± 0.3		
W dimension tolerance $[\mathrm{mm}]$	± 0.2		
Radial clearance $[\mu \mathrm{m}]$	-4 to 0	-10 to 0	-14 to 0

Table 1 B side parallelism to A side

Model	Stroke [mm]			
	$\mathbf{5 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$
LESYH8	0.055	0.065	-	-
LESYH16	0.05	-	0.08	-
LESYH25	0.06	-	0.08	0.125

Graph 1 B side traveling parallelism to A side

Traveling parallelism:
The amount of deflection on a dial gauge when the table travels a full stroke with the body secured on a reference base surface

Battery-less Absolute (Step Motor 24 VDC)

Table Deflection (Reference Value)

* These values are initial guideline values.

Table displacement due to pitch moment load
Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LESYH8

LESYH16

LESYH25

Table displacement due to yaw moment load
Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LESYH8

LESYH16

LESYH25

Table displacement due to roll moment load
Table displacement of section A when loads are applied to the section F with the slide table retracted.

LESYH8
$\mathbf{L r}=70 \mathrm{~mm}$

LESYH16

$\mathbf{L r}=120 \mathrm{~mm}$

LESYH25
$\mathbf{L r}=200 \mathrm{~mm}$

Battery-less Absolute Encoder Type

Slide Table/High Precision Type LESYH Series

Size

8
16
25

0
Motor mounting position/Motor cover direction Motor mounting position (For size 8)

Symbol	Motor mounting position	Motor cover direction
D1		
	In-line	Left side
		Right side
	D2	Top side
D3		Bottom side
D4		-
R	Right side parallel	-
L	Left side parallel	-

Symbol	Motor mounting position
D	In-line
R	Right side parallel
L	Left side parallel

3 Motor type

Symbol	Motor type
E	Battery-less absolute (Step motor 24 VDC)

Lead [mm]

	Size		
	8	16	25
\mathbf{A}	10	12	16
\mathbf{B}	5	6	8
\mathbf{C}	2.5	-	-

Stroke [mm]

	Size		
	8	16	25
50	\bigcirc	\bigcirc	-
75	\bigcirc	-	-
100	-	\bigcirc	-
150	-	-	-

6 Motor option

\mathbf{C}	Without lock
\mathbf{W}	With lock

Actuator cable type/length
Robotic cable
Robotic cable

		$[\mathrm{m}]$	
Nil	Without cable	R8	$8^{* 1}$
R1	1.5	RA	$10^{* 1}$
R3	3	RB	$15^{* 1}$
R5	5	RC	$20^{* 1}$

Battery－less Absolute Encoder Type Slide Table／High Precision Type LESYH Series

Battery－less Absolute（Step Motor 24 VDC）

\triangle Caution

［CE－compliant products］
EMC compliance was tested by combining the electric actuator LES series and the controller JXC series．
The EMC depends on the configuration of the customer＇s control panel and the relationship with other electrical equipment and wiring．Therefore，compliance with the EMC directive cannot be certified for SMC components incorporated into the customer＇s equipment under actual operating conditions．As a result，it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole．
［Precautions relating to differences in controller versions］ When the JXC series is to be used in combination with the battery－less absolute encoder，use a controller that is version V3．4 or S3．4 or higher． For details，refer to pages 179 and 180.

［UL certification］

The JXC series controllers used in combination with electric actuators are UL certified．

The actuator and controller are sold as a package．

Confirm that the combination of the controller and actuator is correct
＜Check the following before use．＞
（1）Check the actuator label for the model number． This number should match that of the controller．
（2）Check that the Parallel I／O configuration matches（NPN or PNP）．

LESYH16REA－50C

＊Refer to the Operation Manual for using the products．
Please download it via our website：
https：／／www．smcworld．com

Type	Step data input type	EtherCAT ${ }^{\circledR}$ direct input type	EtherNet／IPтм direct input type \square	PROFINET direct input type \square	DeviceNet ${ }^{\text {TM }}$ direct input type	IO－Link direct input type	CC－Link direct input type
Series	JXC51 JXC61	JXCE1	JXC91	JXCP1	JXCD1	JXCL1	JXCM1
Features	Parallel I／O	EtherCAT ${ }^{\circledR}$ direct input	EtherNet／IPTM direct input	PROFINET direct input	DeviceNet ${ }^{\text {TM }}$ direct input	IO－Link direct input	CC－Link direct input
Compatible motor	Battery－less absolute （Step motor 24 VDC）						
Max．number of step data	64 points						
Power supply voltage	24 VDC						
Reference page	165	172					

Specifications

Battery－less Absolute（Step Motor 24 VDC）

Model			LESYH8 \square EA	LESYH8 \square EB	LESYH8 \square EC	LESYH16■EA	LESYH16口EB	LESYH25 \square EA LESYH25■EB	
	Stroke［mm］		50， 75			50， 100		50，100， 150	
	Max．work load［kg］＊1＊3	Horizontal	2			8		12	
		Vertical	1.5	3	6	6	12	10	20
	Pushing force 35\％to 70\％［ N$]^{* 2 * 3}$		18 to 36	37 to 74	69 to 138	91 to 182	174 to 348	109 to 218	210 to 420
	Max．speed［mm／s］＊${ }^{* 3}$		400	200	100	400	200	400	200
	Pushing speed［mm／s］		20 to 30	10 to 30	5 to 30	20 to 30	10 to 30	20 to 30	10 to 30
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］		5000						
	Positioning repeatability［mm］		± 0.01						
	Lost motion［mm］＊4		0.1 or less						
	Screw lead［mm］		10	5	2.5	12	6	16	8
	Impact／Vibration resistance［m／s $\left.{ }^{2}\right]^{* 5}$		50／20						
	Actuation type		Ball screw：LESYH $\square \mathrm{D}$ Ball screw＋Belt：LESYH $\square(\mathrm{R}, \mathrm{L})$						
	Guide type		Linear guide（Circulating type）						
	Operating temperature range［ ${ }^{\mathbf{C}}$ ］		5 to 40						
	Operating humidity range［\％RH］		90 or less（No condensation）						
	Motor size		$\square 28$			$\square 42$		$\square 56$	
	Motor type		Battery－less absolute（Step motor 24 VDC）						
	Encoder（Angular displacement sensor）		Battery－less absolute						
	Power supply voltage［V］		24 VDC $\pm 10 \%$						
	Power［W］＊6＊8		Max．power 43			Max．power 48		Max．power 104	
喜	Type		Non－magnetizing lock						
石	Holding force［ N ］		20	39	78	78	157	108	216
完	Power［W］＊8		2.9			5			
한			24 VDC $\pm 10 \%$						

＊1 Speed changes according to the work load．Check the＂Speed－Work Load Graph（Guide）＂on page 93.
＊2 Pushing force accuracy is $\pm 20 \%$（F．S．）．
＊3 The speed and force may change depending on the cable length，load，and mounting conditions．
Furthermore，if the cable length exceeds 5 m ，then it will decrease by up to 10% for each 5 m ．（At 15 m ：Reduced by up to 20\％）
＊4 A reference value for correcting errors in reciprocal operation
＊5 Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊6 Indicates the max．power during operation（including the controller）．This value can be used for the selection of the power supply
＊7 With lock only
＊8 For an actuator with lock，add the power for the lock．

Weight

Product Weight

Model	Stroke			
	$\mathbf{5 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$
LESYH8 $\square \mathbf{E}$	1.06	1.23	-	-
LESYH16 $\square \mathrm{E}$	1.87	-	2.26	-
LESYH25 $\square \mathrm{E}$	3.50	-	4.10	4.90

Additional Weight

Size	$\mathbf{8}$	$\mathbf{1 6}$	$\mathbf{2 5}$
With lock	0.16	0.32	0.61

Battery-less Absolute Encoder Type Slide Table/High Precision Type LESYH Series

Battery-less Absolute (Step Motor 24 VDC)

Construction
Right side parallel/R type, Left side parallel/L type

Parallel type only)/Belt

No.	Size	Order no.
21	$\mathbf{8}$	LE-D-2-1
	$\mathbf{1 6}$	LE-D-2-2
	$\mathbf{2 5}$	LE-D-2-3

Replacement Parts/Grease Pack

Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$
Guide unit	GR-S-020 $(20 \mathrm{~g})$

No.	Description	Material	Note
$\mathbf{2 6}$	Grommet	Resin	-
$\mathbf{2 7}$	Motor block	Aluminum alloy	Anodized
$\mathbf{2 8}$	Motor adapter	Aluminum alloy	Anodized
$\mathbf{2 9}$	Hub	Aluminum alloy	-
$\mathbf{3 0}$	Spider	NBR	-
$\mathbf{3 1}$	Cover	Resin	-
$\mathbf{3 2}$	Return guide	Resin	-
$\mathbf{3 3}$	Scraper	NBR	-
$\mathbf{3 4}$	Steel ball	Special steel	-
$\mathbf{3 5}$	Masking tape	-	-
$\mathbf{3 6}$	Lock	-	With lock only
$\mathbf{3 7}$	Motor cover with lock	Aluminum alloy	With lock only
$\mathbf{3 8}$	Cover support	Aluminum alloy	With lock only

Replacement Parts (Motor mounting position:

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Table	Stainless steel	-
$\mathbf{3}$	Guide block	Stainless steel	-
$\mathbf{4}$	Ball screw shaft	Alloy steel	-
$\mathbf{5}$	Ball screw nut	Resin/Alloy steel	-
$\mathbf{6}$	End plate	Aluminum alloy	Anodized
$\mathbf{7}$	Piston	Aluminum alloy	-
$\mathbf{8}$	Piston rod	Stainless steel	Hard chrome plating
$\mathbf{9}$	Rod cover	Aluminum alloy	-
$\mathbf{1 0}$	Bearing holder	Aluminum alloy	-
$\mathbf{1 1}$	Socket	Free cutting steel	Electroless nickel plating
$\mathbf{1 2}$	Connected shaft	Free cutting steel	Electroless nickel plating
$\mathbf{1 3}$	Bearing	-	-
$\mathbf{1 4}$	Return box	Aluminum die-cast	Coating
$\mathbf{1 5}$	Return plate	Aluminum die-cast	Coating
$\mathbf{1 6}$	Magnet	-	
$\mathbf{1 7}$	Wear ring holder	Stainless steel	Size 25, 150st only
$\mathbf{1 8}$	Wear ring	Resin	Size 25, 150st only
$\mathbf{1 9}$	Screw shaft pulley	Aluminum alloy	-
$\mathbf{2 0}$	Motor pulley	Aluminum alloy	-
$\mathbf{2 1}$	Belt	-	-
$\mathbf{2 2}$	Scraper	NBR	-
$\mathbf{2 3}$	Type C retaining ring for hole	Steel for spring	Phosphate coating
$\mathbf{2 4}$	Motor	-	-
25	Motor cover	Resin	-
	Aluminum alloy	Size 8 only	

Dimensions

LESYH8D \square E $\square-\square$

Motor mounting position: Right side parallel LESYH8RE $\square-\square-\square$

Motor mounting position: Left side parallel LESYH8LE $\square-\square-\square$

Motor option: With lock LESYH8 $\square \mathrm{E} \square-\square \mathbf{W}-\square$

*1 This is the range within which the table can move when it returns to origin.
Make sure workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 If the workpiece retaining screws are too long, they may come in contact with the guide block, resulting in a malfunction. Use screws of a length equal to or shorter than the thread length.
*5 For checking the limit and the intermediate signal. Applicable to the D-M9 $\square, D-M 9 \square E$, and D-M9 \square W (2-color indicator) The auto switches should be ordered separately. Refer to the Web Catalog for details.

Dimensions

Model	Stroke	C	E	Without lock			With lock		
				F	G	H	F	G	H
LES	50	46	111	241.5	80	98.5	286.5	125	143.5
LES	75	50	137	266.5			311.5		

Battery-less Absolute Encoder Type

Dimensions

LESYH16DE $\square-\square$

*1 This is the range within which the table can move when it returns to origin.
Make sure workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 If the workpiece retaining screws are too long, they may come in contact with the guide block, resulting in a malfunction. Use screws of a length equal to or shorter than the thread length.
*5 For checking the limit and the intermediate signal. Applicable to the D-M9 $\square, \mathrm{D}-\mathrm{M} 9 \square \mathrm{E}$, and $\mathrm{D}-\mathrm{M} 9 \square \mathrm{~W}$ (2-color indicator) The auto switches should be ordered separately. Refer to the Web Catalog for details.

Dimensions

Model	Stroke	C	D	E	Without lock			With lock		
					F	G	H	F	G	H
LESYH16 \square [\square	50	40	6	116.5	258	68.5	88.5	298.5	109	129
LESYH16■E■	100	44	8	191.5	308			348.5		

LESYH Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions

LESYH25DE $\square-\square$

*1 This is the range within which the table can move when it returns to origin.
Make sure workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 If the workpiece retaining screws are too long, they may come in contact with the guide block, resulting in a malfunction.
Use screws of a length equal to or shorter than the thread length.
*5 For checking the limit and the intermediate signal. Applicable to the D-M9 $\square, D-M 9 \square E$, and D-M9 \square W (2-color indicator)
The auto switches should be ordered separately. Refer to the Web Catalog for details.

Dimensions

Dimensions [mm]															
Model	Stroke	B	C	D	E	Without lock			With lock			I	MC	MD	ML
						F	G	H	F	G	H				
LESYH25 $\square \mathrm{E} \square$	50	128.5	75	4	143	279.5	73.5	98.5	322.5	116.5	141.5	133	36	43	50
	100		48	8	207	329.5			372.5			133	36	43	50
	150	158.5	65		285	409.5			452.5			163	53	51.5	80

| JXC $\square 1$ LXC51/61 LER LEHF LESH LES LESYH LEYG LEY LEFB LEFS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Slide Table/Compact Type

LES Series

Model Selection 1

Selection Procedure For the high rigidity type LESH series, refer to page 125

Check the work loadspeed.

Step 3
Check the allowable moment.

Selection Example

Check the work load-speed. <Speed-Work load graph> (page 108)
Select a model based on the workpiece mass and speed while referencing the speed-work load graph.
Selection example) The LES25 \square EJ- 50 can be temporarily selected as a possible candidate based on the graph shown on the right side.

Step 2 Check the cycle time.

It is possible to find an approximate cycle time by using method 1, but if a more detailed cycle time is required, use method 2 .

Method 1: Check the cycle time graph. (page 108)
Calculate the cycte time using the Calculation (page 108)
the cycle time using the following calculation method.
Cycle time:
T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$

- T1: Acceleration time and T3: Deceleration time can be found by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

- T2: Constant speed time can be found from the following equation.

- T4: Settling time varies depending on the conditions such as motor types, load, and in position of the step data. Therefore, calculate the settling time while referencing the following value.

T4 $=0.15[\mathrm{~s}]$

Step 3 Check the allowable moment. <Static allowable moment> (page 108) <Dynamic allowable moment> (page 109)

Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Operating conditions

\bullet Workpiece mass: 2 [kg] •Workpiece mounting

- Speed: 200 [mm/s]
- Mounting orientation: Vertical
- Stroke: 50 [mm]
- Acceleration/Deceleration: $5000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$
- Cycle time: 0.5 s

LES25 $\square \mathrm{E} \square /$ Battery-less Absolute Vertical

<Speed-Work load graph>

LES25/Battery-less Absolute Pitching

<Dynamic allowable moment>

Based on the above calculation result, the LES25 \square EJ-50 should be selected.

Battery－less Absolute（Step Motor 24 VDC）

Speed－Work Load Graph（Guide）

Battery－less Absolute（Step Motor 24 VDC）

＊The following graphs show the values when the moving force is 100% ．
LES25 \square E \square

Cycle Time Graph（Guide）

Acceleration／Deceleration： $5000 \mathrm{~mm} / \mathrm{s}^{2}$
In position： 0.5 mm

Static Allowable Moment

Model		LES25
Pitching	$[\mathrm{N} \cdot \mathrm{m}]$	14.1
Yawing	$[\mathrm{N} \cdot \mathrm{m}]$	14.1
Rolling	$[\mathrm{N} \cdot \mathrm{m}]$	4.8

LES Series

* These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

Acceleration/Deceleration

- $5000 \mathrm{~mm} / \mathrm{s}^{2}$

	Load overhanging direction m : Work load [kg] Me: Allowable moment [$\mathrm{N} \cdot \mathrm{m}$] L : Overhang to the work load center of gravity [mm]		ModelLES25			
		Y				
		Z				
		X				
$\begin{gathered} \overline{\bar{\sigma}} \\ \frac{1}{3} \end{gathered}$		Y				
		Z				

* These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

Dynamic Allowable Moment

\qquad $5000 \mathrm{~mm} / \mathrm{s}^{2}$

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LES
Size: 25
Mounting orientation: Horizontal/Bottom/Wall/Vertical

Acceleration [mm/s²]: a
Work load [kg]: m
Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph while referencing the model, size, and mounting orientation.
3. Based on the acceleration and work load, find the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.

$$
\alpha \mathbf{x}=\mathrm{Xc} / \mathrm{Lx}, \alpha \mathbf{y}=\mathrm{Yc} / \mathrm{L} \mathbf{y}, \alpha z=\mathrm{Zc} / \mathrm{Lz}
$$

5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$, and $\alpha \mathbf{z}$ is 1 or less.

$$
\alpha \mathbf{x}+\alpha \mathbf{y}+\alpha \mathbf{z} \leq \mathbf{1}
$$

When 1 is exceeded, please consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LES
Size: 25
Mounting orientation: Horizontal
Acceleration [mm/s²]: 5000
Work load [kg]: 2.0
Work load center position [mm]: Xc=100, Yc=50,Zc=100
2. Select three graphs from the top on page 109.

$\alpha x=100 / 500=0.20$
$\alpha y=50 / 240=0.21$
$\alpha z=100 / 500=0.20$
5. $\alpha \mathbf{x}+\alpha y+\alpha z=0.61 \leq 1$

Mounting orientation

3. $L x=\mathbf{5 0 0} \mathbf{m m}, L y=\mathbf{2 4 0} \mathbf{m m}, L z=\mathbf{5 0 0} \mathbf{m m}$
4. The load factor for each direction can be found as follows.

Slide Table/Compact Type

LES Series

Model Selection 2

Selection Procedure For the high rigidity type LESH series, refer to page 129

Check the required force.

Check the pushing force set value.

Step 3 Check the duty ratio.

Selection Example

Operating conditions

- Pushing force: $90[\mathrm{~N}]$	-Mounting orientation: Vertical upward
-Workpiece mass: $1[\mathrm{~kg}]$	-Pushing time + Operation (A): 1.5 s
-Speed: $100[\mathrm{~mm} / \mathrm{s}]$	-Full cycle time (B): 6 s
-Stroke: $100[\mathrm{~mm}]$	

Step 1 Check the required force.
Calculate the approximate required force for a pushing operation. Selection example) •Pushing force: 90 [N]

- Workpiece mass: 1 [kg]

The approximate required force can be found to be $90+10=100[\mathrm{~N}]$.
Select a model based on the approximate required force while referencing the specifications (page 117).
Selection example) Based on the specifications,

- Approximate required force: 100 [N]
- Speed: 100 [mm/s]

The LES25 \square E can be temporarily selected as a possible candidate.
Then, calculate the required force for a pushing operation. If the mounting position is vertical upward, add the actuator table weight.
Selection example) Based on the table weight,

- LES25 $\square \mathrm{E}$ table weight: 0.5 [kg] The required force can be found to be $100+5=105[\mathrm{~N}]$.

Step 2 Check the pushing force set value.

<Pushing force set value-Force graph> (page 112)
Select a model based on the required force while referencing the pushing force set value-force graph, and confirm the pushing force set value.
Selection example) Based on the graph shown on the right side,

- Required force: 105 [N]

The LES25 \square EK can be temporarily selected as a possible candidate.
This pushing force set value is 40 [\%].
Step 3 Check the duty ratio.
Confirm the allowable duty ratio based on the pushing force set value while referencing the allowable duty ratio.
Selection example) Based on the allowable duty ratio,

- Pushing force set value: 40 [\%]

The allowable duty ratio can be found to be 30 [\%].
Calculate the duty ratio for the operating conditions, and confirm it does not exceed the allowable duty ratio.
Selection example) \bullet Pushing time + Operation (A): 1.5 s

- Full cycle time (B): 6 s

The duty ratio can be found to be $1.5 / 6 \mathrm{x}$ $100=25$ [\%], and this is within the allowable range.

Table Weight

Model	Stroke $[\mathrm{mm}]$						
	30	50	75	100	125	150	
LES25	0.25	0.30	0.36	0.50	0.55	0.59	

* If the mounting position is vertical upward, add the table weight.

LES25 $\square \mathrm{E} \square /$ Battery-less Absolute

<Pushing force set value-Force graph>

Allowable Duty Ratio
Battery-less Absolute

Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
30	-	-
50 or less	30 or less	5 or less
70 or less	20 or less	3 or less

Based on the above calculation result, the LES25 $\square E K-100$ should be selected. For allowable moment, the selection procedure is the same as that for the positioning control.

Pushing Force Set Value－Force Graph

Battery－less Absolute（Step Motor 24 VDC）

LES25 \square E \square

Table Accuracy

Model	LES25
B side parallelism to A side	0.4 mm
B side traveling parallelism to A side	Refer to Graph 1．
C side perpendicularity to A side	0.2 mm
M dimension tolerance	$\pm 0.3 \mathrm{~mm}$
W dimension tolerance	$\pm 0.2 \mathrm{~mm}$

Graph $1 B$ side traveling parallelism to A side

LES Series

Table Deflection (Reference Value)

Pitching moment

Table displacement due to pitch moment load Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LES25

Yawing moment

Table displacement due to yaw moment load Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LES25

Rolling moment

Table displacement due to roll moment load Table displacement of section A when loads are applied to the section F with the slide table retracted.

LES25

$\mathbf{L r}=100 \mathrm{~mm}$

| JXC $\square 1$ LXC51/61 LER LEHF LESH LES LESYH LEYG LEY LEFB LEFS |
| :--- | :--- | :--- | :--- | :--- | :--- |

6 Motor option

Nil	Without option
\mathbf{B}	With lock

Mounting*3

Symbol	Mounting	R type L type	D type
$\mathbf{N i l}$	Without side holder	\bullet	\bullet
\mathbf{H}	With side holder (4 pcs.)	-	\bullet

Battery-less Absolute Encoder Type Slide Table/Compact Type

Battery-less Absolute (Step Motor 24 VDC)

- Communication plug connector, I/O cable*6

Mounting		Symbol	Type	Applicable interface
7	Screw mounting	Nil	Without accessory	-
8*5	DIN rail	S	Straight type communication plug connector	DeviceNet ${ }^{\text {TM }}$ CC-Link Ver. 1.10
- For single axis		T	T-branch type communication plug connector	
		1	I / O cable (1.5 m)	Parallel input (NPN) Parallel input (PNP)
		3	I/O cable (3 m)	
		5	I/O cable (5 m)	

*1 Not applicable to the R/L type with lock
*2 For R/L type (IP5X equivalent), a scraper is mounted on the rod cover, and gaskets are mounted on both the end covers. For D type, a scraper is mounted on the rod cover.
*3 For details, refer to page 123.
4 Produced upon receipt of order

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LES series and the controller JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
[Precautions relating to differences in controller versions]
When the JXC series is to be used in combination with the battery-less absolute encoder, use a controller that is version V3.4 or S3.4 or higher. For details, refer to pages 179 and 180.
[UL certification]
The JXC series controllers used in combination with electric actuators are UL certified.
*5 The DIN rail is not included. It must be ordered separately.
*6 Select "Nil" for anything other than DeviceNet ${ }^{\text {TM }}$, CC-Link, or parallel input. Select "Nil," "S," or "T" for DeviceNet™ or CC-Link. Select "Nil," "1," " 3 ," or " 5 " for parallel input.

Type	Step data input type	EtherCAT ${ }^{\circledR}$ direct input type	EtherNet/IPTM direct input type	PROFINET direct input type	DeviceNet ${ }^{\text {TM }}$ direct input type	IO-Link direct input type	CC-Link direct input type
Series	JXC51 JXC61	JXCE1	JXC91	JXCP1	JXCD1	JXCL1	JXCM1
Features	Parallel I/O	EtherCAT ${ }^{\circledR}$ direct input	EtherNet/IP ${ }^{\text {TM }}$ direct input	PROFINET direct input	DeviceNet ${ }^{\text {TM }}$ direct input	IO-Link direct input	CC-Link direct input
Compatible motor	Battery-less absolute (Step motor 24 VDC)						
Max. number of step data	64 points						
Power supply voltage	24 VDC						
Reference page	165	172					

Battery-less Absolute (Step Motor 24 VDC)

Specifications

Battery-less Absolute (Step Motor 24 VDC)

*1 Speed changes according to the work load. Check the "Speed-Work Load Graph (Guide)" on page 108.
*2 Pushing force accuracy is $\pm 20 \%$ (F.S.).
*3 The speed and force may change depending on the cable length, load, and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
*4 A reference value for correcting errors in reciprocal operation
*5 Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*6 Indicates the max. power during operation (including the controller)
This value can be used for the selection of the power supply.

* 7 With lock only
*8 For an actuator with lock, add the power for the lock.

Weight

Battery-less Absolute (Step Motor 24 VDC)

		Without lock						With lock					
Stroke [mm]		30	50	75	100	125	150	30	50	75	100	125	150
Model	LES25 ${ }_{\text {L }}$	1.81	2.07	2.41	3.21	3.44	3.68	-	2.34	2.68	3.48	3.71	3.95
	LES25D	1.82	2.05	2.35	3.07	3.27	3.47	2.08	2.31	2.61	3.33	3.53	3.74

Construction：Basic Type／R Type，Symmetrical Type／L Type

Component Parts

No．	Description	Material	Note
1	Motor	－	－
2	Body	Aluminum alloy	Anodized
3	Table	Stainless steel	Heat treament + Electroless nickel plating
4	Guide block	Stainless steel	Heat treatment
5	Lead screw	Stainless steel	Heat treatment＋Special treatment
6	End plate	Aluminum alloy	Anodized
7	Pulley cover	Synthetic resin	－
8	End cover	Synthetic resin	－
9	Rod	Stainless steel	－
		Structural steel	Electroless nickel plating
10	Bearing stopper	Brass	Electroless nickel plating （LES25R／L \square only）
11	Motor plate	Structural steel	－
12	Socket	Structural steel	Electroless nickel plating
13	Lead screw pulley	Aluminum alloy	－
14	Motor pulley	Aluminum alloy	－
15	Spacer	Stainless steel	LES25R／L \square only
16	Origin stopper	Structural steel	Electroless nickel plating
17	Bearing	－	－
18	Belt	－	－
19	Grommet	Synthetic resin	－
20	Cap	Silicone rubber	－
21	Sim ring	Structural steel	－

No．	Description	Material	Note
$\mathbf{2 2}$	Stopper	Structural steel	-
$\mathbf{2 3}$	Bushing	-	Dust－protected option only
$\mathbf{2 4}$	Pulley gasket	NBR	Dust－protected option only
$\mathbf{2 5}$	End gasket	NBR	Dust－protected option only
26	Scraper	NBR	Dust－protected option only
27	Cover	Synthetic resin	-
28	Return guide	Synthetic resin	-
29	Cover support	Stainless steel	-
30	Steel ball	Special steel	-
31	Lock	-	With lock only

Replacement Parts／Belt

Size	Order no．	Note
LES25 \square	LE－D－1－3	-

Replacement Parts／Grease Pack

Applied portion	Order no．
Guide unit	GR－S－010 $(10 \mathrm{~g})$
	GR－S－020 $(20 \mathrm{~g})$

Battery-less Absolute (Step Motor 24 VDC)

Construction: In-line Motor Type/D Type

Shipped together

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Motor	-	-
$\mathbf{2}$	Body	Aluminum alloy	Anodized
$\mathbf{3}$	Table	Stainless steel	Heat treatment + Electroless nickel paling
$\mathbf{4}$	Guide block	Stainless steel	Heat treatment
$\mathbf{5}$	Lead screw	Stainless steel	Heat treatment + Special treatment
$\mathbf{6}$	End plate	Aluminum alloy	Anodized
$\mathbf{7}$	Motor flange	Aluminum alloy	Anodized
$\mathbf{8}$	Stopper	Structural steel	-
$\mathbf{9}$	Motor cover	Aluminum alloy	Anodized
$\mathbf{1 0}$	End cover	Aluminum alloy	Anodized
$\mathbf{1 1}$	Motor end cover	Aluminum alloy	Anodized
$\mathbf{1 2}$	Rod	Stainless steel	-
		Structural steel	Electroless nickel plating
$\mathbf{1 3}$	Bearing stopper	Brass	Electroless nickel plating
		(LES25D \square only)	
$\mathbf{1 4}$	Socket	Structural steel	Electroless nickel plating
$\mathbf{1 5}$	Hub (Lead screw side)	Aluminum alloy	-
$\mathbf{1 6}$	Hub (Motor side)	Aluminum alloy	-
$\mathbf{1 7}$	Spacer	Stainless steel	LES25D \square only
$\mathbf{1 8}$	Grommet	NBR	-
$\mathbf{1 9}$	Spider	NBR	-
$\mathbf{2 0}$	Cover	Synthetic resin	-

No.	Description	Material	Note
21	Return guide	Synthetic resin	-
22	Cover support	Stainless steel	-
23	Steel ball	Special steel	-
24	Bearing	-	-
25	Sim ring	Structural steel	-
26	Masking tape	-	-
27	Bushing	-	Dust-protected option only
28	Scraper	NBR	Dust-protected option only
29	Lock	-	With lock only
30	Side holder	Aluminum alloy	Anodized

Optional Parts/Side Holder

Model	Order no.
LES25D	LE-D-3-3

Replacement Parts/Grease Pack

Applied portion	Order no.
Guide unit	GR-S-010 (10 g)
	GR-S-020 $(20 \mathrm{~g})$

Battery-less Absolute Encoder Type
 Slide Table/Compact Type
 Battery-less Absolute (Step Motor 24 VDC)

Dimensions: Basic Type/R Type

LES25RE

With lock

*1 This is the range within which the table can move when it returns to origin.
Make sure workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction.
Use screws that are between the maximum and minimum screw-in depths in length
*5 Secure the motor cable and lock cable so that the cables are not repeatedly bent.

Dimensions

Dimensions								
Model	L	C	D	E	F	G	H	J
LES25RE \square-30 $\square \square \square \square \square \square$	144.5	4	48	133.5	105	2	46	46
LES25RE $\square-50 \square \square-\square \square \square \square \square$	170.5	6	42	159.5	131	2	84	84
LES25RE $\square-75 \square \square-\square \square \square \square$	204.5	6	55	193.5	165	2	112	112
LES25RE \square-100 $\square \square-\square \square \square \square \square$	277.5	8	50	266.5	238	4	56	112
LES25RE \square-125 $\square \square-\square \square \square \square \square$	302.5	8	55	291.5	263	4	59	118
LES25RE \square-150 $\square \square \square \square \square \square$	327.5	8	62	316.5	288	4	62	124

LES Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions: Symmetrical Type/L Type

LES25LE

Dimensions

Dimensions								
Model	L	C	D	E	F	G	H	J
LES25LE \square-30 $\square-\square \square \square \square \square$	144.5	4	48	133.5	105	2	46	46
LES25LE \square-50 $\square \square-\square \square \square \square \square$	170.5	6	42	159.5	131	2	84	84
LES25LE \square-75 $\square \square-\square \square \square \square \square$	204.5	6	55	193.5	165	2	112	112
LES25LE \square-100 $\square \square-\square \square \square \square \square$	277.5	8	50	266.5	238	4	56	112
LES25LE \square-125 $\square \square-\square \square \square \square \square$	302.5	8	55	291.5	263	4	59	118
LES25LE \square-150 $\square \square-\square \square \square \square \square$	327.5	8	62	316.5	288	4	62	124

Dimensions：In－line Motor Type／D Type

A－A
＊ 2 sections（30，50，75， 100 st）
＊ 3 sections（ 125,150 st）

＊1 This is the range within which the table can move when it returns to origin．Make sure workpieces mounted on the table do not interfere with other workpieces or the facilities around the table．
＊2 Position after returning to origin
＊3［ ］for when the direction of return to origin has changed
＊4 The distance between the motor end cover and the manual override screw is up to 4 mm ．The motor end cover hole size is $\varnothing 5.5$ ．
＊5 The table is lower than the motor cover．
＊6 If workpiece retaining screws are too long，they can touch the guide block and cause a malfunction． Use screws that are between the maximum and minimum screw－in depths in length．
＊7 Secure the motor cable and lock cable so that the cables are not repeatedly bent．

LES Series

Battery-less Absolute (Step Motor 24 VDC)

Side Holder (In-line Motor Type/D Type)

[mm]							
Part no.*1	A	B	D	E	F	G	Applicable model
LE-D-3-3	81	99	12	6.6	30	49	LES25DE

*1 Part number for 1 side holder

Selection Procedure For the compact type LES series, refer to page 107.

Check the work loadspeed.

Step 3
Check the allowable moment.

Selection Example

Check the work load-speed. <Speed-Work load graph> (page 126)
Select a model based on the workpiece mass and speed while referencing the speed-work load graph.
Selection example) The LESH25 \square EJ-50 can be temporarily selected as a possible candidate based on the graph shown on the right side.

Step 2 Check the cycle time.

It is possible to find an approximate cycle time by using method 1 , but if a more detailed cycle time is required, use method 2.

* Although it is possible to make a suitable selection by using method 1 , this calculation is based on a maximum load condition. Therefore, if a more detailed selection for each load is required, use method 2.

Method 1: Check the cycle time graph. (page 126)
 types, load, and in position of the step data. Therefore, calculate the settling time while referencing the following value.

$$
\mathrm{T} 4=0.15[\mathrm{~s}]
$$

Step 3 Check the allowable moment. <Static allowable moment> (page 126) <Dynamic allowable moment> (page 127)

Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Operating conditions

-Workpiece mass: 2 [kg] •Workpiece mounting

- Speed: 200 [mm/s]
- Mounting orientation: Vertical
- Stroke: 50 [mm]
- Acceleration/Deceleration: 5000 [$\mathrm{mm} / \mathrm{s}^{2}$]
- Cycle time: 0.5 s condition:

LESH25 $\square \mathrm{E} \square$ /Battery-less Absolute Vertical

<Speed-Work load graph>
LESH25 \square /Battery-less Absolute Pitching

<Dynamic allowable moment>

Based on the above calculation result, the LESH25 $\square \mathrm{EJ}-50$ should be selected.

Speed-Work Load Graph (Guide)

Battery-less Absolute (Step Motor 24 VDC)

* The following graphs show the values when the moving force is 100%.

LESH25 \square E \square

Cycle Time Graph (Guide)

Acceleration/Deceleration: $5000 \mathrm{~mm} / \mathrm{s}^{2}$
In position: 0.5 mm

Static Allowable Moment

Model		LESH25		
Stroke	$[\mathrm{mm}]$	50	100	150
Pitching	$[\mathrm{N} \cdot \mathrm{m}]$		112	155
Yawing	$[\mathrm{N} \cdot \mathrm{m}]$		17	
Rolling	$[\mathrm{N} \cdot \mathrm{m}]$	146	177	152

LESH Series

Battery-less Absolute (Step Motor 24 VDC)

Dynamic Allowable Moment

* These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

Acceleration/Deceleration

These graphs show the amount of allowable overhang（guide unit）when the center of gravity of the workpiece overhangs in one direction．When selecting the overhang，refer to the＂Calculation of Guide
Dynamic Allowable Moment Load Factor＂or the Electric Actuator Model Selection Software for confirmation：https：／／www．smcworld．com
Acceleration／Deceleration
$5000 \mathrm{~mm} / \mathrm{s}^{2}$

	Load overhanging direction m ：Work load［kg］ Me：Allowable moment［N．m］ L ：Overhang to the work load center of gravity［mm］			Model
				LESH25
$\begin{aligned} & \overline{0} \\ & \text { ON } \\ & \frac{1}{0} \\ & \gg \end{aligned}$				
		Z		

Calculation of Guide Load Factor

1．Decide operating conditions．

Model：LESH
Size： 25
Mounting orientation：Horizontal／Bottom／Wall／Vertical

Acceleration［mm／s²］：a
Work load［kg］：m
Work load center position［mm］：Xc／Yc／Zc
2．Select the target graph while referencing the model，size，and mounting orientation．
3．Based on the acceleration and work load，find the overhang［mm］：Lx／Ly／Lz from the graph．
4．Calculate the load factor for each direction．

$$
\alpha \mathbf{x}=\mathrm{Xc} / \mathrm{Lx}, \alpha \mathbf{y}=\mathrm{Yc} / \mathrm{L} \mathbf{y}, \alpha z=\mathrm{Zc} / \mathrm{Lz}
$$

5．Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$ ，and $\alpha \mathbf{z}$ is 1 or less．

$$
\alpha \mathbf{x}+\alpha \mathbf{y}+\alpha \mathbf{z} \leq \mathbf{1}
$$

When 1 is exceeded，please consider a reduction of acceleration and work load，or a change of the work load center position and series．

Example

1．Operating conditions
Model：LESH
Size： 25
Mounting orientation：Horizontal
Acceleration［mm／s²］： 5000
Work load［kg］： 4.0
Work load center position［mm］：Xc＝250，Yc＝250，Zc＝ $\mathbf{5 0 0}$
2．Select three graphs from the top on page 127.

5．$\alpha x+\alpha y+\alpha z=0.83 \leq 1$

3．$L x=1000 \mathrm{~mm}, L y=650 \mathrm{~mm}, L z=\mathbf{2 5 0 0} \mathbf{~ m m}$
4．The load factor for each direction can be found as follows．

$$
\begin{aligned}
& \alpha x=250 / 1000=0.25 \\
& \alpha y=250 / 650=0.38 \\
& \alpha z=500 / 2500=0.20
\end{aligned}
$$

Selection Procedure For the compact type LES series, refer to page 111.

Check the required force.
Step 2 Check the pushing force set value.

Selection Example
Operating conditions

-Pushing force: $90[\mathrm{~N}]$	-Mounting orientation: Vertical upward
-Workpiece mass: $1[\mathrm{~kg}]$	-Pushing time + Operation (A): 1.5 s
-Speed: $100[\mathrm{~mm} / \mathrm{s}]$	-Full cycle time (B): 6 s
-Stroke: $100[\mathrm{~mm}]$	

Check the required force.
Calculate the approximate required force for a pushing operation. Selection example) •Pushing force: 90 [N]
-Workpiece mass: 1 [kg]
The approximate required force can be found to be $90+10=100[\mathrm{~N}]$.
Select a model based on the approximate required force while referencing the specifications (page 135).
Selection example) Based on the specifications,

- Approximate required force: $100[\mathrm{~N}]$
- Speed: 100 [mm / s]

The LESH25■E can be temporarily selected as a possible candidate.
Then, calculate the required force for a pushing operation.
If the mounting position is vertical upward, add the actuator table weight.
Selection example) Based on the table weight,
-LESH25 \square E table weight: 1.3 [kg] The required force can be found to be $100+13=113[\mathrm{~N}]$.
Step 2 Check the pushing force set value.
<Pushing force set value-Force graph> (page 130)
Select a model based on the required force while referencing the pushing force set value-force graph, and confirm the pushing force set value.
Selection example) Based on the graph shown on the right side,

$$
\text { - Required force: } 113[\mathrm{~N}]
$$

The LESH25 \square EK can be temporarily selected as a possible candidate. This pushing force set value is 40 [\%].

Step 3

Check the duty ratio.
Confirm the allowable duty ratio based on the pushing force set value while referencing the allowable duty ratio, Selection example) Based on the allowable duty ratio,
-Pushing force set value: 40 [\%]
The allowable duty ratio can be found to be 30 [\%].
Calculate the duty ratio for the operating conditions, and confirm it does not exceed the allowable duty ratio. Selection example) • Pushing time + Operation (A): 1.5 s -Full cycle time (B): 6 s
The duty ratio can be found to be $1.5 / 6 \mathrm{x}$ $100=25$ [\%], and this is within the allowable range.

Table Weight

Model	Stroke $[\mathrm{mm}]$			
	50	75	100	150
LESH25	0.9	-	1.3	1.7

* If the mounting position is vertical upward, add the table weight.

LESH25 $\square \mathrm{E} \square$ /Battery-less Absolute

<Pushing force set value-Force graph>

Allowable Duty Ratio

Battery-less Absolute

Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
30	-	-
50 or less	30 or less	5 or less
70 or less	20 or less	3 or less

Based on the above calculation result, the LESH25 \square EK-100 should be selected.

 For allowable moment, the selection procedure is the same as that for the positioning control.
Pushing Force Set Value－Force Graph

Battery－less Absolute（Step Motor 24 VDC）

LESH25 \square E \square

Table Accuracy

Model	LESH25
B side parallelism to A side $[\mathrm{mm}]$	Refer to Table 1．
B side traveling parallelism to A side $[\mathrm{mm}]$	Refer to Graph 1.
C side perpendicularity to A side $[\mathrm{mm}]$	0.05
M dimension tolerance $[\mathrm{mm}]$	± 0.3
W dimension tolerance $[\mathrm{mm}]$	± 0.2
Radial clearance $[\mu \mathrm{m}]$	-14 to 0

Table 1 B side parallelism to A side

Model	Stroke［mm］			
	$\mathbf{5 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$
LESH25	0.06	-	0.08	0.125

Graph $1 B$ side traveling parallelism to A side

Traveling parallelism：

The amount of deflection on a dial gauge when the table travels a full stroke with the body secured on a reference base surface

LESH Series

Table displacement due to pitch moment load Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LESH25

Table displacement due to yaw moment load Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LESH25

Table displacement due to roll moment load Table displacement of section A when loads are applied to the section F with the slide table

Lr: Distance between the center of the table and the work load center of gravity

LESH25
$\mathbf{L r}=200 \mathrm{~mm}$

For details on controllers, refer to the next page.

5 Stroke [mm]

Stroke	Applicable stroke
$\mathbf{5 0}$ to $\mathbf{1 5 0}$	$50,100,150$

6 Motor option

Nil	Without option
B	With lock

8 Mounting*2

Symbol	Mounting	R type L type	D type
$\mathbf{N i l}$	Without side holder	\bigcirc	\bigcirc
\mathbf{H}	With side holder (4 pcs.)	-	\bigcirc

(9) Actuator cable type/length
Robotic cable

NiI	None	R8	$8^{* 3}$
R1	1.5	RA	$10 * 3$
R3	3	RB	$15^{* 3}$
R5	5	RC	$20^{* 3}$

Battery-less Absolute Encoder Type Slide Table/High Rigidity Type
 Battery-less Absolute (Step Motor 24 VDC)

\triangle Caution

[CE-compliant products]

EMC compliance was tested by combining the electric actuator LES series and the controller JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
[Precautions relating to differences in controller versions]
When the JXC series is to be used in combination with the battery-less absolute encoder, use a controller that is version V3.4 or S3.4 or higher. For details, refer to pages 179 and 180.

[UL certification]

The JXC series controllers used in combination with electric actuators are UL certified.

The actuator and controller are sold as a package.

Confirm that the combination of the controller and actuator is correct.
<Check the following before use.>
(1) Check the actuator label for the model number. This number should match that of the controller.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

* Refer to the Operation Manual for using the products.

Please download it via our website: https://www.smcworld.com

Type	Step data input type	EtherCAT ${ }^{\circledR}$ direct input type	EtherNet/IP™ direct input type	PROFINET direct input type	DeviceNet ${ }^{\text {TM }}$ direct input type	IO-Link direct input type	CC-Link direct input type
Series	$\begin{aligned} & \hline \text { JXC51 } \\ & \text { JXC61 } \end{aligned}$	JXCE1	JXC91	JXCP1	JXCD1	JXCL1	JXCM1
Features	Parallel I/O	EtherCAT ${ }^{\circledR}$ direct input	EtherNet/IPTM direct input	PROFINET direct input	DeviceNet ${ }^{\text {TM }}$ direct input	IO-Link direct input	CC-Link direct input
Compatible motor	Battery-less absolute (Step motor 24 VDC)						
Max. number of step data	64 points						
Power supply voltage	24 VDC						
Reference page	165	172					

LESH Series

Battery-less Absolute (Step Motor 24 VDC)

Specifications

Battery-less Absolute (Step Motor 24 VDC)

*1 Speed changes according to the work load. Check the "Speed-Work Load Graph (Guide)" on page 126.
*2 Pushing force accuracy is $\pm 20 \%$ (F.S.).
*3 The speed and force may change depending on the cable length, load, and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20\%)
*4 A reference value for correcting errors in reciprocal operation
*5 Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*6 Indicates the max. power during operation (including the controller)
This value can be used for the selection of the power supply.
*7 With lock only
*8 For an actuator with lock, add the power for the lock.

Weight

Battery-less Absolute (Step Motor 24 VDC)

Model		Basic type/R type, Symmetrical type/L type		In-line motor type/ D type				
		LESH25 R			LESH25D			
Stroke [mm]	50	100	150	50	100	150		
Product weight [kg]	Without lock	2.50	3.30	4.26	2.52	3.27	3.60	
	With lock	2.84	3.64	4.60	2.86	3.61	3.94	

Battery-less Absolute Encoder Type
 Slide Table/high Rigidity Type LESH Series
 Battery-less Absolute (Step Moior 24 VDC)

Construction: Basic Type/R Type, Symmetrical Type/L Type

Component Parts

No.	Description	Material	Note
1	Motor	-	-
2	Body	Aluminum alloy	Anodized
3	Table	Stainless steel	Heat treament + Electroless nickel plating
4	Guide block	Stainless steel	Heat treatment
5	Lead screw	Stainless steel	Heat treatment + Special treatment
6	End plate	Aluminum alloy	Anodized
7	Pulley cover	Synthetic resin	-
8	End cover	Synthetic resin	-
9	Rod	Stainless steel	-
10	Bearing stopper	Structural steel	Electroless nickel plating
		Brass	Electroless nickel pating (LESH25RRLD only)
11	Motor plate	Structural steel	
12	Cap	Silicone rubber	-
13	Socket	Structural steel	Electroless nickel plating
14	Lead screw pulley	Aluminum alloy	-
15	Motor pulley	Aluminum alloy	-
16	Spacer	Stainless steel	LESH25R/L \square only
17	Origin stopper	Structural steel	Electroless nickel plating
18	Bearing	-	-
19	Belt	-	-
20	Grommet	Synthetic resin	-
21	Sim ring	Structural steel	-

No.	Description	Material	Note
$\mathbf{2 2}$	Bushing	-	Dust-protected option only
$\mathbf{2 3}$	Pulley gasket	NBR	Dust-protected option only
$\mathbf{2 4}$	End gasket	NBR	Dust-protected option only
$\mathbf{2 5}$	Scraper	NBR	Dust-protected option only/Rod
$\mathbf{2 6}$	Cover	Synthetic resin	-
$\mathbf{2 7}$	Return guide	Synthetic resin	-
$\mathbf{2 8}$	Scraper	Stainless steel + NBR	Linear guide
$\mathbf{2 9}$	Steel ball	Special steel	-
$\mathbf{3 0}$	Lock	-	With lock only

Replacement Parts/Belt

Model	Order no.
LESH25 \square	LE-D-1-3

Replacement Parts/Grease Pack

Applied portion	Order no.
Guide unit	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

LESH Series

Battery-less Absolute (Step Motor 24 VDC)

Construction: In-line Motor Type/D Type

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Motor	-	-
$\mathbf{2}$	Body	Aluminum alloy	Anodized
$\mathbf{3}$	Table	Stainless steel	Heattreament + Electroess nickel plating
$\mathbf{4}$	Guide block	Stainless steel	Heat treatment
$\mathbf{5}$	Lead screw	Stainless steel	Heat treatment + Special treatment
$\mathbf{6}$	End plate	Aluminum alloy	Anodized
$\mathbf{7}$	Motor flange	Aluminum alloy	Anodized
$\mathbf{8}$	Motor cover	Aluminum alloy	Anodized
$\mathbf{9}$	End cover	Aluminum alloy	Anodized
$\mathbf{1 0}$	Motor end cover	Aluminum alloy	Anodized
$\mathbf{1 1}$	Rod	Stainless steel	-
		Structural steel	Electroless nickel plating
$\mathbf{1 2}$	Bearing stopper	Brass	Electroless nickel plating
		Structural steel	Electroless nickel plating
$\mathbf{1 3}$	Socket	Aluminum alloy	-
$\mathbf{1 4}$	Hub (Lead screw side)	Aluminum alloy	-
$\mathbf{1 5}$	Hub (Motor side)	Stainless steel	LESH25D \square only
$\mathbf{1 6}$	Spacer	NBR	-
$\mathbf{1 7}$	Grommet	NBR	-
$\mathbf{1 8}$	Spider	Synthetic resin	-
$\mathbf{1 9}$	Cover	Synthetic resin	-
$\mathbf{2 0}$	Return guide	Stainless steel + NBR	Linear guide
$\mathbf{2 1}$	Scraper		

No.	Description	Material	Note
$\mathbf{2 2}$	Steel ball	Special steel	-
23	Bearing	-	-
24	Sim ring	Structural steel	-
25	Masking tape	-	-
26	Scraper	NBR	Dust-protected option only/ Rod
27	Lock	-	With lock only
28	Side holder	Aluminum alloy	Anodized

Optional Parts/Side Holder

Model	Order no.
LESH25D	LE-D-3-3

Replacement Parts/Grease Pack

Applied portion	Order no.
Guide unit	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

Battery-less Absolute Encoder Type
 Slide Table/High Rigidity Type
 Battery-less Absolute (Step Motor 24 VDC)

Dimensions: Basic Type/R Type

LESH Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions: Symmetrical Type/L Type

LESH25LE

Model	C	D	F	G	J	K	M	N
LESH25LE \square-50 $\square \square \square \square \square \square \square$	75	4	80	2	80	143	168	132
LESH25LE $\square-100 \square \square-\square \square \square \square \square$	48	8	44	4	88	207	232	196
LESH25LE \square-150 $\square \square-\square \square \square \square \square$	65	8	66	4	132	285	310	274

*1 This is the range within which the table can move when it returns to origin. Make sure workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction.
Use screws that are between the maximum and minimum screw-in depths in length.
*5 Secure the motor cable and lock cable so that the cables are not repeatedly bent.

Battery-less Absolute Encoder Type
 Slide Table/High Rigidity Type
 Battery-less Absolute (Step Motor 24 VDC)

Dimensions: In-line Motor Type/D Type

LESH Series

Battery-less Absolute (Step Motor 24 VDC)

Side Holder (In-line Motor Type/D Type)

$[\mathrm{mm}]$							
Part no.*1	A	B	D	E	F	G	Applicable model
LE-D-3-3	81	99	12	6.6	30	49	LESH25DE

[^4]
Battery-less Absolute Encoder Type

Gripper

Selection Procedure

Step 1 Check the gripping force.

Check the
conditions.
:---:
Select the model from
gripping force graph.
:---:
pushing speed.

Example

Workpiece mass: 0.5 kg

Guidelines for the selection of the gripper

 with respect to workpiece mass- Although conditions differ according to the workpiece shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 10 to 20 times*1 the workpiece weight, or more.
*1 For details, refer to the model selection illustration.
- If high acceleration or impact forces are encountered during motion, a further margin of safety should be considered.
Example) When it is desired to set the gripping force at 20 times or more above the workpiece weight.
Required gripping force
$=0.5 \mathrm{~kg} \times 20 \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \approx 98 \mathrm{~N}$ or more

Pushing force: 100\%

Gripping point distance: 30 mm

Pushing speed: $20 \mathrm{~mm} / \mathrm{s}$

Calculation of required gripping force

When gripping a workpiece as in the figure to the left, and with the following definitions, F: Gripping force [N]
μ : Coefficient of friction between the attachments and the workpiece
m : Workpiece mass [kg]
g : Gravitational acceleration ($=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
mg : Workpiece weight [N]
the conditions under which the workpiece will not drop are
$2 \times \mu \mathrm{F}>\mathrm{mg}$
$\overline{\bar{L}}$
and therefore, $\mathbf{F}>\frac{\mathbf{m g}}{\mathbf{2 \times \mu}}$
With "a" representing the margin, " F " is determined by the following formula:

$$
\mathbf{F}=\frac{\mathrm{mg}}{2 \mathbf{x} \mu} \times a
$$

"Gripping force at least $\mathbf{1 0}$ to $\mathbf{2 0}$ times the workpiece weight"

- The "10 to 20 times or more of the workpiece weight" recommended by SMC is calculated with a margin of "a" $=4$, which allows for impacts that occur during normal transportation, etc.

When $\mu=\mathbf{0 . 2}$	When $\mu=\mathbf{0 . 1}$
$\mathbf{F}=\frac{\mathbf{m g}}{\mathbf{2 \times 0 . 2}} \times \mathbf{4}=\mathbf{1 0 \times \mathbf { ~ m g }}$	$\mathbf{F}=\frac{\mathbf{m g}}{\mathbf{2 \times 0 . 1}} \times \mathbf{4}=\mathbf{2 0 \times 1 \mathrm { mg }}$
$10 \times$ Workpiece weight	$20 \times$ Workpiece weight

When the LEHF32 is selected.

- Gripping force can be found to be 108 N from the intersection point of gripping point distance $L=30$ mm and pushing force of 100%.
- Gripping force is 22 times greater than the workpiece weight, and therefore satisfies a gripping force setting value of 20 times or more.

- Pushing speed is satisfied at the point where 100% of the pushing force and $20 \mathrm{~mm} / \mathrm{s}$ of the pushing speed cross.
* Confirm the pushing speed range from the determined pushing force [\%].
<Reference> Coefficient of friction μ (depends on the operating environment, contact pressure, etc.)
Coefficient of friction μ Attachment - Material of workpieces (guideline)

0.1	Metal (surface roughness Rz3.2 or less)
0.2	Metal
0.2 or more	Rubber, Resin, etc.

* - Even in cases where the coefficient of friction is greater than $\mu=0.2$, for reasons of safety, select a gripping force which is at least 10 to 20 times greater than the workpiece weight, as recommended by SMC.
- If high acceleration or impact forces are encountered during motion, a further margin should be considered.

Selection Procedure

Step 1 Check the gripping force：LEHF Series

－Indication of gripping force
Gripping force shown in the graphs below is expressed as＂F＂，which is the gripping force of one finger，when both fingers and attachments are in full contact with the workpiece as shown in the figure below．
－Set the workpiece gripping point＂L＂so that it is within the range shown in the figure below．

Internal Gripping State

LEHF32

LEHF40

＊Pushing force is one of the values of step data that is input into the controller．

Selection of Pushing Speed

－Set the［Pushing force］and the［Trigger LV］within the range shown in the figure below．

LEHF Series

Battery-less Absolute (Step Motor 24 VDC)

Selection Procedure

Step 2 Check the gripping point and overhang: LEHF Series

- Decide the gripping position of the workpiece so that the amount of overhang " H " stays within the range shown in the figure below.
- If the gripping position is out of the limit, it may shorten the life of the electric gripper.

[^5]
Selection Procedure

Step 3 Check the external force on fingers: LEHF Series

H, L: Distance to the point at which the load is applied [mm]

Model	Allowable vertical load Fv [N]	Static allowable moment		
		Pitch moment: Mp [N•m]	Yaw moment: My [N•m]	Roll moment: Mr [N•m]
LEHF32EK2- \square		1.4	1.4	2.8
LEHF40EK2- \square	294	2	2	4

* Values for load in the table indicate static values.

Calculation of allowable external force (when moment load is applied)	Calculation example
$\text { Allowable load } \mathrm{F}[\mathrm{~N}]=\frac{\mathbf{M} \text { (Static allowable moment) }[\mathrm{N} \cdot \mathrm{~m}]}{\mathrm{L} \times 10^{-3} * 1}$	When a static load of $f=10 \mathrm{~N}$ is operating, which applies pitch moment to point $\mathrm{L}=30 \mathrm{~mm}$ from the LEHF20K2- \square guide. Therefore, it can be used. $\begin{aligned} & \text { Allowable load } \mathrm{F}=\frac{0.68}{30 \times 10^{-3}} \\ &=22.7[\mathrm{~N}] \\ & \text { Load } \mathrm{f}=10[\mathrm{~N}]<22.7[\mathrm{~N}] \end{aligned}$

Battery-less Absolute Encoder Type

For details on controllers, refer to the next page.

(3) Lead
K
(4) 2-finger type
5 Stroke [mm]

Stroke/both sides		Size
Basic	Long stroke	
$\mathbf{3 2}$	$\mathbf{6 4}$	32
$\mathbf{4 0}$	$\mathbf{8 0}$	40

Motor cable entry

(7) Actuator cable type/length

Robotic cable

Nil	None	R8	$8^{* 1}$
R1	1.5	RA	$10^{* 1}$
R3	3	RB	$15^{* 1}$
R5	5	RC	$20^{* 1}$

Battery-less Absolute Encoder Type
 Gripper LEHF Series
 Battery-less Absolute (Step Motor 24 VDC)

*1 Produced upon receipt of order
*2 The DIN rail is not included. It must be ordered separately.
*3 Select "Nil" for anything other than DeviceNet ${ }^{\text {TM }}$, CC-Link, or parallel input.
Select "Nil," "S," or "T" for DeviceNet ${ }^{\text {TM }}$ or CC-Link.
Select "Nil," "1," "3," or " 5 " for parallel input.

\triangle Caution

[CE-compliant products]

EMC compliance was tested by combining the electric actuator LEH series and the controller JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
[Precautions relating to differences in controller versions]
When the JXC series is to be used in combination with the battery-less absolute encoder, use a controller that is version V3.4 or S3.4 or higher. For details, refer to pages 179 and 180.
[UL certification]
The JXC series controllers used in combination with electric actuators are UL certified.

The actuator and controller are sold as a package.

Confirm that the combination of the controller and actuator is correct.
<Check the following before use.>
(1) Check the actuator label for the model number. This number should match that of the controller.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

LEHF32EK2-64

* Refer to the Operation Manual for using the products.

Please download it via our website: https://www.smcworld.com

Type	Step data input type	EtherCAT® ${ }^{\circledR}$ direct input type	EtherNet/IPTM direct input type	PROFINET direct input type	DeviceNet ${ }^{\text {TM }}$ direct input type	IO-Link direct input type	CC-Link direct input type
Series	$\begin{aligned} & \text { JXC51 } \\ & \text { JXC61 } \end{aligned}$	JXCE1	JXC91	JXCP1	JXCD1	JXCL1	JXCM1
Features	Parallel I/O	EtherCAT® ${ }^{\circledR}$ direct input	EtherNet/IPTM direct input	PROFINET direct input	DeviceNet ${ }^{\text {TM }}$ direct input	IO-Link direct input	CC-Link direct input
Compatible motor	Battery-less absolute (Step motor 24 VDC)						
Max. number of step data	64 points						
Power supply voltage	24 VDC						
Reference page	165	172					

Specifications

Battery-less Absolute (Step Motor 24 VDC)

Model			LEHF32E	LEHF40E
	Open and close stroke/both sides [mm]	Basic	32	40
		Long stroke	64	80
	Lead [mm]		$\begin{gathered} 70 / 16 \\ (4.375) \end{gathered}$	$\begin{gathered} 70 / 16 \\ (4.375) \end{gathered}$
	Gripping force [N$]^{* 1 * 3}$		48 to 120	72 to 180
	Open and close speed/Pushing speed [mm/s]*2 *3		5 to 100/5 to 30	
	Drive method		Slide screw + Belt	
	Finger guide type		Linear guide (No circulation)	
	Repeated length measurement accuracy [mm]*4		± 0.05	
	Finger backlash/one side [mm]*5		0.5 or less	
	Repeatability [mm]*6		± 0.05	
	Positioning repeatability/one side [mm]		± 0.1	
	Lost motion/one side [mm]*7		0.3 or less	
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{* 8}$		150/30	
	Max. operating frequency [C.P.M]		60	
	Operating temperature range [${ }^{\mathrm{C}}$]		5 to 40	
	Operating humidity range [\%RH]		90 or less (No condensation)	
	Weight [g]	Basic	1625	1980
		Long stroke	1970	2500
	Motor size		$\square 42$	
	Motor type		Battery-less absolute (Step motor 24 VDC)	
	Encoder		Battery-less absolute	
	Power supply voltage [V]		24 VDC $\pm 10 \%$	
	Power [W]*9		Max. power 57	Max. power 61

*1 Gripping force should be from 10 to 20 times the workpiece weight. Moving force should be 150% when releasing the workpiece. Gripping force accuracy should be $\pm 20 \%$ (F.S.) for LEHF32/40. Gripping with heavy attachment and fast pushing speed, may not reach the product specification. In this case, decrease the weight and lower the pushing speed.
*2 Pushing speed should be set within the range during pushing (gripping) operations. Otherwise, it may cause a malfunction. The open/close speed and pushing speed are for both fingers. The speed for one finger is half this value.
*3 The speed and force may change depending on the cable length, load, and mounting conditions.
Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
*4 Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position.
*5 There will be no influence of backlash during pushing (gripping) operations. Make the stroke longer for the amount of backlash when opening.
*6 Repeatability means the variation of the gripping position (workpiece position) when gripping operations are repeatedly performed by the same sequence for the same workpiece.
*7 A reference value for correcting errors in reciprocal operation which occur during positioning operations
*8 Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the gripper in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the gripper in the initial state.
*9 Indicates the max. power during operation (including the controller)
This value can be used for the selection of the power supply.

How to Mount

a) When using the thread on the body

b) When using the thread on the mounting plate
c) When using the thread on the back of the body

Battery－less Absolute Encoder Type
 Gripper LEHF Series
 Battery－less Absolute（Step Motor 24 VDC）

Construction

LEHF Series

Component Parts

No．	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Side plate A	Aluminum alloy	Anodized
3	Side plate B	Aluminum alloy	Anodized
4	Slide shaft	Stainless steel	Heat treatment＋Special treatment
5	Slide bushing	Stainless steel	
6	Slide nut	Stainless steel	Heat treatment＋Special treatment
7	Slide nut	Stainless steel	Heat treatment＋Special treatment
8	Fixed plate	Stainless steel	
9	Motor plate	Carbon steel	
10	Pulley A	Aluminum alloy	
11	Pulley B	Aluminum alloy	
12	Bearing stopper	NBR	
13	Rubber bushing	-	
14	Bearing	-	
15	Belt	-	
16	Flange	-	
17	Finger assembly		
18	Motor		

LEHF Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions

LEHF32EK2-32: Basic

*1 This is the range within which the fingers can move when it returns to origin. Make sure workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
*2 Secure the motor cable so that the cable is not repeatedly bent

LEHF32EK2-64: Long Stroke

(Motor cable entry: (Motor cable entry:

Manual override screw

*1 This is the range within which the fingers can move when it returns to origin. Make sure workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
*2 Secure the motor cable so that the cable is not repeatedly bent.

Battery-less Absolute Encoder Type
 Gripper LEHF Series
 Battery-less Absolute (Step Motor 24 VDC)

Dimensions

*1 This is the range within which the fingers can move when it returns to origin. Make sure workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
*2 Secure the motor cable so that the cable is not repeatedly bent.

LEHF40EK2-80: Long Stroke

Battery-less Absolute Encoder Type Rotary Table

Model Selection

Selection Procedure

Operating
conditions

Step 1
Moment of inertia-Angular acceleration/deceleration

(1) Calculation of moment of inertia
(2) Moment of inertia-Check the angular acceleration/deceleration Select a model based on the moment of inertia and angular acceleration and deceleration while referencing the (Moment of Inertia-Angular
Acceleration/Deceleration graph).

Formula

$\mathrm{I}=\mathrm{m} \times\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) / 12+\mathrm{m} \times \mathrm{H}^{2}$

Selection example

$\mathrm{I}=6.0 \times\left(0.15^{2}+0.08^{2}\right) / 12+6.0 \times 0.04^{2}$ $=0.0241 \mathrm{~kg} \cdot \mathrm{~m}^{2}$

Step 2 Necessary torque

Formula

Effective torque \geq Ts
Effective torque \geq Tf $\times 1.5$
Effective torque $\geq \mathrm{Ta} \times 1.5$

Selection example

Inertial load: Ta
Ta $\times 1.5=I \times \dot{\omega} \times 2 \pi / 360 \times 1.5$

$$
\begin{aligned}
& =0.0241 \times 1000 \times 0.0175 \times 1.5 \\
& =0.63 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Load type

- Static load: Ts
- Resistance load: Tf
- Inertial load: Ta
(2) Check the effective torque Confirm whether it is possible to control the speed based on the effective torque corresponding with the angular speed while referencing the (Effective Torque-Angular Speed graph).

Step 3 Allowable load

(1) Check the allowable load
• Radial load
- Thrust load
- Moment

Step 4 Rotation time

Formula

Allowable thrust load $\geq \mathrm{mx} 9.8$
Allowable moment $\geq \mathrm{mx} 9.8 \times \mathrm{H}$

Selection example

- Thrust load
$6.0 \times 9.8=58.8 \mathrm{~N}$ < Allowable load OK
- Allowable moment
$6.0 \times 9.8 \times 0.04$
$=2.352 \mathrm{~N} \cdot \mathrm{~m}$ < Allowable moment OK

(1) Calculation of cycle time (rotation time)	
θ : Rotation angle [${ }^{\circ}$] ω : Angular speed [$\%$ s] $\dot{\omega} 1$: Angular acceleration [${ }^{2} \mathrm{~s}^{2}$] $\dot{\omega}$ 2: Angular deceleration [$\left[/ \mathrm{s}^{2}\right.$]	T1: Acceleration time [s]... Time until reaching the set speed T2: Constant speed time $[\mathrm{s}] \cdots$ Time while the actuator is operating at a constant speed T3: Deceleration time [s]...Time from the beginning of the constant speed operation to stop T4: Settling time [s] ... Time until positioning is completed

Formula

Angular acceleration time $\quad T 1=\omega / \omega \dot{1}$
Angular deceleration time $\quad \mathrm{T} 3=\omega / \dot{\omega} 2$
Constant speed time T2 $=\{\theta-0.5 \times \omega \times(\mathrm{T} 1+\mathrm{T} 3)\} / \omega$
Settling time $\quad \mathrm{T} 4=0.2$ [s]
Cycle time $\quad \mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4$

Selection example

- Angular acceleration time T1 $=420 / 1000=0.42 \mathrm{~s}$
- Angular deceleration time T3 $=420 / 1000=0.42 \mathrm{~s}$
- Constant speed time
$\mathrm{T} 2=\{180-0.5 \times 420 \times(0.42+0.42)\} / 420$ $=0.009 \mathrm{~s}$
- Cycle time

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.42+0.009+0.42+0.2 \\
& =1.049[\mathrm{~s}]
\end{aligned}
$$

Formulas for Moment of Inertia（Calculation of moment of inertia I）
I：Moment of inertia［kg•m²］m：Load mass［kg］

1．Thin bar
Position of rotation shaft：
Perpendicular to a bar
through one end

5．Thin rectangular plate （cuboid）
Position of the rotation shaft：Passes through the center of gravity of the plate and perpendicular to the plate．（The same applies to thicker cuboids．）

9．When a load is mounted on the end of the lever

$$
I=m_{1} \cdot \frac{a_{1}^{2}}{3}+m_{2} \cdot a_{2}^{2}+K
$$

（Ex．）Refer to 7 when the shape of m_{2} is spherical．
$K=m_{2} \cdot \frac{2 r^{2}}{5}$

2．Thin bar
Position of rotation shaft： Passes through the center of gravity of the bar．

3．Thin rectangular plate
（cuboid）
Position of rotation shaft：Passes
through the center of gravity of a plate．

6．Cylindrical shape （including a thin disk）
Position of rotation shaft： Center axis

10．Gear transmission

1．Find the moment of inertia I_{B} for the rotation of shaft（B）．
2．Then，replace the moment of inertia I_{B} around the shaft（ A ）by I_{A} ，

$$
I_{A}=\left(\frac{\mathbf{a}}{\mathbf{b}}\right)^{2} \cdot I_{B}
$$

8．Thin disk
（mounted vertically）
Position of rotation shaft： Diameter
 （cuboid）
Position of rotation shaft：Perpendicular to the plate and passes through one end． （The same applies to thicker cuboids．）

7．Sphere
Position of rotation shaft： Diameter

Load type

Load type		
Static load：Ts	Resistance load：Tf	Inertial load：Ta
Only pressing force is necessary．（e．g．for clamping）	Gravity or friction force is applied to rotating direction．	Rotate the load with inertia．
	Gravity is applied． Friction force is applied．	Center of rotation and center of Rotation shaft is gravity of the load are concentric． vertical（up and down）．
$T s=F \cdot L$ Ts：Static load［N•m］ F ：Clamping force［ N ］ L ：Distance from the rotation center to the clamping position［m］		$\begin{aligned} & \mathrm{Ta}=\mathrm{I} \cdot \dot{\omega} \cdot \mathbf{2} \pi / 360 \\ & (\mathrm{Ta}=\mathrm{I} \cdot \dot{\omega} \cdot \mathbf{0 . 0 1 7 5)} \\ & \text { Ta: Inertial load }[\mathrm{N} \cdot \mathrm{~m}] \\ & \mathrm{I}: \text { Moment of inertia }\left[\mathrm{kg} \cdot \mathrm{~m}^{2}\right] \\ & \dot{\omega}: \text { Angular acceleration } / \text { deceleration }\left[{ }^{[} / \mathrm{s}^{2}\right] \\ & \omega: \text { Angular speed }[\% \mathrm{~s}] \end{aligned}$
Necessary torque： $\mathbf{T}=\mathbf{T s}$	Necessary torque： $\mathbf{T}=\mathbf{T f} \times 1.5 * 1$	Necessary torque： $\mathbf{T}=\mathbf{T a \times 1 . 5 * 1}$

－Resistance load：Gravity or friction force is applied to rotating direction．
Ex．1）Rotation shaft is horizontal（lateral），and the rotation center and the center of gravity of the load are not concentric．
Ex．2）Load moves by sliding on the floor．
＊The total of resistance load and inertial load is the necessary torque． $\mathbf{T}=(\mathbf{T f}+\mathbf{T a}) \times 1.5$
－Not resistance load：Neither gravity or friction force is applied to rotating direction．
Ex．1）Rotation shaft is vertical（up and down）．
Ex．2）Rotation shaft is horizontal（lateral），and rotation center and the center of gravity of the load are concentric．
＊Necessary torque is inertial load only．T＝Tax 1.5 ＊1 To adjust the speed，margin is necessary for Tf and Ta

LER Series

Battery-less Absolute (Step Motor 24 VDC)

Battery-less Absolute (Step Motor 24 VDC)

Moment of Inertia-Angular Acceleration/Deceleration
LER50

Effective Torque-Angular Speed
LER50

Allowable Load

Table Displacement (Reference Value)

- Displacement at point A when a load is applied to point A 100 mm away from the rotation center

LER $\square 50$

Deflection Accuracy: Displacement at 180° Rotation (Guide)

Measured part	LER (Basic type)	LERH (High-precision type)
Deflection on the top of the table	0.1	0.03
Deflection on the external surface of the table	0.1	0.03

JXC $\square 1$ JXC51/61 LER LEHF LESH LES LESYH LEYG LEY LEFB LEFS

For details on controllers, refer to the next page.
1 Table accuracy

Nil	Basic type
\mathbf{H}	High-precision type

(2) Size
50
(3) Motor type

E	Battery-less absolute (Step motor 24 VDC)

4 $\mathbf{M a x}$. rotating torque $[\mathrm{N} \cdot \mathrm{m}]$
\mathbf{K}
High torque
\mathbf{J}

$\mathbf{5}$ Rotation angle [${ }^{\circ}$]
$\mathbf{N i l}$
$\mathbf{2}$
$\mathbf{3 2 0}$
$\mathbf{3}$

6 Motor cable entry

(7) Actuator cable type/length

Robotic cable

Nil	None	R8	$8^{* 1}$
R1	1.5	RA	$10^{* 1}$
R3	3	RB	$15^{* 1}$
R5	5	RC	$20^{* 1}$

*1 Produced upon receipt of order
*2 The DIN rail is not included. It must be ordered separately.
*3 Select "Nil" for anything other than DeviceNet ${ }^{\text {TM }}$, CC-Link, or parallel input.
Select "Nil," "S," or "T" for DeviceNet ${ }^{\text {TM }}$ or CC-Link.
Select "Nil," "1," "3," or " 5 " for parallel input.

\triangle Caution

[CE-compliant products]

EMC compliance was tested by combining the electric actuator LER series and the controller JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
[Precautions relating to differences in controller versions]
When the JXC series is to be used in combination with the battery-less absolute encoder, use a controller that is version V3.4 or S3.4 or higher. For details, refer to pages 179 and 180.
[UL certification]
The JXC series controllers used in combination with electric actuators are UL certified.

The actuator and controller are sold as a package.

Confirm that the combination of the controller and actuator is correct.
<Check the following before use.>
(1) Check the actuator label for the model number. This number should match that of the controller.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

* Refer to the Operation Manual for using the products.

Please download it via our website: https://www.smcworld.com

| | Step data
 input type | EtherCAT®
 direct input
 type | EtherNet/IPTM
 direct input
 type | PROFINET
 direct input
 type | DeviceNet ${ }^{\text {TM }}$
 direct input
 type |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Type | | | | | |

LER Series

Specifications

*1 Pushing force accuracy is LER50: $\pm 20 \%$ (F.S.).
*2 The angular acceleration, angular deceleration, and angular speed may fluctuate due to variations in the moment of inertia.
Refer to the "Moment of Inertia-Angular Acceleration/ Deceleration, Effective Torque-Angular Speed" graphs on page 157 for confirmation.
*3 The speed and force may change depending on the cable length, load, and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20\%)
4 A reference value for correcting errors in reciprocal operation
*5 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*6 Indicates the max. power during operation (including the controller)
This value can be used for the selection of the power supply.

Battery-less Absolute (Step Motor 24 VDC)

Table Rotation Angle Range

* The figures show the origin position for each actuator.
*1 This is the range within which the table can move when it returns to origin.
Make sure workpieces mounted on the table do not interfere with other workpieces or the facilities around the table
2 Position after returning to origin. The position varies depending on whether there is an external stopper.
*3 [] for when the direction of return to origin has changed

Basic type

External stopper type

High－precision type

Component Parts

No．	Description	Material	Note
$\mathbf{2 2}$	Table	Aluminum alloy	Anodized
$\mathbf{2 3}$	Arm	Carbon steel	Heat treatment＋Electroless nickel treated
$\mathbf{2 4}$	Holder	Aluminum alloy	Anodized
$\mathbf{2 5}$	Adjuster bolt	Carbon steel	Heat treatment＋Chromating

Component Parts

No．	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Side plate A	Aluminum alloy	Anodized
3	Side plate B	Aluminum alloy	Anodized
4	Worm screw	Stainless steel	Heat treatment + Special treatment
5	Worm wheel	Stainless steel	Heat treatment＋Special treatment
6	Bearing cover	Aluminum alloy	Anodized
7	Table	Aluminum alloy	
8	Joint	Stainless steel	
9	Bearing holder	Alloy steel	
10	Bearing stopper	Alloy steel	
11	Origin bolt	Carbon steel	
12	Pulley A	Aluminum alloy	
13	Pulley B	NBR	
14	Grommet	Carbon steel	
15	Motor plate	-	
16	Basic type	Deep groove ball bearing	
	High－ precision type	Special ball bearing	-
17	Deep groove ball bearing	-	
18	Deep groove ball bearing	-	
19	Deep groove ball bearing	-	
20	Belt	-	
21	Motor		

LER Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions

LER $\square \mathbf{5 0 E} \square$ (Rotation angle: 320°)

(R)

Dimensions		$[\mathrm{mm}]$
Model	H1	H2
LER50	16	5.5
LERH50	26	15.5

LER $\square 50 \mathrm{E}-2$ (Rotation angle: $\mathbf{1 8 0}^{\circ}$) LER $\square 50 \mathrm{E}-3$ (Rotation angle: 90°)

Controllers JXC \square Series

Battery-less Absolute (Step Motor 24 VDC)
JXC51/61 Series

Battery-less Absolute (Step Molor 24 VDC)
JXC \square Series

Devicei'et

Etheri'et/IP

IO-Link

CC-Link

Controller (Step Data Input Type)

2 Mounting

$\mathbf{7}$	Screw mounting
$\mathbf{8}^{* 1}$	DIN rail

*1 The DIN rail is not included. It must be ordered separately. (Refer to page 166.)
3) I/O cable length [m]

Nil	None
$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5

Actuator part number

Without cable specifications and actuator options Example: Enter "LEFS25EB-100" for the LEFS25EB 100B-R1 $\square \square$.

BC-E Blank controller*1
*1 Requires dedicated software (JXC-BCW)

The controller is sold as single unit after the compatible actuator is set.

Confirm that the combination of the controller and actuator is correct.
<Check the following before use.>
(1) Check the actuator label for the model number. This number should match that of the controller.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

* Refer to the operation manual for using the products. Please download it via our website: https://www.smcworld.com

Precautions for blank controllers (JXC $\square 1 \square \square$-BC-E)

A blank controller is a controller to which the customer can write the data of the actuator it is to be combined and used with. Use the dedicated software (JXCBCW) for data writing.

- The applicable electric actuator size range differs depending on the controller version. Refer to pages 179 and 180 for how to confirm the controller version and applicable actuator sizes.
- Please download the dedicated software (JXC-BCW) via our website.
- Order the communication cable for controller setting (JXC-W2A-C) and USB cable (LEC-W2-U) separately to use this software.

SMC website

https://www.smcworld.com

Specifications

Model	JXC51 JXC61
Compatible motor	Step motor (Servo/24 VDC)

*1 For the LEY40 and LEYG40 series, if the vertical work load is greater than the weight listed below, use the controller at an ambient temperature of $40^{\circ} \mathrm{C}$ or less.

Series	Weight $[\mathrm{kg}]$	Series	Weight $[\mathrm{kg}]$
LEY40 \square EA	9	LEYG40 \square EA	7
LEY40 \square EB	19	LEYG40 \square EB	17
LEY40 \square EC	38	LEYG40 \square EC	36

How to Mount

* When size 25 or more of the LE series are used, the space between the controllers should be 10 mm or more.

DIN rail

AXT100-DR- \square
 AXTIOO-DR-■

* For \square, enter a number from the No. line in the table below.

Refer to the dimension drawings on page 167 for the mounting dimensions.

L Dimensions [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

DIN rail mounting adapter

LEC-D0 (with 2 mounting screws)

This should be used when the DIN rail mounting adapter is mounted onto a screw mounting type controller afterward.

Wiring Example 1

Parallel I／O Connector＊When you connect a PLC to the parallel I／O connector，use the I／O cable（LEC－CN5－\square ）． ＊The wiring changes depending on the type of parallel I／O（NPN or PNP）．
Wiring diagram

JXC51
$\square \square-\square$（NPN）

Input Signal

Name	Details
COM +	Connects the power supply 24 V for input／output signal
COM－	Connects the power supply 0 V for input／output signal
IN0 to IN5	Step data specified bit no． （Input is instructed by combining IN0 to 5．）
SETUP	Instruction to return to origin
HOLD	Temporarily stops operation
DRIVE	Instruction to drive
RESET	Resets alarm and interrupts operation
SVON	Servo ON instruction

JXC61 $\square \square-\square$（PNP）

Output Signal

Name	Details
OUT0 to OUT5	Outputs the step data no．during operation
BUSY	Outputs when the actuator is moving
AREA	Outputs within the step data area output setting range
SETON	Outputs when returning to origin
INP	Outputs when target position or target force is reached （Turns on when the positioning or pushing is completed．）
SVRE	Outputs when servo is on
＊ESTOP＊1	OFF when EMG stop is instructed
＊ALARM＊1	OFF when alarm is generated

＊1 Signal of negative－logic circuit（N．C．）

JXC51/61 Series

Step Data Setting

1. Step data setting for positioning

In this setting, the actuator moves toward and stops at the target position.
The following diagram shows the setting items and operation. The setting items and set values for this operation are stated below.

© : Need to be set.

O: Need to be set. Step Data (Positioning) : Need to be adjusted as required. -: Setting is not required.		
Necessity	Item	Details
©	Movement MOD	When the absolute position is required, set Absolute. When the relative position is required, set Relative.
\bigcirc	Speed	Transfer speed to the target position
\bigcirc	Position	Target position
\bigcirc	Acceleration	Parameter which defines how rapidly the actuator reaches the speed set. The higher the set value, the faster it reaches the speed set.
\bigcirc	Deceleration	Parameter which defines how rapidly the actuator comes to stop. The higher the set value, the quicker it stops.
©	Pushing force	Set 0. (If values 1 to 100 are set, the operation will be changed to the pushing operation.)
-	Trigger LV	Setting is not required.
-	Pushing speed	Setting is not required.
\bigcirc	Moving force	Max. torque during the positioning operation (No specific change is required.)
\bigcirc	Area 1, Area 2	Condition that turns on the AREA output signal.
\bigcirc	In position	Condition that turns on the INP output signal. When the actuator enters the range of [in position], the INP output signal turns on. (It is unnecessary to change this from the initial value.) When it is necessary to output the arrival signal before the operation is completed, make the value larger.

2. Step data setting for pushing

The actuator moves toward the pushing start position, and when it reaches that position, it starts pushing with the set force or less.
The following diagram shows the setting items and operation. The setting items and set values for this operation are stated below.

Step Data (Pushing)		© : Need to be set. O : Need to be adjusted as required.
Necessity	Item	Details
\bigcirc	Movement MOD	When the absolute position is required, set Absolute. When the relative position is required, set Relative.
\bigcirc	Speed	Transfer speed to the pushing start position
\bigcirc	Position	Pushing start position
0	Acceleration	Parameter which defines how rapidly the actuator reaches the speed set. The higher the set value, the faster it reaches the speed set.
\bigcirc	Deceleration	Parameter which defines how rapidly the actuator comes to stop. The higher the set value, the quicker it stops.
\bigcirc	Pushing force	Pushing force ratio is defined. The setting range differs depending on the electric actuator type. Refer to the operation manual for the electric actuator.
\bigcirc	Trigger LV	Condition that turns on the INP output signal. The INP output signal turns on when the generated force exceeds the value. Trigger level should be the pushing force or less.
\bigcirc	Pushing speed	Pushing speed during pushing. When the speed is set fast, the electric actuator and workpieces might be damaged due to the impact when they hit the end, so this set value should be smaller. Refer to the operation manual for the electric actuator.
\bigcirc	Moving force	Max. torque during the positioning operation (No specific change is required.)
\bigcirc	Area 1, Area 2	Condition that turns on the AREA output signal.
\bigcirc	In position	Transfer distance during pushing. If the transferred distance exceeds the setting, it stops even if it is not pushing. If the transfer distance is exceeded, the INP output signal will not turn on.

Signal Timing

Return to Origin

JXC51/61 Series

Options

Communication cable for controller setting

(1) Communication cable JXC-W2A-C

* It can be connected to the controller directly.
(2) USB cable LEC-W2-U

(3) Controller setting kit JXC-W2A

A set which includes a communication cable (JXC-W2A-C) and a USB cable (LEC-W2-U)
<Controller setting software/USB driver>

- Controller setting software
- USB driver (For JXC-W2A-C)

Download from SMC's website:
https://www.smcworld.com

Hardware Requirements

OS	Windows $^{\circledR} 7$, Windows $^{\circledR} 8.1$, Windows $^{\circledR} 10$
Communication interface	USB 1.1 or USB 2.0 ports
Display	1024×768 or more

* Windows ${ }^{\circledR 7}$, Windows ${ }^{\circledR} 8.1$, and Windows ${ }^{\circledR 1} 10$ are registered trademarks of Microsoft Corporation in the United States.

Conversion cable P5062-5 (Cable length: $\mathbf{3 0 0} \mathbf{~ m m}$)

* To connect the teaching box (LEC-T1-3 $\square \mathrm{G} \square$) or controller setting kit (LEC-W2 \square) to the controller, a conversion cable is required.

I/O cable

Cable length (L) [m]

$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5

Controller side

Power supply plug JXC-CPW

* The power supply plug is an accessory. <Applicable cable size> AWG20 ($0.5 \mathrm{~mm}^{2}$), cover diameter 2.0 mm or less
(6) (5) (4)
(1) C 24 V
(4) OV
(3) (2) (1)
(2) $M 24 V$
(5) N.C.
(3) EMG
(6) LK RLS

Power supply plug

Terminal name	Function	Details
0V	Common supply (-)	The M24V terminal, C24V terminal, EMG terminal, and LK RLS terminal are common (-).
M24V	Motor power supply (+)	Motor power supply (+) of the controller
C24V	Control power supply (+)	Control power supply (+) of the controller
EMG	Stop (+)	Connection terminal of the external stop circuit
LK RLS	Lock release (+)	Connection terminal of the lock release switch

* The displayed language can be changed to English or Japanese.

Nil	None
\mathbf{S}	Equipped with enable switch

* Interlock switch for jog and test function
- Stop switch

\mathbf{G}	Equipped with stop switch

Specifications

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range $\left[{ }^{\circ} \mathrm{C}\right]$	5 to 50
Operating humidity range $[\% \mathrm{RH}]$	90 or less (No condensation)
Weight [g]	350 (Except cable)

PLC side

(Terminal no.)				
			$\sqrt{ }$	$\begin{aligned} & \sigma \\ & \infty \\ & 0 \\ & 0 \end{aligned}$
B13 A13	Connector pin no.	Insulation color	Dot mark	Dot color
	A1	Light brown	\square	Black
	A2	Light brown	\square	Red
	A3	Yellow	\square	Black
	A4	Yellow	\square	Red
	A5	Light green	\square	Black
	A6	Light green	\square	Red
	A7	Gray	\square	Black
	A8	Gray	\square	Red
	A9	White	\square	Black
	A10	White	\square	Red
	A11	Light brown	$\square \square$	Black
	A12	Light brown	■ ■	Red
	A13	Yellow	■	Black

Weight

Product no.	Weight [g]
LEC-CN5-1	170
LEC-CN5-3	320
LEC-CN5-5	520

CSMC

Connector pin no.	Insulation color	Dot mark	Dot color
B1	Yellow	■ ■	Red
B2	Light green	■	Black
B3	Light green	$\square \square$	Red
B4	Gray	■	Black
B5	Gray	■ ■	Red
B6	White	$\square \square$	Black
B7	White	■	Red
B8	Light brown	■ ■ ■	Black
B9	Light brown	■■■	Red
B10	Yellow	■ ■ ■	Black
B11	Yellow	■■■	Red
B12	Light green	■ ■	Black
B13	Light green	■ ■ ■	Red
-	Shield		

Step Motor Controller JXCE1/91/P1/D1/L1/M1 Series

*1 Requires dedicated software (JXC-BCW)

LEHF

Confirm that the combination of the controller and actuator is correct.
(1) Check the actuator label for the model number. This number should match that of the controller.

LEFS25EB-400

* Refer to the operation manual for using the products. Please download it via our website: https://www.smcworld.com

Precautions for blank controllers (JXC $\square 1 \square \square$-BC-E)

A blank controller is a controller to which the customer can write the data of the actuator it is to be combined and used with. Use the dedicated software (JXC-BCW) for data writing.

- The applicable electric actuator size range differs depending on the controller version.

Refer to pages 179 and 180 for how to confirm the controller version and applicable actuator sizes.

- Please download the dedicated software (JXC-BCW) via our website.
- Order the controller setting kit (JXC-W2A-C) and USB cable (LEC-W2-U) separately to use this software.

SMC website: https://www.smcworld.com

JXCE1/91/P1/D1/L1/M1 Series

Specifications

Model			JXCE1	JXC91	JXCP1	JXCD1	JXCL1	JXCM1
Network			EtherCAT ${ }^{\text {® }}$	EtherNet/IP ${ }^{\text {TM }}$	PROFINET	DeviceNet ${ }^{\text {TM }}$	IO-Link	CC-Link
Compatible motor			Step motor (Servo/24 VDC)					
Power supply			Power voltage: 24 VDC $\pm 10 \%$					
Current consumption (Controller)			200 mA or less	130 mA or less	200 mA or less	100 mA or less	100 mA or less	100 mA or less
Compatible encoder			Battery-less absolute					
		Protocol	EtherCAT ${ }^{\text {® }}{ }^{\text {2 }}$	EtherNet/IPTM*2	PROFINET*2	DeviceNet ${ }^{\text {TM }}$	IO-Link	CC-Link
	Applicable system	Version*1	Conformance Test Record V.1.2.6	Volume 1 (Edition 3.14) Volume 2 (Edition 1.15)	Specification Version 2.32	Volume 1 (Edition 3.14) Volume 3 (Edition 1.13)	Version 1.1 Port Class A	Ver. 1.10
	Communication speed		$100 \mathrm{Mbps}^{* 2}$	$\begin{aligned} & 10 / 100 \mathrm{Mbps} * 2 \\ & \text { (Automatic } \\ & \text { negotiation) } \end{aligned}$	$100 \mathrm{Mbps*2}$	125/250/500 kbps	$\begin{gathered} 230.4 \mathrm{kbps} \\ \text { (COM3) } \end{gathered}$	$156 \mathrm{kbps}, 625 \mathrm{kbps}$, 2.5 Mbps, 5 Mbps , 10 Mbps
	Configuration file*3		ESI file	EDS file	GSDML file	EDS file	IODD file	CSP+ file
	I/O occupation area		Input 20 bytes Output 36 bytes	Input 36 bytes Output 36 bytes	Input 36 bytes Output 36 bytes	Input 4, 10, 20 bytes Output 4, 12, 20, 36 bytes	Input 14 bytes Output 22 bytes	1 station, 2 stations, 4 stations
	Terminating resistor		Not included					
Memory			EEPROM					
LED indicator			PWR, RUN, ALM, ERR	PWR, ALM, MS, NS	PWR, ALM, SF, BF	PWR, ALM, MS, NS	PWR, ALM, COM	PWR, ALM, L ERR, L RUN
Cable length [m]			Actuator cable: 20 or less					
Cooling system			Natural air cooling					
Operating temperature range [${ }^{\mathrm{C}}$]			0 to 55 (No freezing)*4					
Operating humidity range [\%RH]			90 or less (No condensation)					
Insulation resistance [M 2]			Between all external terminals and the case: 50 (500 VDC)					
Weight [g]			220 (Screw mounting) 240 (DIN rail mounting)	210 (Screw mounting) 230 (DIN rail mounting)	220 (Screw mounting) 240 (DIN rail mounting)	210 (Screw mounting) 230 (DIN rail mounting)	190 (Screw mounting) 210 (DIN rail mounting)	170 (Screw mounting) 190 (DIN rail mounting)

*1 Please note that versions are subject to change.
*2 Use a shielded communication cable with CAT5 or higher for the PROFINET, EtherNet/IP ${ }^{\text {тм }}$, and EtherCAT®
*3 The files can be downloaded from the SMC website.
*4 For the LEY40 and LEYG40 series, if the vertical work load is greater than the weight listed below, use the controller at an ambient temperature of $40^{\circ} \mathrm{C}$ or less.

Series	Weight [kg]	Series	Weight $[\mathrm{kg}]$
LEY40 \square EA	9	LEYG40 \square EA	7
LEY40 \square EB	19	LEYG40 \square EB	17
LEY40 \square EC	38	LEYG40 \square EC	36

Trademark

EtherNet/IP ${ }^{\text {TM }}$ is a trademark of ODVA.
DeviceNet ${ }^{\text {TM }}$ is a trademark of ODVA.
EtherCAT ${ }^{\circledR}$ is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany

Example of Operation Command

In addition to the step data input of 64 points maximum in each communication protocol，the changing of each parameter can be performed in real time via numerical data defined operation． ＊Numerical values other than＂Moving force，＂＂Area 1，＂and＂Area 2＂can be used to perform operation under numerical instructions from JXCL1．
＜Application example＞Movement between 2 points

No．	Movement mode	Speed	Position	Acceleration	Deceleration	Pushing force	Trigger LV	Pushing speed	Moving force	Area 1	Area 2	In position
0	1：Absolute	100	10	3000	3000	0	0	0	100	0	0	0.50
1	1：Absolute	100	100	3000	3000	0	0	0	100	0	0	0.50

＜Step no．defined operation＞

Sequence 1：Servo ON instruction
Sequence 2：Instruction to return to origin
Sequence 3：Specify step data No． 0 to input the DRIVE signal．
Sequence 4：Specify step data No． 1 after the DRIVE signal has been temporarily turned OFF to input the DRIVE signal．

＜Numerical data defined operation＞

Sequence 1：Servo ON instruction
Sequence 2：Instruction to return to origin
Sequence 3：Specify step data No． 0 and turn ON the input instruction flag（position）．Input 10 in the target position．Subsequently the start flag turns ON． Sequence 4：Turn ON step data No． 0 and the input instruction flag（position）to change the target position to 100 while the start flag is ON．

The same operation can be performed with any operation command．

JXCE1/91/P1/D1/L1/M1 Series

Dimensions

Dimensions

JXCL1

L Dimensions [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

JXCE1/91/P1/D1/L1/M1 Series

Options

Communication cable for controller setting

(1) Communication cable JXC-W2A-C

* It can be connected to the controller directly.
(2) USB cable LEC-W2-U

(3) Controller setting kit JXC-W2A

A set which includes a communication cable (JXC-W2A-C) and a USB cable (LEC-W2-U)
<Controller setting software/USB driver>

- Controller setting software
- USB driver (For JXC-W2A-C)

Download from SMC's website:
https://www.smcworld.com

Hardware Requirements

OS	Windows $^{\circledR} 7$, Windows ${ }^{\circledR} 8.1$, Windows ${ }^{\circledR} 10$
Communication interface	USB 1.1 or USB 2.0 ports
Display	1024×768 or more

* Windows ${ }^{\circledR} 7$, Windows ${ }^{\circledR} 8.1$, and Windows ${ }^{\circledR} 10$ are registered trademarks of Microsoft Corporation in the United States.

DIN rail mounting adapter LEC-3-D0

* With 2 mounting screws

This should be used when the DIN rail mounting adapter is mounted onto a screw mounting type controller afterward.

DIN rail AXT100-DR- \square

* For \square, enter a number from the No. line in the table on page 176 Refer to the dimension drawings on pages 175 and 176 for the mounting dimensions.

* The displayed language can be changed to English or Japanese.

* Interlock switch for jog and test function
- Stop switch

G

Power supply plug JXC-CPW

* The power supply plug is an accessory.

(6) (5) (4)
(3) (2) (1)
(1) C 24 V
(4) OV
(2) M24V
(5) N.C.
(3) EMG
(6) LK RLS

Power supply plug

Terminal name	Function	Details
OV	Common supply (-)	The M24V terminal, C24V terminal, EMG terminal, and LK RLS terminal are common (-).
M24V	Motor power supply (+)	Motor power supply (+) of the controller
C24V	Control power supply (+)	Control power supply (+) of the controller
EMG	Stop (+)	Connection terminal of the external stop circuit
LK RLS	Lock release (+)	Connection terminal of the lock release switch

Communication plug connector

For DeviceNet ${ }^{\text {TM }}$
Straight type T-branch type Communication plug

For IO-Link
Straight type
Communication plug

JXC-CL-S

* The communication plug connector for IO-Link is an accessory.

connector for IO-Link

Terminal no.	Termina name	Details
1	L+	+24 V
2	NC	N/A
3	L-	0 V
4	C / Q	IO-Link signal

For CC-Link

Straight type T-branch type Communication plug
LEC-CMJ-S LEC-CMJ-T connector for CC-Link

Terminal name	Details
DA	CC-Link communication line A
DB	CC-Link communication line B
DG	CC-Link ground line
SLD	CC-Link shield
FG	Frame ground

Conversion cable P5062-5 (Cable length: 300 mm)

[^6]
JXC51/61 Series

JXCE1/91/P1/D1/L1/M1 Series
Actuator Cable (Option)
[Robotic cable for battery-less absolute (Step motor 24 VDC)]
LE - CE - $\quad \mathbf{1}$
Cable length (L) $[\mathrm{m}]$

$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	$8^{* 1}$
A	$10^{* 1}$
B	$15^{* 1}$
\mathbf{C}	$20^{* 1}$

*1 Produced upon receipt of order

Weight

Product no.	Weight [g]	Note
LE-CE-1	190	Robotic cable
LE-CE-3	360	
LE-CE-5	570	
LE-CE-8	900	
LE-CE-A	1120	
LE-CE-B	1680	
LE-CE-C	2210	

Signal	Connector A terminal no.		Cable color	Connector C terminal no.
A	B-1		Brown	2
$\overline{\mathrm{A}}$	A-1		Red	1
B	B-2		Orange	6
\bar{B}	A-2		Yellow	5
COM-A/COM	B-3		Green	3
COM-B/-	A-3		Blue	4
Signal	Connector B terminal no.	Shield	Cable color	Connector D terminal no.
Vcc	B-1	11	Brown	12
GND	A-1	1 1-	Black	13
$\overline{\mathrm{A}}$	B-2	∞	Red	7
A	A-2	$1 \sim \times \sim$,	Black	6
\bar{B}	B-3		Orange	9
B	A-3	人	Black	8
SD+ (RX)	B-4	\bigcirc	Yellow	11
SD- (TX)	A-4	,	Black	10
			Black	3

[Robotic cable with lock for battery-less absolute (Step motor 24 VDC)]
LE - CE -
Cable length (L) [m]

$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	$8^{* 1}$
\mathbf{A}	$10^{* 1}$
\mathbf{B}	$15^{* 1}$
\mathbf{C}	$20^{* 1}$

*1 Produced upon receipt of order

With lock and sensor

Weight

Product no.	Weight [g]	Note
LE-CE-1-B	240	
LE-CE-3-B	460	
LE-CE-5-B	740	
LE-CE-8-B	1170	Robotic cable
LE-CE-A-B	1460	
LE-CE-B-B	2120	
LE-CE-C-B	2890	

$J X C \square 1 / J X C \square F / J X C \square H$ Series

 Precautions Relating to Differences in Controller VersionsAs the controller version of the JXC series differs, the internal parameters are not compatible.
\square If using the JXC $\square 1 \square-\mathrm{BC}$, please use the latest version of the JXC-BCW (parameter writing tool).
\square There are currently 3 versions available: version 1 products (V1. \square or $\mathrm{S} 1 . \square$), version 2 products (V2. \square or $\mathrm{S} 2 . \square$), and version 3 products (V3. \square or S3. \square). Keep in mind that in order to write a backup file (.bkp) to another controller with the JXC-BCW, it needs to be the same version as the controller that created the file. (For example, a backup file created by a version 1 product can only be written to another version 1 product, and so on.)

Identifying Version Symbols

Blank Controller Versions and Applicable Battery－less Absolute Type Electric Actuator Sizes
－The applicable battery－less absolute type electric actuator size range differs depending on the controller version．
Be sure to confirm the controller version before using a blank controller．

Blank Controller Versions／Applicable Electric Actuator Sizes（JXC $\square 1 / J X C \square F$ Series）

Blank controller		Applicable electric actuator size										
Series	Controller version	LEFS \square E	LEFB \square E	LEKFS \square E	LEY $\square \mathrm{E}$	LEY $\square \mathrm{E}-\mathrm{X8}$	LEYG \square E	LES \square E	LESH \square E	LESYHDE	LER $\square E$	LEHF \square E
JXC91 series JXCD1 series JXCE1 series JXCP1 series JXCL1 series	Version 3.4 （V3．4，S3．4） Version 3.5 （V3．5，S3．5）	$\begin{gathered} 25,32, \\ 40 \end{gathered}$	25	25	16， 25	50	32， 40					
	Version 3.6 （V3．6，S3．6） or higher	$\begin{aligned} & 16,25, \\ & 32,40 \end{aligned}$	$\begin{aligned} & 16,25, \\ & 32,40 \end{aligned}$		$\begin{aligned} & 16,25, \\ & 32,40 \end{aligned}$		$\begin{aligned} & 16,25, \\ & 32,40 \end{aligned}$			8，16， 25		
JXCM1 series JXC51／61 series	$\begin{gathered} \text { Version } 3.4 \\ \text { (V3.4, S3.4) } \end{gathered}$	$\begin{gathered} 25,32, \\ 40 \end{gathered}$	$\begin{gathered} 25,32, \\ 40 \end{gathered}$		$\begin{gathered} 25,32, \\ 40 \end{gathered}$		$\begin{gathered} 25,32, \\ 40 \end{gathered}$			16， 25		
	Version 3.5 （V3．5，S3．5） or higher	$\begin{aligned} & 16,25, \\ & 32,40 \end{aligned}$	$\begin{aligned} & 16,25, \\ & 32,40 \end{aligned}$		$\begin{aligned} & 16,25, \\ & 32,40 \end{aligned}$		$\begin{aligned} & 16,25, \\ & 32,40 \end{aligned}$			8，16， 25		
JXC \square F series	All versions											

Blank Controller Versions／Applicable Electric Actuator Sizes（JXC \square H Series）

Blank controller		Applicable electric actuator size				
Series	Controller version	LEFS $\square \mathbf{G}$	LEKF $\square \mathbf{G}$	LEY $\square \mathbf{G}$	LEG	LESYH $\square \mathbf{G}$
JXC9H series JXCEH series JXCPH series	All versions	16，25，32， 40	25，32， 40	16，25， 40	25，32，40	8，16， 25
JXC5H／6H series	Version 1.0	25，32， 40		25， 40		16， 25
	Version 1.1 or higher	16，25，32， 40		16，25， 40		8，16， 25

Electric Actuators

\triangle

Battery-less Absolute Encoder Type Specific Product Precautions

Abstract

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website: https://www.smcworld.com

Handling

© Caution

1. Absolute encoder ID mismatch error at the first connection

In the following cases, an "ID mismatch error" alarm occurs after the power is turned ON. Perform a return to origin operation after resetting the alarm before use.
When an electric actuator is connected and the power is turned ON for the first time after purchase* ${ }^{* 1}$
When the actuator or motor is replaced

- When the controller is replaced
*1 If you have purchased an electric actuator and controller with the set part number, the pairing may have already been completed and the alarm may not be generated
"ID mismatch error"
Operation is enabled by matching the encoder ID on the electric actuator side with the ID registered in the controller. This alarm occurs when the encoder ID is different from the registered contents of the controller. By resetting this alarm, the encoder ID is registered (paired) to the controller again.

When a controller is changed after paring is completed				
	Encoder ID no. (* Numbers below are examples.)			
Actuator	17623	17623	17623	17623
Controller	17623	17699	17699	17623
ID mismatch error occurred?	No	Yes	Error reset \Rightarrow No	

The ID number is automatically checked when the control power supply is turned ON.
An error is output if the ID number does not match.
2. In environments where strong magnetic fields are present, use may be limited.
A magnetic sensor is used in the encoder. Therefore, if the actuator motor is used in an environment where strong magnetic fields are present, malfunction or failure may occur.
Do not expose the actuator motor to magnetic fields with a magnetic flux density of 1 mT or more.
When installing an electric actuator and an air cylinder with an auto switch (ex. CDQ2 series) or multiple electric actuators side by side, maintain a space of 40 mm or more around the motor. Refer to the construction drawing of the actuator motor.

An air cylinder with an auto switch cannot be installed in the shaded area.

- When lining up actuators

SMC actuators can be used with their motors adjacent to each other. However, for actuators with a built-in auto switch magnet (the LEY and LEF series), maintain a space of 40 mm or more between the motors and the position where the magnet passes. For the LEF series, the magnet is in the middle of the table, and for the LEY series, the magnet is in the piston portion. (Refer to the construction drawings in the catalog for details.)

Can be used with their motors
adjacent to each other

\times
Do not allow the motors to be in close proximity to the position where the magnet passes.

Electric actuator built-in magnet portion (Table unit)
3. The connector size of the motor cable is different from that of the electric actuator with an incremental encoder.
The motor cable connector of an electric actuator with a battery-less absolute encoder is different from that of an electric actuator with an incremental encoder. As the connector cover dimensions are different, take the dimensions below into consideration during the design process.

Battery-less absolute encoder connector cover dimensions

CE/UL-compliance List

* For CE/UL-compliant products, refer to the tables below and the following pages.

Controller " O ": Compliant " x ": Not compliant

Compatible motor	Series	C	${ }_{c}{ }^{\text {Nus }}$	
			Conpliance	No.
Step motor (Incremental)	JXCE1	\bigcirc	\bigcirc	E480340
	JXC91	\bigcirc	\bigcirc	E480340
	JXCP1	\bigcirc	\bigcirc	E480340
	JXCD1	\bigcirc	\bigcirc	E480340
	JXCL1	\bigcirc	\bigcirc	E480340
	LECP1	\bigcirc	\bigcirc	E339743
	LECP2	\bigcirc	\bigcirc	E339743
	LECPA	\bigcirc	\bigcirc	E339743
Step motor (Battery-less absolute)	JXC51/61	\bigcirc	\bigcirc	E480340
	JXCE1	\bigcirc	\bigcirc	E480340
	JXC91	\bigcirc	\bigcirc	E480340
	JXCP1	\bigcirc	\bigcirc	E480340
	JXCD1	\bigcirc	\bigcirc	E480340
	JXCL1	\bigcirc	\bigcirc	E480340
	JXCM1	\bigcirc	\bigcirc	E480340
High performance step motor (24 VDC)	JXC5H/6H	\bigcirc	\bigcirc	E480340
	JXCEH	\bigcirc	\bigcirc	E480340
	JXC9H	\bigcirc	\bigcirc	E480340
	JXCPH	\bigcirc	\bigcirc	E480340
Servo motor (24 VDC)	LECA6	\bigcirc	\bigcirc	E339743
Multi-axis step motor controller	JXC73	\bigcirc	\times	-
	JXC83	\bigcirc	\times	-
	JXC93	\bigcirc	\times	-
	JXC92	\bigcirc	\times	-

Compatible motor	Series	(6		mber 202
			$\text { c }{ }_{\text {ULTED }}^{\text {US }}$	
			Complance	No.
AC servo motor	LECSA	\bigcirc	\bigcirc	E466261
	LECSB	\bigcirc	\times	-
	LECSC	\bigcirc	\times	-
	LECSS	\bigcirc	\times	-
	LECSB-T	\bigcirc	\bigcirc	E466261
	LECSC-T	\bigcirc	\bigcirc	E466261
	LECSN-T	\bigcirc	O*1	E466261
	LECSS-T	\bigcirc	\bigcirc	E466261
	LECYM	\bigcirc	\times	-
	LECYU	\bigcirc	\times	-

[^7]Actuator " 0 ": Compliant " x ": Not compliant

Compatible motor	Series	C	${ }_{c} \mathrm{NH}_{\text {us }}$	
			Complame	No.
Step motor (Incremental)	LEFS	\bigcirc	\times	-
	11-LEFS	\bigcirc	\times	-
	25A-LEFS	\bigcirc	\times	-
	LEFB	\bigcirc	\times	-
	LEL	\bigcirc	\times	-
	LEM	\bigcirc	\times	-
	LEY	\bigcirc	\times	-
	25A-LEY	\bigcirc	\times	-
	LEY-X5/X7	\bigcirc	\times	-
	LEYG	\bigcirc	\times	-
	LES	\bigcirc	\times	-
	LESH	\bigcirc	\times	-
	LEPY	\bigcirc	\times	-
	LEPS	\bigcirc	\times	-
	LER	\bigcirc	\times	-
	LEHZ	\bigcirc	\times	-
	LEHZJ	\bigcirc	\times	-
	LEHF	\bigcirc	\times	-
	LEHS	\bigcirc	\times	-
Step motor (Battery-less absolute)	LEFS	\bigcirc	\times	-
	LEFB	\bigcirc	\times	-
	LEKFS	\bigcirc	\times	-
	LEY	\bigcirc	\times	-
	LEY-X8	\bigcirc	\times	-
	LEYG	\bigcirc	\times	-
	LES	\bigcirc	\times	-
	LESH	\bigcirc	\times	-
	LESYH	\bigcirc	\times	-
	LER	\bigcirc	\times	-
	LEHF	\bigcirc	\times	-

Compatible motor	Series	As of September 2021		
		C ϵ	${ }_{c}{ }^{\text {dus }}$	
			Conpliance	No.
High performance step motor (24 VDC)	LEFS	\bigcirc	\times	-
Servo motor (24 VDC)	LEFS	\bigcirc	\times	-
	11-LEFS	\bigcirc	\times	-
	25A-LEFS	\bigcirc	\times	-
	LEFB	\bigcirc	\times	-
	LEY	\bigcirc	\times	-
	LEY-X5/X7	\bigcirc	\times	-
	LEYG	\bigcirc	\times	-
	LES	\bigcirc	\times	-
	LESH	\bigcirc	\times	-
	LEPY	\bigcirc	\times	-
	LEPS	\bigcirc	\times	-
AC servo motor	LEFS	\bigcirc	\times	-
	11-LEFS	\bigcirc	\times	-
	25A-LEFS	\bigcirc	\times	-
	LEFB	\bigcirc	\times	-
	LEJS	\bigcirc	\times	-
	11-LEJS	\bigcirc	\times	-
	25A-LEJS	\bigcirc	\times	-
	LEJB	\bigcirc	\times	-
	LEY25/32/63	\bigcirc	\times	-
	LEY100	\bigcirc	\times	-
	LEYG	\bigcirc	\times	-
	LESYH	\bigcirc	\times	-

* Actuators ordered as single units are not UL compliant.

CE/UL-compliance List

Act	0		With	a co			Complia		Not	mpliant	": No	appli		As of September 2021		
Compatible motor	Series	JXC51/61			JXCE1			JXC91			JXCP1				JXC	
		C	${ }_{c} \mathrm{NH}_{\text {us }}$		CE	${ }_{c} \mathrm{TN}_{\text {us }}$		C	${ }_{c} \mathrm{NH}_{\text {us }}$		C 6	${ }_{c} \mathrm{NN}_{\text {us }}$		C		${ }^{1}$
			Complaice	No.		Complance	No.		Condiance	No.		Complance	No.		Complamea	No.
Step motor (Incremental)	LEFS	\bigcirc	\bigcirc	E339743												
	11-LEFS	\bigcirc	\bigcirc	E339743												
	25A-LEFS	\bigcirc	\bigcirc	E339743												
	LEFB	\bigcirc	\bigcirc	E339743												
	LEL	\bigcirc	\bigcirc	E339743												
	LEM	\bigcirc	\bigcirc	E339743												
	LEY	\bigcirc	\bigcirc	E339743												
	25A-LEY	\bigcirc	\bigcirc	E339743												
	LEY-X5/X7	\bigcirc	\times	-												
	LEYG	\bigcirc	\bigcirc	E339743												
	LES	\bigcirc	\bigcirc	E339743												
	LESH	\bigcirc	\bigcirc	E339743												
	LEPY	\bigcirc	\bigcirc	E339743												
	LEPS	\bigcirc	\bigcirc	E339743												
	LER	\bigcirc	\bigcirc	E339743												
	LEHZ	\bigcirc	\bigcirc	E339743												
	LEHZJ	\bigcirc	\bigcirc	E339743												
	LEHF	\bigcirc	\bigcirc	E339743												
	LEHS	\bigcirc	\bigcirc	E339743												
Compatible motor	Series	JXCL1			JXCM1			LECP1			LECP2			LECPA		
		C	${ }_{c}{ }^{\text {d }}$		$C \in$	${ }_{c} \mathrm{FN}_{\text {us }}$		C	${ }^{7} \mathbf{N M}_{\text {us }}$		$C \in$	${ }^{7}{ }^{\text {u }}$		C	${ }_{c} \mathrm{MN}_{\text {us }}$	
			Compliarce	No.		Complance	No.		Compliance	No.		Complance	No.		Compliance	No.
Step motor (Incremental)	LEFS	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\times	\times	-	\bigcirc	\bigcirc	E339743
	11-LEFS	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\times	\times	-	\bigcirc	\bigcirc	E339743
	25A-LEFS	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\times	\times	-	\bigcirc	\bigcirc	E339743
	LEFB	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\times	\times	-	\bigcirc	\bigcirc	E339743
	LEL	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\times	\times	-	\bigcirc	\bigcirc	E339743
	LEM	\bigcirc	\bigcirc	E339743												
	LEY	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\times	\times	-	\bigcirc	\bigcirc	E339743
	25A-LEY	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\times	\times	-	\bigcirc	\bigcirc	E339743
	LEY-X5/X7	\bigcirc	\times	-	\bigcirc	\times	-	\bigcirc	\times	-	\times	\times	-	\bigcirc	\times	-
	LEYG	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\times	\times	-	\bigcirc	\bigcirc	E339743
	LES	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\times	\times	-	\bigcirc	\bigcirc	E339743
	LESH	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\times	\times	-	\bigcirc	\bigcirc	E339743
	LEPY	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\times	\times	-	\bigcirc	\bigcirc	E339743
	LEPS	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\times	\times	-	\bigcirc	\bigcirc	E339743
	LER	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\times	\times	-	\bigcirc	\bigcirc	E339743
	LEHZ	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\times	\times	-	\bigcirc	\bigcirc	E339743
	LEHZJ	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\times	\times	-	\bigcirc	\bigcirc	E339743
	LEHF	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\times	\times	-	\bigcirc	\bigcirc	E339743
	LEHS	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\bigcirc	\bigcirc	E339743	\times	\times	-	\bigcirc	\bigcirc	E339743

Compatible motor	Series	JXC51/61			JXCE1			JXC91			JXCP1			JXCD1		
		$C \in$	$\mathrm{cin}^{\text {us }}$		$C \in$	${ }_{c}{ }^{\circ}$		$C \in$	$\mathrm{cin}^{\text {a }}$		$C \in$	${ }^{\text {E }}$		$C \in$	${ }_{\text {c }}$	
			Compliance	No.												
Step motor (Battery-less absolute)	LEFS	\bigcirc	\times	-												
	LEFB	\bigcirc	\times	-												
	LEKFS	\bigcirc	\times	-												
	LEY	\bigcirc	\times	-												
	LEY-X8	\bigcirc	\times	-												
	LEYG	\bigcirc	\times	-												
	LES	\bigcirc	\times	-												
	LESH	\bigcirc	\times	-												
	LESYH	\bigcirc	\times	-												
	LER	\bigcirc	\times	-												
	LEHF	\bigcirc	\times	-												
Compatible motor	Series	JXCL1			JXCM1											
		$C \in$	$\mathrm{cN}_{\text {us }}$		$C E$	$\mathrm{NB}_{\text {us }}$										
			Compliance	No.		Compliance	No.									
Step motor (Battery-less absolute)	LEFS	\bigcirc	\times	-	\bigcirc	\times	-									
	LEFB	\bigcirc	\times	-	\bigcirc	\times	-									
	LEKFS	\bigcirc	\times	-	\bigcirc	\times	-									
	LEY	\bigcirc	\times	-	\bigcirc	\times	-									
	LEY-X8	\bigcirc	\times	-	\bigcirc	\times	-									
	LEYG	\bigcirc	\times	-	\bigcirc	\times	-									
	LES	\bigcirc	\times	-	\bigcirc	\times	-									
	LESH	\bigcirc	\times	-	\bigcirc	\times	-									
	LESYH	\bigcirc	\times	-	\bigcirc	\times	-									
	LER	\bigcirc	\times	-	\bigcirc	\times	-									
	LEHF	\bigcirc	\times	-	\bigcirc	\times	-									

Actuator (When ordered with a controller) "0": Compliant "x": Not compliant "-": Not applicable As of September 2021

Compatible motor	Series	JXC5H/6H			JXCEH			JXC9H			JXCPH		
		$C \in$	$\mathrm{c}^{\text {Sus }}$		$C E$	${ }_{\text {c }}$		$C \in$	cin°		$C E$	cin°	
			Compliance	No.		Compliance	No.		Compliance	No.		Complance	No.
High performance step motor (24 VDC)	LEF	\bigcirc	\bigcirc	E339743									

Compatible motor	Series	LECA6		
		$C \in$	$\mathrm{MB}_{\text {us }}$	
			Compliance	No.
Servo motor (24 VDC)	LEFS	\bigcirc	\bigcirc	E339743
	11-LEFS	\bigcirc	\bigcirc	E339743
	25A-LEFS	\bigcirc	\bigcirc	E339743
	LEFB	\bigcirc	\bigcirc	E339743
	LEY	\bigcirc	\bigcirc	E339743
	LEY-X7	\bigcirc	\times	-
	LEYG	\bigcirc	\bigcirc	E339743
	LES	\bigcirc	\bigcirc	E339743
	LESH	\bigcirc	\bigcirc	E339743

Compatible motor	Series	LECSA*1			LECSB			LECSC			LECSS			LECSB-T*1		
		$C \in$	$\mathrm{c}^{\text {N }}$		$C E$	${ }_{c}{ }^{\circ}$		$C E$	$\mathrm{CH}_{\text {us }}$		$C E$	${ }_{\text {c }}{ }^{\circ}$		$C \in$	$\mathrm{B}_{\text {us }}$	
			Compliance	No.												
AC servo motor	LEFS	\bigcirc	\bigcirc	E339743	\bigcirc	\times	-									
	11-LEFS	\bigcirc	\bigcirc	E339743	\bigcirc	\times	-									
	25A-LEFS	\bigcirc	\bigcirc	E339743	\bigcirc	\times	-									
	LEFB	\bigcirc	\bigcirc	E339743	\bigcirc	\times	-									
	LEJS	\bigcirc	\bigcirc	E339743	\bigcirc	\times	-									
	11-LEJS	\bigcirc	\bigcirc	E339743	\bigcirc	\times	-									
	25A-LEJS	\bigcirc	\bigcirc	E339743	\bigcirc	\times	-									
	LEJB	\bigcirc	\bigcirc	E339743	\bigcirc	\times	-									
	LEY25/32/63	\bigcirc	\bigcirc	E339743	\bigcirc	\times	-									
	LEY100	-	-	-	-	-	-	-	-	-	-	-	-	\bigcirc	\times	-
	LEYG	\bigcirc	\bigcirc	E339743	\bigcirc	\times	-									
	LESYH	\bigcirc	\times	-	-	-	-	-	-	-	-	-	-	\bigcirc	\times	-
Compatible motor	Series	LECSC-T*1			LECSN-T*1			LECSS-T*1								
		$C \in$	$\mathrm{BN}_{\text {us }}$		$C \in$	$\mathrm{NB}_{\text {us }}$		$C \in$	$\mathrm{S}_{\text {us }}$							
			Compliance	No.		Compliance	No.		Compliance	No.						
AC servo motor	LEFS	\bigcirc	\times	-	\bigcirc	\times	-	\bigcirc	\bigcirc	E339743						
	11-LEFS	\bigcirc	\times	-	\bigcirc	\times	-	\bigcirc	\bigcirc	E339743						
	25A-LEFS	\bigcirc	\times	-	\bigcirc	\times	-	\bigcirc	\bigcirc	E339743						
	LEFB	\bigcirc	\times	-	\bigcirc	\times	-	\bigcirc	\bigcirc	E339743						
	LEJS	\bigcirc	\times	-	\bigcirc	\times	-	\bigcirc	\bigcirc	E339743						
	11-LEJS	\bigcirc	\times	-	\bigcirc	\times	-	\bigcirc	\bigcirc	E339743						
	25A-LEJS	\bigcirc	\times	-	\bigcirc	\times	-	\bigcirc	\bigcirc	E339743						
	LEJB	\bigcirc	\times	-	\bigcirc	\times	-	\bigcirc	\bigcirc	E339743						
	LEY25/32/63	\bigcirc	\times	-	\bigcirc	\times	-	\bigcirc	\bigcirc	E339743						
	LEY100	\bigcirc	\times	-	\bigcirc	\times	-	\bigcirc	\times	-						
	LEYG	\bigcirc	\times	-	\bigcirc	\times	-	\bigcirc	\bigcirc	E339743						
	LESYH	\bigcirc	\times	-	\bigcirc	\times	-	\bigcirc	\times	-						

[^8]Safety Instructions
These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.

Warning indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.
\triangle Danger :
Danger indicates a hazard with a high level of risk which,

\triangle Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications.
Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.
2. Only personnel with appropriate training should operate machinery and equipment.
The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.
3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
4. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
5. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
6. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
7. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
8. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
9. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
10. An application which could have negative effects on people, property, or animals requiring special safety analysis.
11. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.
*1) ISO 4414: Pneumatic fluid power - General rules relating to systems.
ISO 4413: Hydraulic fluid power - General rules relating to systems.
IEC 60204-1: Safety of machinery - Electrical equipment of machines. (Part 1: General requirements)
ISO 10218-1: Manipulating industrial robots - Safety.
etc.

\triangle Caution

1. The product is provided for use in manufacturing industries.

The product herein described is basically provided for peaceful use in manufacturing industries.
If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary.
If anything is unclear, contact your nearest sales branch.

Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements"
Read and accept them before using the product.

Limited warranty and Disclaimer

1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first. ${ }^{* 2)}$
Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided.
This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.
*2) Vacuum pads are excluded from this 1 year warranty.
A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.
Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

\triangle Caution

SMC products are not intended for use as instruments for legal metrology.
Measurement instruments that SMC manufactures or sells have not been qualified by type approval tests relevant to the metrology (measurement) laws of each country. Therefore, SMC products cannot be used for business or certification ordained by the metrology (measurement) laws of each country.

[^0]: A conversion cable is also required to connect the JXC $\square 1$ series controller and the LEC \square series communication cable (LEC-W2A-C). (A conversion cable is not required for the JXC-W2A-C.)

[^1]: | Ambient temperature Pushing force set value［\％］ | Duty ratio［\％］ | Continuous pushing time［min］ |
 | :--- | :--- | :--- | :--- | | $40^{\circ} \mathrm{C}$ or less | 65 or less |
 | :--- | :--- |

 100

[^2]: Material: Carbon steel (Chromating)

[^3]: | Ambient temperature | Pushing force set value［\％］ | Duty ratio［\％］ | Continuous pushing time［min］ |
 | :---: | :---: | :---: | :---: |
 | $\mathbf{4 0} 0^{\circ} \mathbf{C}$ or less | 65 or less | 100 | No restriction |

[^4]: *1 Part number for 1 side holder

[^5]: * Pushing force is one of the values of step data that is input into the controller.

[^6]: * To connect the teaching box (LEC-T1-3 $\square \mathrm{G} \square$) or controller setting kit (LEC-W2 \square) to the controller, a conversion cable is required.

[^7]: *1 Only the "Without network card" option is UL compliant.

[^8]: *1 There is a "UL Listed" mark on the AC servo motor driver body.

