Motorless Type Electric Actuators

Your motor and driver can be used together!

 Manufacturers of compatible motors: 18 companies| Mitsubishi Electric
 Corporation | YASKAWA Electric
 Corporation |
| :--- | :--- |
| SANYO DENKI CO., LTD. | OMRON Corporation |
| Panasonic Corporation | FANUC CORPORATION |
| NIDEC SANKYO CORPORATION | KEYENCE CORPORATION |
| FUJI ELECTRIC CO., LTD. | MinebeaMitsumi Inc. |
| Shinano Kenshi Co., Ltd. | ORIENTAL MOTOR Co., Ltd. |
| FASTECH Co., Ltd. | Rockwell Automation,
 Inc. (Allen-Bradley) |
| Beckhoff Automation GmbH | Siemens AG |
| Delta Electronics, Inc. | ANCA Motion |

New High Rigidity and High Precision Slider Type LEKFS Series p.817-2

Ball Screw Drive/
LEKFS Series

Size	Stroke
$\mathbf{2 5}$	100 to 500
$\mathbf{3 2}$	100 to 500
$\mathbf{4 0}$	200 to 600

Ball Screw Drive

Slider Type LEF Series

Ball Screw Drive/
LEFS Series
Size
$\mathbf{2 5}$
$\mathbf{3 2}$
$\mathbf{4 0}$
$\mathbf{5 0}$ Stroke to 800

Belt Drive/
LEFB Series
Size
$\mathbf{2 5}$
$\mathbf{S 2}$
$\mathbf{3 0}$
$\mathbf{4 0}$

Belt Drive LEFB Series

LEFS Series

Ball Screw Drive
p. 819, 846

High Rigidity Slider Type LEJ Series p. 875

Ball Screw Drive/LEJS Series	
Size	Stroke
40	200 to 1200
63	300 to 1500

Slide Table High Precision Type LESYH Series
 p. 936-2

Size	Stroke
16	50,100
25	$50,100,150$

Size	Stroke
$\mathbf{2 5}$	30 to 400
$\mathbf{3 2}$	30 to 500
$\mathbf{6 3}$	50 to 800
$\mathbf{1 0 0}$	100 to 1000

Motorless Type

Compatible Motors by Manufacturer (100 W/200 W/400 W/750 W equivalent)

Manufacturer	Series*1	Battery-less absolute encoder				
			Pulse input	CC-Línk IE Field	CC-LínkIE TSN	SSCNETIIIH
Mitsubishi Electric Corporation	MELSERVO JN		C			
	MELSERVO J4			,		
	MELSERVO J5				0	
YASKAWA Electric Corporation	Σ-V					
	E-7					
SANYO DENKI CO., LTD.	SANMOTION R					
OMRON Corporation	OMNUC G5					
	OMNUC 1S					
Panasonic Corporation	MINAS A5/A6					
FANUC CORPORATION	β is (-B)					
NIDEC SANKYO CORPORATION	S-FLAG					
KEYENCE CORPORATION	SV					
	SV2					
FUJI ELECTRIC CO., LTD.	ALPHA7					
MinebeaMitsumi Inc.	Hybrid stepping motors					
Shinano Kenshi Co., Ltd.	CSB-BZ					
ORIENTAL MOTOR Co., Ltd.	α STEP AR					
	α STEP AZ					
FASTECH Co., Ltd.	Ezi-SERVO					
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL					
Beckhoff Automation GmbH	AM 30/31/80/81					
Siemens AG	SIMOTICS S-1FK7					
Delta Electronics, Inc.	ASDA-A2					
ANCA Motion	AMD2000					

*1 Make sure that the mounting dimensions and motor specifications are appropriate. Select a motor after checking the specifications of each model. Additionally, when considering a motor other than one of those shown above, select a motor within the range of the specifications after checking the mounting dimensions.

Series Variations

The values in

Compatible interfaces *2

*2 For details on compatible interfaces, refer to each manufacturer's catalog.

Trademark
DeviceNet ${ }^{\circledR}$ is a registered trademark of ODVA, Inc. EtherNet/IP ${ }^{\circledR}$ is a registered trademark of ODVA, Inc. EtherCAT ${ }^{\circledR}$ is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Motorless Type Electric Actuators

Motor Mounting p. 925
Motor Mounting Parts
Auto Switch p. 933
Specific Product Precautions p. 937Electric Actuator/Rod Type LEY Series
Model Selection p. 901
How to Orderp. 908
Dimensions p. 910
Electric Actuator/Guide Rod Type LEYG Series
Model Selection p. 917
How to Order p.
Specificationsp. 922
Electric Actuator/Slide Table High Precision Type LESYH Series
Model Selection p. 936-2
How to Order p. 936-8
Specifications p. 936-9
Dimensions.p. 936-14

High Rigidity and High Precision Slider Type

Ball Screw Drive LEKFS Series

p. 817-2

Motorless Type

Electric Actuator/High Rigidity and High Precision Slider Type

Ball Screw Drive/LEKFS Series
Model Selection

LEKFS Series $>$ p. 817-11

Selection Procedure
10

Check the allowable moment.

Selection Example

The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.

Operating conditions

Step 1
Check the work load-speed. <Speed-Work Load Graph>
Select a model based on the workpiece mass and speed which are within the range of the actuator body specifications while referencing the speed-work load graph (guide) on page 817-3.
Selection example) The LEKFS $\square \mathbf{4 0} \square$ B-200 can be temporarily selected as a possible candidate based on the graph shown on the right side.

* Refer to the selection method of motor manufacturers for regeneration resistance.

Step 2

Check the cycle time.

Calculate the cycle time using the
following calculation method.
Cycle time:
T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$

- T1: Acceleration time and T3: Deceleration time can be found by the following equation.

$$
\begin{array}{|ll}
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}] \\
\hline
\end{array}
$$

- T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

- T4: Settling time varies depending on the motor type and load. The value below is recommended

Calculation example)
T1 to T4 can be calculated as follows.

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}], \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{200-0.5 \cdot 300 \cdot(0.1+0.1)}{300} \\
& =0.57[\mathrm{~s}] \\
\mathrm{T} 4 & =0.05[\mathrm{~s}]
\end{aligned}
$$

The cycle time can be found as follows

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.1+0.57+0.1+0.05 \\
& =0.82[\mathbf{s}]
\end{aligned}
$$

$\mathrm{T} 4=0.05[\mathrm{~s}]$

* The conditions for the settling time vary depending on the motor or driver to be used

Step 3
Check the allowable moment.
<Static allowable moment> (page 817-7) <Dynamic allowable moment> (page 817-8)
Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Based on the above calculation result, the LEKFS $\square 40 \square$ B-200 should be selected.

<Speed-Work Load Graph>
(LEKFS40)

L : Stroke [mm] … (Operating condition)
V : Speed [mm/s] ... (Operating condition)
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \ldots$ (Operating condition) a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \ldots$ (Operating condition)

T1: Acceleration time [s] Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until positioning is completed

Model Selection LEKFS Series
 Motorless Type

* The values shown below are allowable values of the actuator body. Do not use the actuator so that it exceeds these specification ranges.
Speed-Work Load Graph (Guide)
* The allowable speed is restricted depending on the stroke. Select it by referring to the "Allowable Stroke Speed" below.

LEKFS $\square 25 /$ Ball Screw Drive

Horizontal

Vertical

LEKFS \square 32/Ball Screw Drive

Horizontal

Vertical

LEKFS $\square 40 /$ Ball Screw Drive

Horizontal

Vertical

Allowable Stroke Speed

Model	AC servo motor	Lead		Stroke [mm]					
		Symbol	[mm]	Up to 100	Up to 200	Up to 300	Up to 400	Up to 500	Up to 600
LEKFS25	100 W equivalent	H	20	1500				1200	-
		A	12	900				720	-
		B	6	450				360	-
		(Motor rotation speed)		(4500 rpm)				(3650 rpm)	-
LEKFS32	200 W equivalent	H	24	1500					-
		A	16	1000					-
		B	8	500					-
		(Motor rotation speed)		(3750 rpm)					-
LEKFS40	400 W equivalent	H	30	-	1500				
		A	20	-	1000				
		B	10	-	500				
		(Motor rotation speed)		-	(3000 rpm)				

LEKFS Series

Motorless Type

Work Load-Acceleration/Deceleration Graph (Guide)

LEKFS $\square 25 \square$ H/Ball Screw Drive

Horizontal

LEKFS $\square 25 \square$ A/Ball Screw Drive
Horizontal

LEKFS $\square 25 \square$ B/Ball Screw Drive
Horizontal

LEKFS $\square 25 \square$ H/Ball Screw Drive

Vertical

LEKFS $\square 25 \square$ A/Ball Screw Drive

Vertical

LEKFS $\square 25 \square$ B/Ball Screw Drive

Vertical

Work Load-Acceleration/Deceleration Graph (Guide)

LEKFS $\square 32 \square$ H/Ball Screw Drive

Horizontal

LEKFS $\square 32 \square$ A/Ball Screw Drive
Horizontal

LEKFS \square 32 \square B/Ball Screw Drive

Horizontal

LEKFS \square 32 \square H/Ball Screw Drive

Vertical

LEKFS $\square 32 \square$ A/Ball Screw Drive

Vertical

LEKFS \square 32 \square B/Ball Screw Drive

Vertical

LEKFS Series

Motorless Type

Work Load-Acceleration/Deceleration Graph (Guide)

LEKFS $\square 40 \square$ H/Ball Screw Drive

Horizontal

LEKFS $\square 40 \square$ A/Ball Screw Drive
Horizontal

LEKFS $\square 40 \square$ B/Ball Screw Drive

Horizontal

LEKFS $\square 40 \square$ H/Ball Screw Drive

Vertical

LEKFS $\square 40 \square$ A/Ball Screw Drive

Vertical

LEKFS $\square 40 \square$ B/Ball Screw Drive

Vertical

Static Allowable Moment*

Model	LEKFS25	LEKFS32	LEKFS40
Pitching [N•m]	61	141	264
Yawing [N•m]	70	141	264
Rolling [N•m]	115	290	473

*1 The static allowable moment is the amount of static moment which can be applied to the actuator when it is stopped.
If the product is exposed to impact or repeated load, be sure to take adequate safety measures when using the product.

LEKFS Series

Motorless Type

Dynamic Allowable Moment
These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or
Dynamic Allowable Moment the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LEKFS
Size: 25/32/40
Mounting orientation: Horizontal/Bottom/Wall/Vertica

Acceleration [mm/s²]: a
Work load [kg]: m
Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph while referencing the model, size, and mounting orientation.
3. Based on the acceleration and work load, find the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.
$\alpha \mathbf{x}=\mathbf{X c} / L x, \alpha y=Y c / L y, \alpha z=Z c / L z$
5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$, and $\alpha \mathbf{z}$ is 1 or less.
$\alpha \mathbf{x}+\alpha \mathbf{y}+\alpha z \leq 1$
When 1 is exceeded, consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LEKFS40
Size: 40
Mounting orientation: Horizontal
Acceleration [mm/s²]: 3000
Work load [kg]: 20
Work load center position [mm]: Xc=0,Yc=50, Zc=200
2. Select the graphs for horizontal of the LEKFS40 \square on page 817-8.

Mounting Orientation

LEKFS Series

Motorless Type

Table Accuracy (Reference Value)

Model	Traveling parallelism [mm] (Every 300 mm)	
	(1) C side traveling parallelism to A side	(2) D side traveling parallelism to B side
LEKFS25	0.04	0.02
LEKFS32	0.04	0.02
LEKFS40	0.04	0.02

* Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)

* This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table.

How to Order

4 Lead [mm]

Symbol	LEKFS25	LEKFS32	LEKFS40
H	20	24	30
A	12	16	20
B	6	8	10

5 Stroke [mm]

100	100
to	to
600	600

* Refer to the applicable stroke table.

6 Grease application (Seal band part)

$\mathbf{N i l}$	With
\mathbf{N}	Without (Roller specification)

Applicable Stroke Table

Compatible Motors and Mounting Types

Applicable motor model		Size/Mounting type														
Manufacturer	Series	25						32/40								
		NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
YASKAWA Electric Corporation	г-V/7	- *4	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6		\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
FANUC CORPORATION	β is (-B)	-	-	-	-	-	-	$(\underset{(\beta 1 \text { only })}{\bullet}$	-	-	\bigcirc	-	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	- *	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MinebeaMitsumi Inc.	Hybrid stepping motors	-	-	-	* ${ }^{1}$	-	-*3	-	-	-	-	-	-	-	- *2	-
Shinano Kenshi Co., Ltd.	CSB-BZ	-	-	-	* *1	-	-*3	-	-	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	-	-	-	-		-	-	-	-	-	-	-	-	-	-*2
FASTECH Co., Ltd.	Ezi-SERVO	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	-	- *2	-
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	$\underset{\text { (TL only) }}{\boldsymbol{\ominus}}$	-	-	-	-	-	-	-	$\begin{gathered} \boldsymbol{e}^{* 1} \\ \text { (MP/VP } \\ \text { only) } \end{gathered}$	-	-	-		-	-
Beckhoff Automation GmbH	AM 30/31/80/81	\bigcirc	-	-	-	-	-	-	-		-	$\left\|\begin{array}{c} * \\ (30 \text { only }) \end{array}\right\|$	$\underset{(31 \text { only })}{* 2}$	-	-	-
Siemens AG	SIMOTICS S-1FK7	-	-	\bigcirc	-	-	-	-	-	- *1	-	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ANCA Motion	AMD2000	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-

*1 Motor mounting position: In-line only *2 Only size 32 is available when the motor mounting position is right (or left) side parallel. *3 Motor mounting position: Right (or left) side parallel only *4 For some motors, the connector may protrude from the motor body. Be sure to check for intereference with the mounting surface before selecting a motor.

LEKFS Series

Motorless Type

Specifications

Model				LEKFS25			LEKFS32			LEKFS40		
	Stroke [mm]*1			100 to 500			100 to 500			200 to 600		
	Work load [kg]		Horizontal	10	20	20	30	40	45	30	50	60
			Vertical	4	8	15	5	10	20	7	15	30
	Speed [mm/s]	Stroke range	Up to 400	1500	900	450	1500	1000	500	1500	1000	500
			401 to 500	1200	720	360	1500	1000	500	1500	1000	500
			501 to 600	-	-	-	-	-	-	1500	1000	500
	Pushing return to origin speed [mm/s]			30 or less								
	Positioning repeatability [mm]			± 0.01								
	Lost motion*2 [mm]			0.05 or less								
	Ball screw specifications		Thread size [mm]	$\varnothing 10$			$\varnothing 12$			$\varnothing 15$		
			Lead [mm]	20	12	6	24	16	8	30	20	10
			Shaft length [mm]	Stroke + 150			Stroke + 185			Stroke + 235		
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			20000*3								
	Impact/Vibration resistance [m/s $\left.{ }^{\mathbf{2}}\right]^{* 4}$			50/20								
	Actuation type			Ball screw (LEKFS \square), Ball screw + Belt (LEKFS \square R/L)								
	Guide type			Linear guide								
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40								
	Operating humidity range [\%RH]			90 or less (No condensation)								
	Actuation unit weight [kg]			0.2			0.3			0.55		
	Other inertia [$\mathbf{k g} \cdot \mathrm{cm}^{2}$]			$\begin{gathered} 0.02 \text { (LEKFS25) } \\ 0.02 \text { (LEKFS25R/L) } \end{gathered}$			$\begin{gathered} 0.08 \text { (LEKFS32) } \\ 0.06 \text { (LEKFS32R/L) } \end{gathered}$			0.08 (LEKFS40) 0.17 (LEKFS40R/L)		
	Friction coefficient			0.05								
	Mechanical efficiency			0.8								
	Motor type			AC servo motor ($100 \mathrm{~V} / 200 \mathrm{~V}$)								
	Rated output capacity [W]			100			200			400		
	Rated torque [$\mathrm{N} \cdot \mathrm{m}$]			0.32			0.64			1.3		

*1 Please consult with SMC for non-standard strokes as they are produced as special orders.
*2 A reference value for correcting an error in reciprocal operation
*3 Maximum acceleration/deceleration changes according to the work load.
Refer to the "Work Load-Acceleration/Deceleration Graph (Guide)" for ball screw drive on pages 817-4 to 817-6.
*4 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)

* Do not allow collisions at either end of the table traveling distance at a speed exceeding "pushing return to origin speed."

Additionally, when running the positioning operation, do not set within 2 mm of both ends.

* Each value is only to be used as a guide to select a motor of the appropriate capacity.
* For other specifications, refer to the specifications of the motor that is to be installed.

Weight

Model	LEKFS25				
Stroke [mm]	100	200	300	400	500
Product weight [kg]	1.7	2.0	2.3	2.5	2.8

Model	LEKFS32				
Stroke $[\mathrm{mm}]$	100	200	300	400	500
Product weight $[\mathrm{kg}]$	2.7	3.1	3.6	4.0	4.4

Model	LEKFS40				
Stroke [mm]	200	300	400	500	600
Product weight [kg]	5.0	5.6	6.2	6.8	7.4

Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 817-19 for details about motor mounting and included parts.

LEKFS25

Mounting type: NZ/NY/NX
$4 \times$ FA thread
thread depth FB/

Mounting type: NM1/NM2

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Applicable motor dimensions

Dimensions								[mm]
Stroke	L	A	B	n	D	E	G	H
100	251.5	106	210	4	-	-	100	45
200	351.5	206	310	6	2	240	220	
300	451.5	306	410	8	3	360	340	
400	551.5	406	510	8	3	360	340	
500	651.5	506	610	10	4	480	460	

$\begin{array}{r}\text { m] } \\ 5 \\ \hline\end{array}$

Mounting type	FA		FB	FC	FD	$\begin{gathered} \text { FE } \\ (\text { Max. }) \end{gathered}$	FF	FG	FH	FJ	FK
	Mounting type	$\begin{gathered} \text { Applicable } \\ \text { motor } \end{gathered}$									
NZ	M 4×0.7	ø4.5	8	ø46	30	3.5	35.5	-	-	8	25 ± 1
NY	M 3×0.5	ø3.4	8	ø45	30	3.5	35.5	-	-	8	25 ± 1
NX	M 4×0.7	ө4.5	8	ø46	30	3.5	35.5	-	-	8	18 ± 1
NM1	ø3.4	M3	-	$\square 31$	22*1	2.5*1	24	6.5	13.5	5*2	18 to 25
NM2	ø3.4	M3	-	$\square 31$	22*1	$2.5 * 1$	33.1	6.5	22.6	6	20 ± 1

*1 Dimensions after mounting a ring spacer (Refer to page 817-19.)
*2 Shaft type: D-cut shaft

LEKFS Series

Motorless Type

Dimensions: Ball Screw Drive
Refer to the "Motor Mounting" on page 817-19 for details about motor mounting and included parts.

LEKFS32

Applicable motor dimensions

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensions

Stroke	L	A	B	n	D	E	G
$\mathbf{1 0 0}$	288	106	230	4	-	-	130
$\mathbf{2 0 0}$	388	206	330	6	2	300	280
$\mathbf{3 0 0}$	488	306	430	6	2	300	280
$\mathbf{4 0 0}$	588	406	530	8	3	450	430
$\mathbf{5 0 0}$	688	506	630	10	4	600	580

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA								
Mounting type	Applicable motor	FB	FC	FD	FE (Max.)	FF	FJ	FK	
NZ	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 70$	50	5	46	14	30 ± 1
NY	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	$\varnothing 70$	50	5	46	11	30 ± 1
NX	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 63$	$40^{* 1}$	$4.5^{* 1}$	49.7	9	20 ± 1
NW	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 70$	50	5	47.5	9	25 ± 1
NV	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	$\varnothing 63$	$40^{* 1}$	$4.5^{* 1}$	49.7	9	20 ± 1
NU	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 70$	50	5	47.5	11	23 ± 1
NT	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 70$	50	5	46	12	30 ± 1
NM1	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	$\square 47.14$	$38.1^{* 1}$	$4.5^{* 1}$	21	$6.35^{* 2}$	20 ± 1
NM2	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	$\square 50$	$36^{* 1}$	$4.5^{* 1}$	40.1	10	24 ± 1

*1 Dimensions after mounting a ring spacer (Refer to page 817-19.)
*2 Shaft type: D-cut shaft

Dimensions: Ball Screw Drive

LEKFS40

Applicable motor dimensions
*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensions

Stroke	L	A	B	\mathbf{n}	\mathbf{D}	\mathbf{E}	\mathbf{G}
$\mathbf{2 0 0}$	439	206	378	6	2	300	280
$\mathbf{3 0 0}$	539	306	478	6	2	300	280
$\mathbf{4 0 0}$	639	406	578	8	3	450	430
$\mathbf{5 0 0}$	739	506	678	10	4	600	580
$\mathbf{6 0 0}$	839	606	778	10	4	600	580

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA Mounting type		Appicable motor	FB	FC	FD	FE (Max.)	FF	FJ
NZ	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 70$	50	5	47.5	14	30 ± 1
NY	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	$\varnothing 70$	50	5	47.5	14	30 ± 1
NX	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 63$	$40^{* 1}$	$4.5^{* 1}$	51	9	20 ± 1
NW	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 70$	50	5	48.8	9	25 ± 1
NV	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	$\varnothing 63$	$40^{* 1}$	$4.5^{* 1}$	51	9	20 ± 1
NU	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 70$	50	5	48.8	11	23 ± 1
NT	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 70$	50	5	47.5	12	30 ± 1
NM1	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	$\square 47.14$	$38.1^{* 1}$	$4.5^{* 1}$	22	$6.35^{* 2}$	20 ± 1
NM2	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	$\square 50$	$36^{* 1}$	$4.5^{* 1}$	41.4	10	24 ± 1

*1 Dimensions after mounting a ring spacer (Refer to page 817-19.)
*2 Shaft type: D-cut shaft

LEKFS Series

Motorless Type

Dimensions: Ball Screw Drive

 details about motor mounting and included parts.LEKFS25(L/R)

Mounting type: NZ/NY/NX $2 \times$ FA thread depth FB Mounting pitch: : FFC

Mounting type: NM1/NM2/NM3

plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensions

Dimensions								
Stroke	L	A	B	n	D	E	G	H
$\mathbf{1 0 0}$	260.5	106	210	4	-	-	100	
$\mathbf{2 0 0}$	360.5	206	310	6	2	240	220	
$\mathbf{3 0 0}$	460.5	306	410	8	3	360	340	45
$\mathbf{4 0 0}$	560.5	406	510	8	3	360	340	
$\mathbf{5 0 0}$	660.5	506	610	10	4	480	460	

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA		FB	FC	FD	$\left\|\begin{array}{c} \text { FE } \\ \text { (Max.) } \end{array}\right\|$	FF	FG	FH	FJ	FK	FL
	Mounting type	Applicale motor										
NZ	M4 x 0.7	ø4.5	7.5	$\varnothing 46$	30	3.7	11	-	-	8	25 ± 1	42
NY	M3 $\times 0.5$	ø3.4	5.5	ø45	30	5	11	-	-	8	25 ± 1	38
NX	M4 x 0.7	ø4.5	7	ø46	30	3.7	8	-	-	8	18 ± 1	42
NM1	ø3.4	M3	-	$\square 31$	28	-	8.5	7	3.5	5*1	24 ± 1	42
NM2	ø3.4	M3	-	$\square 31$	28	-	8.5	7	3.5	6	20 ± 1	42
NM3	$\varnothing 3.4$	M3	-	$\square 31$	28	-	5.5	7	3.5	5*1	20 ± 1	42

*1 Shaft type: D-cut shaft

LEKFS32(L/R)

Mounting type: NZ/NY/NW/NU/NT

Applicable motor dimensions

Dimensions [mm							
Stroke	L	A	B	n	D	E	G
100	295	106	230	4	-	-	130
200	395	206	330	6	2	300	280
300	495	306	430	6	2	300	280
400	595	406	530	8	3	450	430
500	695	506	630	10	4	600	580

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA		FB	FC	FD	$\binom{\mathbf{F E}}{\text { (Max.) }}$	FF	FJ	FK	FL	FM
	Mounting type	Applicable motor									
NZ	M5 x 0.8	$\varnothing 5.8$	8.5	$\varnothing 70$	50	4.6	13	14	30 ± 1	60	-
NY	M 4×0.7	ø4.5	8	¢70	50	4.6	13	11	30 ± 1	60	-
NW	M5 x 0.8	ø5.8	8.5	ø70	50	4.6	13	9	25 ± 1	60	-
NU	M5 x 0.8	ø5.8	8.5	¢70	50	4.6	10.6	11	23 ± 1	60	-
NT	M5 $\times 0.8$	ø5.8	8.5	¢70	50	4.6	17	12	30 ± 1	60	-
NM1	M4 x 0.7	ø4.5	5	$\square 47.14$	38.2	-	5	6.35*1	20 ± 1	56.4	5
NM2	$\mathrm{M} 4 \times 0.7$	ø4.5	8	$\square 50$	38.2	-	11.5	10	24 ± 1	60	7

*1 Shaft type: D-cut shaft

LEKFS Series

Motorless Type

Dimensions: Ball Screw Drive
Refer to the "Motor Mounting" on page 817-20 for details about motor mounting and included parts.

LEKFS40(L/R)

Mounting type:
NZ/NT/NY/NW

Applicable motor dimensions

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensions

Stroke	L	A	B	n	D	E	G
$\mathbf{2 0 0}$	453.4	206	378	6	2	300	280
$\mathbf{3 0 0}$	553.4	306	478	6	2	300	280
$\mathbf{4 0 0}$	653.4	406	578	8	3	450	430
$\mathbf{5 0 0}$	753.4	506	678	10	4	600	580
$\mathbf{6 0 0}$	853.4	606	778	10	4	600	580

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA Mounting type		Applicable motor	FB	FC	FD	FE (Max.)	FF	FJ	FK
NZ	M5 $\times 0.8$	$\varnothing 5.8$	8.5	$\varnothing 70$	50	4.6	11	14	30 ± 1	60
NY	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	$\varnothing 70$	50	4.6	11	14	30 ± 1	60
NW	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	8.5	$\varnothing 70$	50	4.6	11	9	25 ± 1	60
NT	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	8.5	$\varnothing 70$	50	4.6	14.5	12	30 ± 1	60

Mounting type: NZ, NY, NX, NW, NV, NU, NT, NM2

[Included parts] Hexagon

* Note for mounting a motor to the NM2 mounting type

Motor mounting screws for the LEKFS25 are fixed starting from the motor flange side. (Opposite of the drawing)

Mounting type: NM1

[Included parts] Hexagon socket head set screw/MM (Tightening torque: TT [$\mathrm{N} \cdot \mathrm{m}$])

* Note for mounting a hub to the NM1 mounting type

When mounting the hub to the motor, make sure to position the set screw vertical to the D-cut surface of the motor shaft. (Refer to the figure shown below.)

* Motor mounting screws for the LEKFS25 are fixed starting from the motor flange side. (Opposite of the drawing)

Size: 25 Hub Mounting Dimensions [mm]

Mounting type	MM	TT	PD	FP
NZ	$\mathrm{M} 2.5 \times 10$	1.0	8	12.4
NY	$\mathrm{M} 2.5 \times 10$	1.0	8	12.4
NX	$\mathrm{M} 2.5 \times 10$	1.0	8	6.9
NM1	$\mathrm{M} 3 \times 4$	0.63	5	11.9
NM2	$\mathrm{M} 2.5 \times 10$	1.0	6	10

Size: 32 Hub Mounting Dimensions [mm]

Mounting type	MM	TT	PD	FP
NZ	$\mathrm{M} 3 \times 12$	1.5	14	17.5
NY	$\mathrm{M} 4 \times 12$	2.5	11	17.5
NX	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NW	$\mathrm{M} 4 \times 12$	2.5	9	13
NV	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NU	$\mathrm{M} 4 \times 12$	2.5	11	13
NT	$\mathrm{M} 3 \times 12$	1.5	12	17.5
NM1	$\mathrm{M} 4 \times 5$	1.5	6.35	5.4
NM2	$\mathrm{M} 4 \times 12$	2.5	10	12

Size: 40 Hub Mounting Dimensions [mm]

Mounting type	MM	TT	PD	FP
NZ	$\mathrm{M} 3 \times 12$	1.5	14	17.5
NY	$\mathrm{M} 3 \times 12$	1.5	14	17.5
NX	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NW	$\mathrm{M} 4 \times 12$	2.5	9	13
NV	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NU	$\mathrm{M} 4 \times 12$	2.5	11	13
NT	$\mathrm{M} 3 \times 12$	1.5	12	17.5
NM1	$\mathrm{M} 4 \times 5$	1.5	6.35	5.1
NM2	$\mathrm{M} 4 \times 12$	2.5	10	12

Included Parts List

Motor Mounting Diagram
Mounting type: NZ, NY, NW, NU, NT

Mounting procedure

1) Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head cap screw.
2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
3) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).

Mounting type: NX, NV, NM1, NM2

Mounting procedure

1) Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head cap screw (Mounting type: NX, NV, NM2) or MM hexagon socket head set screw (Mounting type: NM1).
2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
3) Mount the ring spacer to the motor.
4) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).

* For the LEKFS25

4) Remove the motor flange, which has been temporarily mounted, from the housing B , and secure the motor to the motor flange using the motor mounting screws (that are to be prepared by the customer).
5) Tighten the motor flange to the housing B using motor flange mounting screws (included parts).

Size: 25

Description	Quantity			
	Mounting type			
	NZ	NY	NX	NM1
NM2				

*1 For screw sizes, refer to the hub mounting dimensions.

Size: 32, 40

Description	Quantity								
	Mounting type								
	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Motor side hub	1	1	1	1	1	1	1	1	1
Hexagon sockethead cap screwset screw (to secure the hub)* 1	1	1	1	1	1	1	1	1	1
Ring spacer	-	-	1	-	1	-	-	1	1

*1 For screw sizes, refer to the hub mounting dimensions.

Motorless Type

Motor Mounting: Motor Parallel

Mounting type: NZ, NY, NX, NW, NU, NT, NM2

Size: 25 Pulley Mounting Dimensions [mm]

Mounting type	MM	TT	PD	FP	BT
NZ/NY	$\mathrm{M} 2.5 \times 10$	1.0	8	8	19.6
NX	$\mathrm{M} 2.5 \times 10$	1.0	8	5	19.6
NM1	$\mathrm{M} 3 \times 5$	0.63	5	12.5	19.6
NM2	$\mathrm{M} 2.5 \times 10$	1.0	6	5.5	19.6
NM3	$\mathrm{M} 3 \times 5$	0.63	5	9.5	19.6

Size: 32 Pulley Mounting Dimensions $[\mathrm{mm}]$

Mounting type	MM	TT	PD	FP	BT
NZ	$\mathrm{M} 3 \times 12$	1.5	14	6.6	49
NY	$\mathrm{M} 3 \times 12$	1.5	11	6.6	49
NW	$\mathrm{M} 4 \times 12$	2.5	9	6.6	49
NU	$\mathrm{M} 3 \times 12$	1.5	11	4.2	49
NT	$\mathrm{M} 3 \times 12$	1.5	12	10.6	49
NM1	$\mathrm{M} 3 \times 4$	0.63	6.35	10.6	49
NM2	$\mathrm{M} 3 \times 12$	1.5	10	5.1	49

Size: 40 Pulley Mounting Dimensions [mm]

Mounting type	MM	TT	PD	FP	BT
NZ/NY	M4 $\times 12$	2.5	14	4.5	98.1
NW	$\mathrm{M} 4 \times 12$	2.5	9	4.5	98.1
NT	$\mathrm{M} 4 \times 12$	2.5	12	8	98.1

[^0]
Included Parts List

Size: 25

Description	Quantity
Motor flange	1
Motor side pulley	1
Cover plate	1
Timing belt	1
Hexagon socket head cap screw/set screw (to secure the pulley)*1	1
Hexagon socket head cap screw M3 x (to secure the motor flange)	2
Round head combination screw M3 x6	4

*1 For screw sizes, refer to the pulley mounting dimensions.

Size: 32, 40

Description	Quantity	
	$\mathbf{3 2}$	$\mathbf{4 0}$
Motor flange	1	1
Motor side pulley	1	1
Cover plate	1	1
Timing belt	1	1
Hexagon socket head cap screw/set screw (to secure the pulley)*1	1	1
Hexagon socket head cap screw M4 x 12 (to secure the motor flange)	2	4
Round head combination screw M3 $\times 6$	4	4

*1 For screw sizes, refer to the pulley mounting dimensions.

LEKFS Series
 Motor Mounting Parts

Motor Flange Option

A motor can be added to the motorless specification after purchase. The applicable mounting types are shown below. (Except NM1) Use the following part numbers to select a compatible motor flange option and place an order.

* The motor flange option is the same as that of the LEFS series.

How to Order

* Select only NZ, NY, NX or NM2 for the LEFS-MF25.

Compatible Motors and Mounting Types

Applicable motor model		Size/Mounting type														
Manufacturer	Series	25						32/40								
Manufacturer		NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
YASKAWA Electric Corporation	2-V/7	-*4	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	\bullet	-	-	-	-	-	-	\bullet	-	-	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6	$$	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-
FANUC CORPORATION	Bis (-B)	\bullet	-	-	-	-	-	$\begin{array}{\|c\|} \hline(\beta 1 \text { only } \end{array}$	-	-	\bullet	-	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	-*4	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
MinebeaMitsumi Inc.	Hybrid stepping motors	-	-	-	- *1	-	-*3	-	-	-	-	-	-	-	-*2	-
Shinano Kenshi Co., Ltd.	CSB-BZ	-	-	-	$\bullet * 1$	-	-*3	-	-	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	-	-	-	-	$\mid(46 \text { only } \mid$	-	-	-	-	-	-	-	-	-	-*2
FASTECH Co.,Ltd.	Ezi-SERVO	-	-	-	\bullet	-	-	-	-	-	-	-	-	-	-*2	-
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	$\left\|\begin{array}{\|c\|c} \bullet \\ \bullet \end{array}\right\|$	-	-	-	-	-	-	-	$\begin{gathered} \bullet_{\bullet}^{* 1} \\ \text { (MPNP } \\ \text { only) } \end{gathered}$	-	-	-	$\left\|\begin{array}{\|c\|c} \bullet \\ \bullet \\ \text { on } \end{array}\right\|$	-	-
Beckhoff Automation GmbH	AM 30/31/80/81	\bullet	-	-	-	-	-	-	-	$\begin{gathered} \boldsymbol{0} * 1 \\ (80 / 81 \\ \text { only }) \end{gathered}$	-	$\left.\left\lvert\, \begin{array}{\|c\|} \bullet \bullet * 1 \\ (30 \text { only } \end{array}\right.\right)$	$\left\|\begin{array}{c} \bullet * 2 \\ \mid(31 \text { ony } \end{array}\right\|$	-	-	-
Siemens AG	SIMOTICS S-1FK7	-	-	-	-	-	-	-	-	-*1	-	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
ANCA Motion	AMD2000	-	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-

* When the LEF $\square \square \square{ }_{\mathrm{NM} 3}^{\mathrm{NM1}} \square-\square$ is purchased, it is not possible to change to other
mounting types.
*1 Motor mounting position: In-line only
*2 Only size 32 is available when the motor mounting position is right (or left) side parallel.
*3 Motor mounting position: Right (or left) side parallel only

LEKFS Series

Dimensions: Motor Flange Option

Motor mounting position: In-line

Component Parts

No.	Description	Quantity
$\mathbf{1}$	Motor flange	1
$\mathbf{2}$	Hub (Motor side)	1
$\mathbf{3}$	Hexagon socket head cap screw (to secure the hub)	1
$\mathbf{4}$	Hexagon socket head cap screw (to mount the motor flange)	2
$\mathbf{5}$	Ring spacer (Only for NX, NV and NM2 of size 32, 40)	1

For NM2

$4 \times$ FA,
$\xrightarrow[\text { * Spot facing is on the reverse side. }]{\text { Counterbore diameter FG, depth FH }} \quad \xrightarrow{\text { Motor mounting surface }}$

Dimensions
[mm]

Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	FH	FJ	FK	M1	M2	PD
25	NZ/NX	M4 x 0.7	8	46	30	3.5	35.5	-	-	57.8	46.5	M 2.5×10	M4 $\times 35$	8
	NY	M3 x 0.5	8	45	30	3.5	35.5	-	-	57.8	46.5	M 2.5×10	M 4×35	8
	NM2	ø3.4	-	31	22*1	2.5*1	33.1	6.5	22.6	57.8	46.5	M 2.5×10	M 4×18	6
32	NZ	M5 x 0.8	9	70	50	5	46	-	-	69.8	61.4	M3 $\times 12$	M5 x 40	14
	NY	M4 x 0.7	8	70	50	5	46	-	-	69.8	61.4	M 4×12	M5 x 40	11
	NX	M5 x 0.8	9	63	50	5	49.7	-	-	69.8	61.4	M4 x 12	M5 x 40	9
	NW	M5 x 0.8	9	70	50	5	47.5	-	-	69.8	61.4	M 4×12	M5 x 40	9
	NV	M4 x 0.7	8	63	50	5	49.7	-	-	69.8	61.4	M4 x 12	M5 x 40	9
	NU	M5 x 0.8	9	70	50	5	47.5	-	-	69.8	61.4	M 4×12	M5 x 40	11
	NT	M5 x 0.8	9	70	50	5	46	-	-	69.8	61.4	M3 $\times 12$	M5 x 40	12
	NM2	M4 x 0.7	8	50	$36 * 1$	4.5*1	40.1	-	-	69.8	61.4	M4 x 12	M5 x 25	10
40	NZ	M5 x 0.8	9	70	50	5	47.5	-	-	89.8	66.9	M3 $\times 12$	M5 $\times 40$	14
	NY	M4 x 0.7	8	70	50	5	47.5	-	-	89.8	66.9	M3 $\times 12$	M5 x 40	14
	NX	M5 x 0.8	9	63	50	5	51	-	-	89.8	66.9	M 4×12	M5 x 40	9
	NW	M5 x 0.8	9	70	50	5	48.8	-	-	89.8	66.9	M 4 x 12	M5 x 40	9
	NV	$\mathrm{M} 4 \times 0.7$	8	63	50	5	51	-	-	89.8	66.9	$\mathrm{M} 4 \times 12$	M5 x 40	9
	NU	M5 x 0.8	9	70	50	5	48.8	-	-	89.8	66.9	M 4×12	M5 x 40	11
	NT	M5 x 0.8	9	70	50	5	47.5	-	-	89.8	66.9	M3 $\times 12$	M5 x 40	12
	NM2	M4 x 0.7	8	50	36*1	4.5*1	41.4	-	-	89.8	66.9	M 4×12	M5 x 25	10

[^1]
Motor Mounting Parts LEKFS Series

Dimensions: Motor Flange Option

Component Parts

No.	Description		Quantity	
		Size		
		$\mathbf{2 5 , 3 2}$	$\mathbf{4 0}$	
$\mathbf{1}$	Motor flange	1	1	
$\mathbf{2}$	Motor pulley	1	1	
$\mathbf{3}$	Hexagon socket head cap screw (to secure the pulley)	1	1	
$\mathbf{4}$	Hexagon socket head cap screw (to mount the motor flange)	2	4	

Motor flange details

Size 25: NM2
$2 \times$ FA
Counterbore diameter FG, depth FH

Size 32: NM2

Dimensions

[mm]														
Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	FH	FJ	FK	M1	M2	PD
25	NZ	$2 \times \mathrm{M} 4 \times 0.7$	7.5	46	30	3.7	11	-	-	42	-	M 2.5×10	M 3×8	8
	NY	$2 \times \mathrm{M} 3 \times 0.5$	5.5	45	30	5	11	-	-	38	-	M 2.5×10	M 3×8	8
	NX	$2 \times \mathrm{M} 4 \times 0.7$	7	46	30	3.7	8	-	-	42	-	M 2.5×10	M 3×8	8
	NM2	ø3.4	-	31	28	-	8.5	7	3.5	42	-	M 2.5×10	M 3×8	6
32	NZ	$2 \times \mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	13	-	-	60	-	M3 $\times 12$	M 4×12	14
	NY	$2 \times \mathrm{M} 4 \times 0.7$	8	70	50	4.6	13	-	-	60	-	M3 $\times 12$	M 4×12	11
	NW	$2 \times \mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	13	-	-	60	-	$\mathrm{M} 4 \times 12$	M 4×12	9
	NU	$2 \times \mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	10.6	-	-	60	-	M3 $\times 12$	M 4×12	11
	NT	$2 \times \mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	17	-	-	60	-	M3 $\times 12$	M 4×12	12
	NM2	M4 $\times 0.7$	8	50	38.2	-	11.5	-	-	60	7	M3 $\times 12$	M 4×12	10
40	NZ	$4 \times \mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	11	-	-	60	-	$\mathrm{M} 4 \times 12$	M 4×12	14
	NY	$4 \times \mathrm{M} 4 \times 0.7$	8	70	50	4.6	11	-	-	60	-	$\mathrm{M} 4 \times 12$	$\mathrm{M} 4 \times 12$	14
	NW	$4 \times \mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	11	-	-	60	-	$\mathrm{M} 4 \times 12$	M 4×12	9
	NT	$4 \times \mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	14.5	-	-	60	-	$\mathrm{M} 4 \times 12$	M 4×12	12

LEKFS Series
 Auto Switch Mounting

Auto Switch Mounting Position

Table 1 Auto switch mounting dimensions [mm]

Model	Size	\mathbf{A}	\mathbf{B}	Operating range
LEKFS	25	17.5	23.5	3.0
	32	26.3	32.3	3.4
	40	32.2	38.2	3.6

* The applicable auto switch is D-M9 (N/P/B) (W) (M/L/Z).
* The operating range is a guideline including hysteresis, not meant to be guaranteed. There may be large variations depending on the ambient environment.
* Adjust the auto switch after confirming the operating conditions in the actual setting.

Auto Switch Mounting

* The applicable auto switch is D-M9 (N/P/B) (W) (M/L/Z).
* Tighten the auto switch mounting screws (provided together with the auto switch), using a precision screwdriver with a handle diameter of approximately 5 to 6 mm .
* Prepare an auto switch mounting bracket (BMY3-016) when mounting the auto switch on to the LEKFS32/40.

Solid State Auto Switch Direct Mounting Type D-M9N/D-M9P/D-M9B

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Oilproof Heavy-duty Lead Wire Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square, D-M9 \square V (With indicator light)			
Auto switch model	D-M9N	D-M9P	D-M9B
Electrical entry direction	In-line		
Wiring type	3-wire		2-wire
Output type	NPN	PNP	-
Applicable load	IC circuit, Relay, PLC		24 VDC relay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)		-
Current consumption	10 mA or less		-
Load voltage	28 VDC or less	-	24 VDC (10 to 28 VDC)
Load current	40 mA or less		2.5 to 40 mA
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)		4 V or less
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC		0.8 mA or less
Indicator light	Red LED illuminates when turned ON.		
Standard	CE marking, RoHS		

Auto switch model		D-M9N	D-M9P	D-M9B
Sheath	Outside diameter $[\mathrm{mm}]$	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $[\mathrm{mm} 2]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius $[\mathrm{mm}]$ (Reference values)		17		

* Refer to page 996 for solid state auto switch common specifications
* Refer to page 996 for lead wire lengths.

Weight

Auto switch model		D-M9N	D-M9P	D-M9B
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

Normally Closed Solid State Auto Switch Direct Mounting Type D-M9NE(V)/D-M9PE(V)/D-M9BE(V)

Grommet

- Output signal turns on when no magnetic force is detected.
- Can be used for the actuator adopted by the solid state auto switch D-M9 series (excluding special order products)

\triangle Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications
Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller
D-M9■E, D-M9■EV (With indicator light)

Auto switch model	D-M9NE	D-M9NEV	D-M9PE	D-M9PEV	D-M9BE	D-M9BEV

Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire			2-wire		
Output type	NPN		PNP	-		

Output type	NPN	-
Applicable load	IC circuit, Relay, PLC	24 VDC relay, PLC
Power supply voltage	$5,12,24 \mathrm{VDC}(4.5$ to 28 V$)$	-
Current consumption	10 mA or less	
Load voltage	28 VDC or less	-
Load current	40 mA or less	
Internal voltage drop	0.8 V or less at $10 \mathrm{~mA}(2 \mathrm{~V}$ or less at 40 mA$)$	$24 \mathrm{VDC}(10$ to 28 VDC$)$
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC	2.5 to 40 mA
Indicator light	Red LED illuminates when turned ON.	
Standard	CE marking, RoHS	

Oilproof Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)				
Sheath	Outside diameter $[\mathrm{mm}]$	2.6						
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)					
	Outside diameter $[\mathrm{mm}]$	0.88						
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15						
	Strand diameter $[\mathrm{mm}]$	0.05						
Minimum bending radius $[\mathrm{mm}]$ (Reference values)						17		

* Refer to page 996 for solid state auto switch common specifications.
* Refer to page 996 for lead wire lengths.

Weight

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})^{* 1}$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})^{* 1}$	68	63	

*1 The 1 m and 5 m options are produced upon receipt of order.

D-M9■EV

2-Color Indicator Solid State Auto Switch Direct Mounting Type

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

\triangle Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square W, D-M9 \square WV (With indicator light)			
Auto switch model	D-M9NW	D-M9PW	D-M9BW
Electrical entry direction	In-line		
Wiring type	3-wire		2-wire
Output type	NPN	PNP	-
Applicable load	IC circuit, Relay, PLC		24 VDC relay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)		-
Current consumption	10 mA or less		-
Load voltage	28 VDC or less	-	24 VDC (10 to 28 VDC)
Load current	40 mA or less		2.5 to 40 mA
Internal voltage drop	0.8 V or less at $10 \mathrm{~mA}(2 \mathrm{~V}$ or less at 40 mA$)$		4 V or less
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC		0.8 mA or less
Indicator light	Operating range Red LED illuminates. Proper operating range \qquad Green LED illuminates.		
Standard	CE marking, RoHS		

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW	D-M9PW	D-M9BW
Sheath	Outside diameter [mm]	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter [mm]	0.88		
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius $[\mathrm{mm}]$ (Reference values)				

* Refer to page 996 for solid state auto switch common specifications.
* Refer to page 996 for lead wire lengths.

Weight

Auto switch model				D-M9NW
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	D-M9PW	D-M9BW
	$1 \mathrm{~m}(\mathbf{M})$	14	7	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m} \mathrm{(Z)}$	68	63	

LEKFS Series

Specific Product Precautions 1

Be sure to read this before handling the products. Refer to page 984 for safety instructions, pages 985 to 990 for electric actuator precautions, and pages 991 to 1000 for auto switch precautions.

Design

\triangle Caution

1. Do not apply a load in excess of the specification limits.

Select a suitable actuator by work load and allowable moment. If a load in excess of the specification limits is applied to the guide, adverse effects such as the generation of play in the guide, reduced accuracy, or reduced service life of the product may occur.
2. Do not use the product in applications where excessive external force or impact force is applied to it.

This can cause a malfunction.

Selection

© Warning

1. Do not increase the speed in excess of the specification limits.
Select a suitable actuator by the relationship of the allowable work load and speed, and the allowable speed of each stroke. If the product is used outside of the specification limits, adverse effects such as the generation of noise, reduced accuracy, or reduced service life of the product may occur.
2. Do not use the product in applications where excessive external force or impact force is applied to it. This can cause a malfunction.
3. When the product repeatedly cycles with partial strokes (see the table below), operate it at a full stroke at least once every few dozens of cycles.
Failure to do so may result in the product running out of lubrication.

Model	Partial stroke
LEKFS $\square \mathbf{2 5}$	65 mm or less
LEKFS $\square \mathbf{3 2}$	70 mm or less
LEKFS $\square \mathbf{4 0}$	105 mm or less

4. When external force is to be applied to the table, it is necessary to add the external force to the work load as the total carried load when selecting a size.
When a cable duct or flexible moving tube is attached to the actuator, the sliding resistance of the table will increase, which may lead to the malfunction of the product.
5. Depending on the shape of the motor to be mounted, some of the product's interior parts (hub, spider, etc.) may be visible from the motor mounting surface. If this is undesirable, please contact your nearest sales office for details on options such as covers.

Handling

\triangle Caution

1. Never allow the table to collide with the stroke end.

When the driver parameters, origin or programs are set incorrectly, the table may collide with the stroke end of the actuator during operation. Be sure to check these points before use. If the table collides with the stroke end of the actuator, the guide, ball screw, belt, or internal stopper may break. This can result in abnormal operation.

Handle the actuator with care when it is used in the vertical direction as the workpiece will fall freely from its own weight.
2. The actual speed of this actuator is affected by the work load and stroke.

Check the model selection section of the catalog.
3. Do not apply a load, impact, or resistance in addition to the transferred load during return to origin.
4. Do not dent, scratch, or cause other damage to the body or table mounting surfaces.
Doing so may cause unevenness in the mounting surface, play in the guide, or an increase in the sliding resistance.
5. Do not apply strong impact or an excessive moment while mounting a workpiece.
If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.
6. Keep the flatness of the mounting surface within 0.1 mm/500 mm.

If a workpiece or base does not sit evenly on the body of the product, play in the guide or an increase in the sliding resistance may occur.
7. Do not allow a workpiece to collide with the table during the positioning operation or within the positioning range.
8. Grease is applied to the dust seal band for sliding. When wiping off the grease to remove foreign matter, etc., be sure to apply it again.
9. When bottom mounted, the dust seal band may become warped.

LEKFS Series

Specific Product Precautions 2

Be sure to read this before handling the products. Refer to page 984 for safety instructions, pages 985 to 990 for electric actuator precautions, and pages 991 to 1000 for auto switch precautions.

Handling

\triangle Caution

10. When mounting the product, use screws of adequate length and tighten them with adequate torque.
Tightening the screws with a higher torque than recommended may result in a malfunction, while tightening with a lower torque can result in the displacement of the mounting position or, in extreme conditions, the actuator could become detached from its mounting position
Body fixed

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	$\varnothing \mathbf{A}$ $[\mathrm{mm}]$	\mathbf{L} $[\mathrm{mm}]$
LEKFS $\square \mathbf{2 5}$	M4	1.5	4.5	24
LEKFS $\square \mathbf{3 2}$	M5	3.0	5.5	30
LEKFS $\square \mathbf{4 0}$	M6	5.2	6.6	31

The traveling parallelism is the reference plane for the body mounting reference plane. If the traveling parallelism for a table is required, set the reference plane against parallel pins, etc.

Workpiece fixed

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	$\mathrm{L}($ Max. screw-in depth $[\mathrm{mm}]$
LEKFS $\square 25$	M5 $\times 0.8$	3.0	8
LEKFS $\square 32$	$\mathrm{M} 6 \times 1$	5.2	9
LEKFS $\square 40$	$\mathrm{M} 8 \times 1.25$	12.5	13

To prevent the workpiece retaining screws from touching the body, use screws that are 0.5 mm or shorter than the maximum screw-in depth. If long screws are used, they may touch the body and cause a malfunction.
12. Check the specifications for the minimum speed of each actuator.
Failure to do so may result in unexpected malfunctions such as knocking.

Maintenance

© Warning

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months $/ 1000 \mathrm{~km} /$ 5 million cycles*1	\bigcirc	\bigcirc

*1 Select whichever comes first.

- Items for visual appearance check

1. Loose set screws, Abnormal amount of dirt, etc
2. Check for visible damage, Check of cable joint
3. Vibration, Noise

- Items for internal check

1. Lubricant condition on moving parts
2. Loose or mechanical play in fixed parts or fixing screws

- Items for belt check

Stop operation immediately and replace the belt when any of the following occur. In addition, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out

Canvas fiber becomes fuzzy, Rubber is coming off and the fiber has become whitish, Lines of fibers have become unclear
b. Peeling off or wearing of the side of the belt Belt corner has become rounded and frayed threads stick out
c. Belt is partially cut

Belt is partially cut, Foreign matter caught in the teeth of other parts is causing damage
d. A vertical line on belt teeth is visible

Damage which is made when the belt runs on the flange
e. Rubber back of the belt is softened and sticky
f. Cracks on the back of the belt are visible
11. Do not operate by fixing the table and moving the actuator body.

Motorless Type Electric Actuators

Slider Type

Ball Screw Drive LEFS Series

Belt Drive LEFB Series

p． 846

Motorless Type

Electric Actuator/Slider Type

Ball Screw Drive/LEFS Series
Model Selection

Selection Procedure

Step 3

Check the allowable moment.

Selection Example

The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.
Operating
conditions

Step 1
Check the work load-speed. <Speed-Work Load Graph>
Select a model based on the workpiece mass and speed which are within the range of the actuator body specifications while referencing the speed-work load graph (guide) on page 820.
Selection example) The LEFS $\square 40 \square$ B-200 can be temporarily selected as a possible candidate based on the graph shown on the right side.

* Refer to the selection method of motor manufacturers for regeneration resistance.

Step 2

Check the cycle time.

Calculate the cycle time using the
following calculation method.
Cycle time:
T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$

- T1: Acceleration time and T3: Deceleration time can be found by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

- T2: Constant speed time can be found from the following equation.
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{s}]$
- T4: Settling time varies depending on the motor type and load. The value below is recommended.

T4 = 0.05 [s]

Calculation example)
T1 to T4 can be calculated as follows.

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}], \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{200-0.5 \cdot 300 \cdot(0.1+0.1)}{300} \\
& =0.57[\mathrm{~s}] \\
\mathrm{T} 4 & =0.05[\mathrm{~s}]
\end{aligned}
$$

The cycle time can be found as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.1+0.57+0.1+0.05 \\
& =0.82[\mathbf{s}]
\end{aligned}
$$

* The conditions for the settling time vary depending on the motor or driver to be used.

Check the allowable moment. <Static allowable moment> (page 823-1) <Dynamic allowable moment> (page 824) Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Based on the above calculation result, the LEFS $\square 40 \square B-200$ should be selected.

<Speed-Work Load Graph>
(LEFS40)

L : Stroke [mm] … (Operating condition)
V : Speed $[\mathrm{mm} / \mathrm{s}]$... (Operating condition)
a1: Acceleration [mm s^{2}] ... (Operating condition) a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right]$... (Operating condition)

T1: Acceleration time [s] Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until positioning is completed

Model Selection LEFS Series

Motorless Type

Speed－Work Load Graph（Guide）
＊The values shown below are allowable values of the actuator body．Do not use the actuator so that it exceeds these specification ranges．
＊The allowable speed is restricted depending on the stroke．Select it by referring to the＂Allowable Stroke Speed＂below．

LEFS $\square 25 / B a l l$ Screw Drive

Horizontal

Vertical

LEFS \square 32／Ball Screw Drive

Horizontal

Vertical

先華
 号
 山
 를

LEFS Series

Motorless Type

Work Load-Acceleration/Deceleration Graph (Guide)

LEFS $\square 25 \square$ A/Ball Screw Drive
Horizontal

LEFS $\square 25 \square$ B/Ball Screw Drive

Horizontal

LEFS $\square 25 \square$ H/Ball Screw Drive
Vertical

LEFS $\square 25 \square$ A/Ball Screw Drive
Vertical

LEFS $\square 25 \square$ B/Ball Screw Drive

Vertical

Model Selection LEFS Series

Motorless Type

Work Load-Acceleration/Deceleration Graph (Guide)

LEFS $\square 32 \square$ A/Ball Screw Drive
Horizontal

LEFS $\square 32 \square$ B/Ball Screw Drive

Horizontal

LEFS \square 32 \square H/Ball Screw Drive
Vertical

LEFS $\square 32 \square$ A/Ball Screw Drive
Vertical

LEFS $\square 32 \square$ B/Ball Screw Drive

Vertical

LEFS Series

Work Load-Acceleration/Deceleration Graph (Guide)

LEFS $\square 40 \square$ H/Ball Screw Drive
 Horizontal

LEFS $\square 40 \square$ A/Ball Screw Drive

Horizontal

LEFS $\square 40 \square$ B/Ball Screw Drive

Horizontal

LEFS $\square 40 \square$ H/Ball Screw Drive

Vertical

LEFS $\square 40 \square$ A/Ball Screw Drive

Vertical

LEFS $\square 40 \square$ B/Ball Screw Drive

Vertical

Model Selection LEFS Series

Static Allowable Moment＊${ }^{* 1}$

［N．m］				
Model	Size	Pitching	Yawing	Rolling
	$\mathbf{1 6}$	10	10	20
	$\mathbf{2 5}$	27	27	52
	$\mathbf{3 2}$	46	46	101

＊1 The static allowable moment is the amount of static moment which can be applied to the actuator when it is stopped．
If the product is exposed to impact or repeated load，be sure to take adequate safety measures when using the product． overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com
Dynamic Allowable Moment

LEFS Series

Motorless Type

Dynamic Allowable Moment
This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LEFS
Size: 25/32/40
Mounting orientation: Horizontal/Bottom/Wall/Vertical

Acceleration [mm/s²]: a
Work load [kg]: m
Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph while referencing the model, size, and mounting orientation.
3. Based on the acceleration and work load, find the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.
$\alpha x=X c / L x, \alpha y=Y c / L y, \alpha z=Z c / L z$
5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$, and $\alpha \mathbf{z}$ is 1 or less.
$\alpha x+\alpha y+\alpha z \leq 1$
When 1 is exceeded, consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LEFS40
Size: 40
Mounting orientation: Horizontal
Acceleration [mm/s²]: 3000
Work load [kg]: 20
Work load center position [mm]: Xc=0,Yc=50,Zc=200
2. Select the graphs for horizontal of the LEFS40 \square on page 824.

Mounting Orientation

3. $L x=\mathbf{2 5 0} \mathbf{~ m m}, L y=180 \mathrm{~mm}, L z=1000 \mathrm{~mm}$
4. The load factor for each direction can be found as follows.

$$
\alpha x=0 / 250=0
$$

$$
\alpha y=50 / 180=0.27
$$

$$
\alpha z=200 / 1000=0.2
$$

5. $\alpha x+\alpha y+\alpha z=0.47 \leq 1$

Model Selection LEFS Series
Motorless Type

Table Accuracy（Reference Value）

Model	Traveling parallelism［mm］（Every 300 mm ）	
	（1）C side traveling parallelism to A side	（2）D side traveling parallelism to B side LEFS25 0.05
LEFS32	0.05	0.03
LEFS40	0.05	0.03

＊Traveling parallelism does not include the mounting surface accuracy．

$\underset{\text { E }}{\text { E }}$

High－Precision Type

Overhang Displacement Due to Table Clearance（Initial Reference Value）

Basic Type

Electric Actuator/Slider Type Ball Screw Drive LEFS Series

RoHS

How to Order

* Please consult with SMC for non-standard strokes as they are produced as special orders.

Compatible Motors and Mounting Types

Applicable motor model		Size/Mounting type														
Manufacturer	Series	25						32/40								
		NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
YASKAWA Electric Corporation	$\Sigma-\mathrm{V} / 7$	-*4	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	-	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6		-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
FANUC CORPORATION	β is (-B)	-	-	-	-	-	-		-	-	\bigcirc	-	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	-*	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
MinebeaMitsumi Inc.	Hybrid stepping motors	-	-	-	* *	-	- 3	-	-	-	-	-	-	-	- *2	-
Shinano Kenshi Co., Ltd.	CSB-BZ	-	-	-	* *	-	* 3	-	-	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	-	-	-	-	$(46 \text { only })$	-	-	-	-	-	-	-	-	-	**2
FASTECH Co., Ltd.	Ezi-SERVO	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	-	-*2	-
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	$(\text { TL only })$	-	-	-	-	-	-	-		-	-	-		-	-
Beckhoff Automation GmbH	AM 30/31/80/81	\bigcirc	-	-	-	-	-	-	-	$\begin{gathered} \text { © *1 } \\ (80 / 81 \\ \text { only) } \end{gathered}$	-	$\left\|\begin{array}{c} * \\ * 1 \\ (30 \text { only }) \end{array}\right\|$	$\left(\begin{array}{c} * 2 \\ (31 \text { only }) \end{array}\right.$	-	-	-
Siemens AG	SIMOTICS S-1FK7	-	-	\bigcirc	-	-	-	-	-	- *1	-	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
ANCA Motion	AMD2000	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-

*1 Motor mounting position: In-line only *2 Only size 32 is available when the motor mounting position is right (or left) side parallel. *3 Motor mounting position: Right (or left) side parallel only *4 For some motors, the connector may protrude from the motor body. Be sure to check for interreference with the mounting surface before selecting a motor.

Electric Actuator／Slider Type
 Ball Screw Drive LEFS Series
 Motorless Type

Specifications ${ }^{* 2} \quad \begin{aligned} & \bullet \text { Values in this specifications table are the allowable values of the actuator body with the standard motor mounted．}\end{aligned}$

Model				LEFS25			LEFS32			LEFS40		
Actuator specifications	Stroke［mm］＊＊			50 to 800			50 to 1000			150 to 1200		
	Work load［kg］		Horizontal	10	20	20	30	40	45	30	50	60
			Vertical	4	8	15	5	10	20	7	15	30
	Speed ［mm／s］	Stroke range	Up to 400	1500	900	450	1500	1000	500	1500	1000	500
			401 to 500	1200	720	360	1500	1000	500	1500	1000	500
			501 to 600	900	540	270	1200	800	400	1500	1000	500
			601 to 700	700	420	210	930	620	310	1410	940	470
			701 to 800	550	330	160	750	500	250	1140	760	380
			801 to 900	－	－	－	610	410	200	930	620	310
			901 to 1000	－	－	－	510	340	170	780	520	260
			1001 to 1100	－	－	－	－	－	－	500	440	220
			1101 to 1200	－	－	－	－	－	－	500	380	190
	Pushing return to origin speed［mm／s］			30 or less								
	Positioning repeatability［mm］		Basic type	± 0.02								
			High－precision type	± 0.01								
	$\begin{aligned} & \text { Lost motion*3 } \\ & {[\mathrm{mm}]} \\ & \hline \end{aligned}$		Basic type	0.1 or less								
			High－precision type	0.05 or less								
	Ball screw specifications		Thread size［mm］	$\varnothing 10$			$\varnothing 12$			¢15		
			Lead［mm］	20	12	6	24	16	8	30	20	10
			Shatt length［mm］	Stroke＋ 150			Stroke＋ 185			Stroke＋ 235		
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］			20000＊4								
	Impact／Vibration resistance［m／s $\left.{ }^{2}\right]^{* 6}$			50／20								
	Actuation type			Ball screw（LEFSD），Ball screw＋Belt（LEFS \square_{L}^{R} ）								
	Guide type			Linear guide								
	Static allowable moment＊7 ［ $\mathrm{N} \cdot \mathrm{m}$ ］		Mep（Pitching）	27			46			110		
			Mey（Yawing）	27			46			110		
			Mer（Rolling）		52		101			207		
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］			5 to 40								
	Operating humidity range［\％RH］			90 or less（No condensation）								
	Actuation unit weight［kg］			0.2			0.3			0.55		
	Other inertia［kg．cm²］			0.02 （LEFS25） 0.02 （LEFS25 ${ }^{\mathrm{R}}$ ）			$\begin{aligned} & \hline 0.08 \text { (LEFS32) } \\ & 0.06 \text { (LEFS32L) } \end{aligned}$			$\begin{aligned} & \hline 0.08 \text { (LEFS40) } \\ & 0.17 \text { (LEFS40L) } \end{aligned}$		
	Friction coefficient			0.05								
	Mechanical efficiency			0.8								
	Motor type			AC servo motor（ $100 \mathrm{~V} / 200 \mathrm{~V}$ ）								
	Rated output capacity［W］			100			200			400		
	Rated torque［ $\mathrm{N} \cdot \mathrm{m}$ ］			0.32			0.64			1.3		

＊1 Please consult with SMC for non－standard strokes as they are produced as special orders．
＊2 Do not allow collisions at either end of the table traveling distance at a speed exceeding＂pushing return to origin speed．＂
Additionally，when running the positioning operation，do not set within 2 mm of both ends．
＊3 A reference value for correcting an error in reciprocal operation
＊4 Maximum acceleration／deceleration changes according to the work load．
Refer to the＂Work Load－Acceleration／Deceleration Graph（Guide）＂for ball screw drive on pages 821 to 823.
＊5 Each value is only to be used as a guide to select a motor of the appropriate capacity．
＊6 Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊ 7 The static allowable moment is the amount of static moment which can be applied to the actuator when it is stopped．
If the product is exposed to impact or repeated load，be sure to take adequate safety measures when using the product．
＊8 For other specifications，refer to the specifications of the motor that is to be installed．

Weight

LEFS Series

Motorless Type

Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 841 for details about motor mounting and included parts.

LEFS25

Mounting type: NZ, NY, NX

Mounting type: NM1, NM2

Applicable motor dimensions

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensions							
Stroke	L	A	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}	\mathbf{F}
$\mathbf{5 0}$	201.5	56	160	4	-	-	20
$\mathbf{1 0 0}$	251.5	106	210	4	-	-	35
$\mathbf{1 5 0}$	301.5	156	260	4	-	-	35
$\mathbf{2 0 0}$	351.5	206	310	6	2	240	35
$\mathbf{2 5 0}$	401.5	256	360	6	2	240	35
$\mathbf{3 0 0}$	451.5	306	410	8	3	360	35
$\mathbf{3 5 0}$	501.5	356	460	8	3	360	35
$\mathbf{4 0 0}$	551.5	406	510	8	3	360	35
$\mathbf{4 5 0}$	601.5	456	560	10	4	480	35
$\mathbf{5 0 0}$	651.5	506	610	10	4	480	35
$\mathbf{5 5 0}$	701.5	556	660	12	5	600	35
$\mathbf{6 0 0}$	751.5	606	710	12	5	600	35
$\mathbf{6 5 0}$	801.5	656	760	12	5	600	35
$\mathbf{7 0 0}$	851.5	706	810	14	6	720	35
$\mathbf{7 5 0}$	901.5	756	860	14	6	720	35
$\mathbf{8 0 0}$	951.5	806	910	16	7	840	35

*1 Dimensions after mounting a ring spacer (Refer to page 841.)
*2 Shaft type: D-cut shaft

Electric Actuator/Slider Type
 Ball Screw Drive

Dimensions: Ball Screw Drive

LEFS25

Positioning pin hole*1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

* For strokes of 99 mm or less, only 2 auto switch mounting brackets can be installed on the motor side.

Dimensions		$[\mathrm{mm}]$
Stroke	\mathbf{G}	\mathbf{H}
$\mathbf{5 0}$	100	30
$\mathbf{1 0 0}$	100	45
$\mathbf{1 5 0}$	100	45
$\mathbf{2 0 0}$	220	45
$\mathbf{2 5 0}$	220	45
$\mathbf{3 0 0}$	340	45
$\mathbf{3 5 0}$	340	45
$\mathbf{4 0 0}$	340	45
$\mathbf{4 5 0}$	460	45
$\mathbf{5 0 0}$	460	45
$\mathbf{5 5 0}$	580	45
$\mathbf{6 0 0}$	580	45
$\mathbf{6 5 0}$	580	45
$\mathbf{7 0 0}$	700	45
$\mathbf{7 5 0}$	700	45
$\mathbf{8 0 0}$	820	45

LEFS Series

Motorless Type

Dimensions: Ball Screw Drive
Refer to the "Motor Mounting" on page 841 for details about motor mounting and included parts.

LEFS32

Applicable motor dimensions
*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensions

Dimensions						[mm]
Stroke	L	A	B	n	D	E
50	238	56	180	4	-	-
100	288	106	230	4	-	-
150	338	156	280	4	-	-
200	388	206	330	6	2	300
250	438	256	380	6	2	300
300	488	306	430	6	2	300
350	538	356	480	8	3	450
400	588	406	530	8	3	450
450	638	456	580	8	3	450
500	688	506	630	10	4	600
550	738	556	680	10	4	600
600	788	606	730	10	4	600
650	838	656	780	12	5	750
700	888	706	830	12	5	750
750	938	756	880	12	5	750
800	988	806	930	14	6	900
850	1038	856	980	14	6	900
900	1088	906	1030	14	6	900
950	1138	956	1080	16	7	1050
1000	1188	1006	1130	16	7	1050

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA		FB	FC	FD	$\begin{gathered} \text { FE } \\ \text { (Max.) } \end{gathered}$	FF	FJ	FK
	Mounting type	Appicable motor							
NZ	M5 x 0.8	ø5.8	9	$\varnothing 70$	50	5	46	14	30 ± 1
NY	M4 x 0.7	ø4.5	8	ø70	50	5	46	11	30 ± 1
NX	M5 $\times 0.8$	ø5.8	9	ø63	40*1	4.5*1	49.7	9	20 ± 1
NW	M5 x 0.8	ø5.8	9	ø70	50	5	47.5	9	25 ± 1
NV	M4 $\times 0.7$	ø4.5	8	ø63	40*1	4.5*1	49.7	9	20 ± 1
NU	M5 x 0.8	ø5.8	9	ø70	50	5	47.5	11	23 ± 1
NT	M5 x 0.8	ø5.8	9	ø70	50	5	46	12	30 ± 1
NM1	M4 x 0.7	ø4.5	8	$\square 47.14$	38.1*1	4.5*1	21	6.35*2	20 ± 1
NM2	M4 x 0.7	ø4.5	8	$\square 50$	36*1	4.5*1	40.1	10	24 ± 1

*1 Dimensions after mounting a ring spacer (Refer to page 841.)
*2 Shaft type: D-cut shaft

Electric Actuator／Slider Type
 Ball Screw Drive

LEFS32

Positioning pin hole＊1（Option）：Body bottom

＊1 When using the body bottom positioning pin holes，do not simultaneously use the housing B bottom pin hole．

With auto switch（Option）

＊For strokes of 99 mm or less，only 2 auto switch mounting brackets can be installed on the motor side．

Dimensions	
Stroke	G
$\mathbf{5 0}$	130
$\mathbf{1 0 0}$	130
$\mathbf{1 5 0}$	130
200	280
$\mathbf{2 5 0}$	280
$\mathbf{3 0 0}$	280
$\mathbf{3 5 0}$	430
$\mathbf{4 0 0}$	430
$\mathbf{4 5 0}$	430
$\mathbf{5 0 0}$	580
$\mathbf{5 5 0}$	580
$\mathbf{6 0 0}$	580
$\mathbf{6 5 0}$	730
$\mathbf{7 0 0}$	730
$\mathbf{7 5 0}$	730
$\mathbf{8 0 0}$	880
$\mathbf{8 5 0}$	880
$\mathbf{9 0 0}$	880
$\mathbf{9 5 0}$	1030
$\mathbf{1 0 0 0}$	1030

LEFS Series

Dimensions: Ball Screw Drive
Refer to the "Motor Mounting" on page 841 for details about motor mounting and included parts.

LEFS40

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Applicable motor dimensions

Dimensions

DimensiOns						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
$\mathbf{1 5 0}$	389	156	328	4	-	150
$\mathbf{2 0 0}$	439	206	378	6	2	300
$\mathbf{2 5 0}$	489	256	428	6	2	300
$\mathbf{3 0 0}$	539	306	478	6	2	300
$\mathbf{3 5 0}$	589	356	528	8	3	450
$\mathbf{4 0 0}$	639	406	578	8	3	450
$\mathbf{4 5 0}$	689	456	628	8	3	450
$\mathbf{5 0 0}$	739	506	678	10	4	600
$\mathbf{5 5 0}$	789	556	728	10	4	600
$\mathbf{6 0 0}$	839	606	778	10	4	600
$\mathbf{6 5 0}$	889	656	828	12	5	750
$\mathbf{7 0 0}$	939	706	878	12	5	750
$\mathbf{7 5 0}$	989	756	928	12	5	750
$\mathbf{8 0 0}$	1039	806	978	14	6	900
$\mathbf{8 5 0}$	1089	856	1028	14	6	900
$\mathbf{9 0 0}$	1139	906	1078	14	6	900
$\mathbf{9 5 0}$	1189	956	1128	16	7	1050
$\mathbf{1 0 0 0}$	1239	1006	1178	16	7	1050
$\mathbf{1 1 0 0}$	1339	1106	1278	18	8	1200
$\mathbf{1 2 0 0}$	1439	1206	1378	18	8	1200

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA		FB	FC	FD	$\begin{gathered} \text { FE } \\ (\text { Max. }) \end{gathered}$	FF	FJ	FK
	Mounting type	Appicable motor							
NZ	M5 0.8	$\varnothing 5.8$	9	ø70	50	5	47.5	14	30 ± 1
NY	M4 $\times 0.7$	ø4.5	8	ø70	50	5	47.5	14	30 ± 1
NX	M5 x 0.8	$\varnothing 5.8$	9	ø63	40*1	4.5*1	51	9	20 ± 1
NW	M5 x 0.8	ø5.8	9	ø70	50	5	48.8	9	25 ± 1
NV	M4 $\times 0.7$	ø4.5	8	ø63	40*1	4.5*1	51	9	20 ± 1
NU	M5 $\times 0.8$	ø5.8	9	ø70	50	5	48.8	11	23 ± 1
NT	M5 $\times 0.8$	ø5.8	9	ø70	50	5	47.5	12	30 ± 1
NM1	M4 $\times 0.7$	๑4.5	8	$\square 47.14$	38.1*1	4.5*1	22	6.35*2	20 ± 1
NM2	M4 x 0.7	ø4.5	8	$\square 50$	36*1	4.5*1	41.4	10	24 ± 1

*1 Dimensions after mounting a ring spacer (Refer to page 841.)
*2 Shaft type: D-cut shaft

Electric Actuator／Slider Type
 Ball Screw Drive

LEFS40

Positioning pin hole＊1（Option）：Body bottom

＊1 When using the body bottom positioning pin holes，do not simultaneously use the housing B bottom pin hole．

With auto switch（Option）

Dimensions	
Stroke	G
$\mathbf{1 5 0}]$	
$\mathbf{2 0 0}$	130
$\mathbf{2 5 0}$	280
$\mathbf{3 0 0}$	280
$\mathbf{3 5 0}$	430
$\mathbf{4 0 0}$	430
$\mathbf{4 5 0}$	430
$\mathbf{5 0 0}$	580
$\mathbf{5 5 0}$	580
$\mathbf{6 0 0}$	580
$\mathbf{6 5 0}$	730
$\mathbf{7 0 0}$	730
$\mathbf{7 5 0}$	730
$\mathbf{8 0 0}$	880
$\mathbf{8 5 0}$	880
$\mathbf{9 0 0}$	880
$\mathbf{9 5 0}$	1030
$\mathbf{1 0 0 0}$	1030
$\mathbf{1 1 0 0}$	1180
$\mathbf{1 2 0 0}$	1180

LEFS Series

Motorless Type

Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 842 for details about motor mounting and included parts.

LEFS25R

Mounting type: NM1, NM2, NM3

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensions							
Stroke	L	A	B	\mathbf{n}	\mathbf{D}	\mathbf{E}	\mathbf{G}
$\mathbf{5 0}$	210.5	56	160	4	-	-	20
$\mathbf{1 0 0}$	260.5	106	210	4	-	-	35
$\mathbf{1 5 0}$	310.5	156	260	4	-	-	35
$\mathbf{2 0 0}$	360.5	206	310	6	2	240	35
$\mathbf{2 5 0}$	410.5	256	360	6	2	240	35
$\mathbf{3 0 0}$	460.5	306	410	8	3	360	35
$\mathbf{3 5 0}$	510.5	356	460	8	3	360	35
$\mathbf{4 0 0}$	560.5	406	510	8	3	360	35
$\mathbf{4 5 0}$	610.5	456	560	10	4	480	35
$\mathbf{5 0 0}$	660.5	506	610	10	4	480	35
$\mathbf{5 5 0}$	710.5	556	660	12	5	600	35
$\mathbf{6 0 0}$	760.5	606	710	12	5	600	35
$\mathbf{6 5 0}$	810.5	656	760	12	5	600	35
$\mathbf{7 0 0}$	860.5	706	810	14	6	720	35
$\mathbf{7 5 0}$	910.5	756	860	14	6	720	35
$\mathbf{8 0 0}$	960.5	806	910	16	7	840	35

Applicable motor dimensions

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA		FB	FC	FD	$\left\|\begin{array}{c} \text { FE } \\ \text { (Max.) } \end{array}\right\|$	FF	FG	FH	FJ	FK	FL
	Mounting type	Applicale motor										
NZ	M 4×0.7	ø4.5	7.5	$\varnothing 46$	30	3.7	11	-	-	8	25 ± 1	42
NY	M3 x 0.5	ø3.4	5.5	$\varnothing 45$	30	5	11	-	-	8	25 ± 1	38
NX	M4 x 0.7	ø4.5	7	ø46	30	3.7	8	-	-	8	18 ± 1	42
NM1	ø3.4	M3	-	$\square 31$	28	-	8.5	7	3.5	5*1	24 ± 1	42
NM2	ø3.4	M3	-	$\square 31$	28	-	8.5	7	3.5	6	20 ± 1	42
NM3	ø3.4	M3	-	$\square 31$	28	-	5.5	7	3.5	5*1	20 ± 1	42

*1 Shaft type: D-cut shaft

Electric Actuator／Slider Type
 Ball Screw Drive

Dimensions：Ball Screw Drive

Refer to the＂Motor Mounting＂on page 842 for details about motor mounting and included parts．

LEFS25R

Positioning pin hole＊1（Option）：Body bottom

＊1 When using the body bottom positioning pin holes，do not simultaneously use the housing B bottom pin hole．

LEFS25L

＊For strokes of 99 mm or less，only 1 auto switch mounting bracket can be installed on the motor side．

Dimensions		$[\mathrm{mm}]$
Stroke	\mathbf{G}	\mathbf{H}
$\mathbf{5 0}$	100	30
$\mathbf{1 0 0}$	100	45
$\mathbf{1 5 0}$	100	45
$\mathbf{2 0 0}$	220	45
$\mathbf{2 5 0}$	220	45
$\mathbf{3 0 0}$	340	45
$\mathbf{3 5 0}$	340	45
$\mathbf{4 0 0}$	340	45
$\mathbf{4 5 0}$	460	45
$\mathbf{5 0 0}$	460	45
$\mathbf{5 5 0}$	580	45
$\mathbf{6 0 0}$	580	45
$\mathbf{6 5 0}$	580	45
$\mathbf{7 0 0}$	700	45
$\mathbf{7 5 0}$	700	45
$\mathbf{8 0 0}$	820	45

LEFS Series

Motorless Type

Dimensions: Ball Screw Drive
Refer to the "Motor Mounting" on page 842 for details about motor mounting and included parts.

LEFS32R

Mounting type: NM1, NM2

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
$\mathbf{5 0}$	245	56	180	4	-	-
$\mathbf{1 0 0}$	295	106	230	4	-	-
$\mathbf{1 5 0}$	345	156	280	4	-	-
$\mathbf{2 0 0}$	395	206	330	6	2	300
$\mathbf{2 5 0}$	445	256	380	6	2	300
$\mathbf{3 0 0}$	495	306	430	6	2	300
$\mathbf{3 5 0}$	545	356	480	8	3	450
$\mathbf{4 0 0}$	595	406	530	8	3	450
$\mathbf{4 5 0}$	645	456	580	8	3	450
$\mathbf{5 0 0}$	695	506	630	10	4	600
$\mathbf{5 5 0}$	745	556	680	10	4	600
$\mathbf{6 0 0}$	795	606	730	10	4	600
$\mathbf{6 5 0}$	845	656	780	12	5	750
$\mathbf{7 0 0}$	895	706	830	12	5	750
$\mathbf{7 5 0}$	945	756	880	12	5	750
$\mathbf{8 0 0}$	995	806	930	14	6	900
$\mathbf{8 5 0}$	1045	856	980	14	6	900
$\mathbf{9 0 0}$	1095	906	1030	14	6	900
$\mathbf{9 5 0}$	1145	956	1080	16	7	1050
$\mathbf{1 0 0 0}$	1195	1006	1130	16	7	1050

Applicable motor dimensions

$\begin{gathered} \text { Mounting } \\ \text { type } \end{gathered}$	FA		FB	FC	FD	$\begin{aligned} & \text { FE } \\ & \text { (Max.) } \end{aligned}$	FF	FJ	FK	FL	FM
	Mounting type	$\begin{array}{\|c\|} \hline \text { Applicable } \\ \text { molor } \\ \hline \end{array}$									
NZ	M5 x 0.8	$\varnothing 5.8$	8.5	$\varnothing 70$	50	4.6	13	14	30 ± 1	60	
NY	$\mathrm{M} 4 \times 0.7$	ø4.5	8	¢70	50	4.6	13	11	30 ± 1	60	
NW	M5 x 0.8	$\varnothing 5.8$	8.5	ø70	50	4.6	13	9	25 ± 1	60	
NU	M5 x 0.8	ø5.8	8.5	¢70	50	4.6	10.6	11	23 ± 1	60	
NT	M 5×0.8	ø5.8	8.5	$\varnothing 70$	50	4.6	17	12	30 ± 1	60	-
NM1	M 4×0.7	ø4.5	5	$\square 47.14$	38.2	-	5	6.35*1	20 ± 1	56.4	5
M2	$\times 0.7$	๑4.5	8	750	38.2			10	$24+1$		7

*1 Shaft type: D-cut shaft

Electric Actuator／Slider Type
 Ball Screw Drive

Dimensions：Ball Screw Drive

Refer to the＂Motor Mounting＂on page 842 for details about motor mounting and included parts．

LEFS32R

Positioning pin hole＊1（Option）：Body bottom

＊1 When using the body bottom positioning pin holes，do not simultaneously use the housing B bottom pin hole．

With auto switch（Option）

LEFS32R

（14．5）

＊For strokes of 99 mm or less，only 1 auto switch mounting bracket can be installed on the motor side．

Dimensions	
Stroke	［mm $]$
$\mathbf{5 0}$	130
$\mathbf{1 0 0}$	130
$\mathbf{1 5 0}$	130
$\mathbf{2 0 0}$	280
$\mathbf{2 5 0}$	280
$\mathbf{3 0 0}$	280
$\mathbf{3 5 0}$	430
$\mathbf{4 0 0}$	430
$\mathbf{4 5 0}$	430
$\mathbf{5 0 0}$	580

Dimens	［mm］
Stroke	G
550	580
600	580
650	730
700	730
750	730
800	880
850	880
900	880
950	1030
1000	1030

LEFS Series

Motorless Type

Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 842 for details about motor mounting and included parts.

LEFS40R

Applicable motor dimensions

Dimensions						
Stroke	L	A	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
$\mathbf{1 5 0}$	403.4	156	328	4	-	150
$\mathbf{2 0 0}$	453.4	206	378	6	2	300
$\mathbf{2 5 0}$	503.4	256	428	6	2	300
$\mathbf{3 0 0}$	553.4	306	478	6	2	300
$\mathbf{3 5 0}$	603.4	356	528	8	3	450
$\mathbf{4 0 0}$	653.4	406	578	8	3	450
$\mathbf{4 5 0}$	703.4	456	628	8	3	450
$\mathbf{5 0 0}$	753.4	506	678	10	4	600
$\mathbf{5 5 0}$	803.4	556	728	10	4	600
$\mathbf{6 0 0}$	853.4	606	778	10	4	600
$\mathbf{6 5 0}$	903.4	656	828	12	5	750
$\mathbf{7 0 0}$	953.4	706	878	12	5	750
$\mathbf{7 5 0}$	1003.4	756	928	12	5	750
$\mathbf{8 0 0}$	1053.4	806	978	14	6	900
$\mathbf{8 5 0}$	1103.4	856	1028	14	6	900
$\mathbf{9 0 0}$	1153.4	906	1078	14	6	900
$\mathbf{9 5 0}$	1203.4	956	1128	16	7	1050
$\mathbf{1 0 0 0}$	1253.4	1006	1178	16	7	1050
$\mathbf{1 1 0 0}$	1353.4	1106	1278	18	8	1200
$\mathbf{1 2 0 0}$	1453.4	1206	1378	18	8	1200
$\mathbf{9}$						

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA		FB	FC	FD	$\begin{gathered} \text { FE } \\ (\text { Max. }) \end{gathered}$	FF	FJ	FK	FL
	Mounting type	Appicable motor								
NZ	M5 0.8	ø5.8	8.5	ø70	50	4.6	11	14	30 ± 1	60
NY	M 4×0.7	ø4.5	8	ø70	50	4.6	11	14	30 ± 1	60
NW	M 5×0.8	ø5.8	8.5	ø70	50	4.6	11	9	25 ± 1	60
NT	M5 x 0.8	$\varnothing 5.8$	8.5	ø70	50	4.6	14.5	12	30 ± 1	60

Electric Actuator／Slider Type
 Ball Screw Drive

Dimensions：Ball Screw Drive

Refer to the＂Motor Mounting＂on page 842 for details about motor mounting and included parts．

LEFS40R

Positioning pin hole＊1（Option）：Body bottom

＊1 When using the body bottom positioning pin holes，do not simultaneously use the housing B bottom pin hole．

LEFS40L

Dimensions	
Stroke	Gm $]$
$\mathbf{1 5 0}$	130
$\mathbf{2 0 0}$	280
$\mathbf{2 5 0}$	280
$\mathbf{3 0 0}$	280
$\mathbf{3 5 0}$	430
$\mathbf{4 0 0}$	430
$\mathbf{4 5 0}$	430
$\mathbf{5 0 0}$	580
$\mathbf{5 5 0}$	580
$\mathbf{6 0 0}$	580

Dimensions	
Stroke	$\mathrm{Gm}]$
650	730
700	730
750	730
800	880
850	880
900	880
950	1030
1000	1030
1100	1180
1200	1180

- This product does not include the motor and motor mounting screws. (Provided by the customer)
- Prepare a motor with a round shaft end.

For the "NM1" or "NM3," prepare a D-cut shaft.
Motor Mounting: In-line

- Take measures to prevent the loosening of the motor mounting screws and hexagon socket head set screws.

Mounting type: NZ, NY, NX, NW, NV, NU, NT, NM2

[Included parts] Hexagon

* Note for mounting a motor to the NM2 mounting type

Motor mounting screws for the LEFS25 are fixed starting from the motor flange side. (Opposite of the drawing)

Mounting type: NM1

[Included parts] Hexagon socket head set screw/MM
(Tightening torque: TT [$\mathrm{N} \cdot \mathrm{m}$])

* Note for mounting a hub to the NM1 mounting type

When mounting the hub to the motor, make sure to position the set screw vertical to the D-cut surface of the motor shaft. (Refer to the figure shown below.)

* Motor mounting screws for the LEFS25 are fixed starting from the motor flange side. (Opposite of the drawing)

Size: 25 Hub Mounting Dimensions [mm]

Mounting type	MM	TT	PD	FP
NZ	$\mathrm{M} 2.5 \times 10$	1.0	8	12.4
NY	$\mathrm{M} 2.5 \times 10$	1.0	8	12.4
NX	$\mathrm{M} 2.5 \times 10$	1.0	8	6.9
NM1	$\mathrm{M} 3 \times 4$	0.63	5	11.9
NM2	$\mathrm{M} 2.5 \times 10$	1.0	6	10

Size: 32 Hub Mounting Dimensions [mm]

Mounting type	MM	TT	PD	FP
NZ	$\mathrm{M} 3 \times 12$	1.5	14	17.5
NY	$\mathrm{M} 4 \times 12$	2.5	11	17.5
NX	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NW	$\mathrm{M} 4 \times 12$	2.5	9	13
NV	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NU	$\mathrm{M} 4 \times 12$	2.5	11	13
NT	$\mathrm{M} 3 \times 12$	1.5	12	17.5
NM1	$\mathrm{M} 4 \times 5$	1.5	6.35	5.4
NM2	$\mathrm{M} 4 \times 12$	2.5	10	12

Size: 40 Hub Mounting Dimensions [mm]

Mounting type	MM	TT	PD	FP
NZ	$\mathrm{M} 3 \times 12$	1.5	14	17.5
NY	$\mathrm{M} 3 \times 12$	1.5	14	17.5
NX	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NW	$\mathrm{M} 4 \times 12$	2.5	9	13
NV	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NU	$\mathrm{M} 4 \times 12$	2.5	11	13
NT	$\mathrm{M} 3 \times 12$	1.5	12	17.5
NM1	$\mathrm{M} 4 \times 5$	1.5	6.35	5.1
NM2	$\mathrm{M} 4 \times 12$	2.5	10	12

Included Parts List

Size: 25

Description	Quantity			
	Mounting type			
	NZ	NY	NX	NM1
NM2				

*1 For screw sizes, refer to the hub mounting dimensions.

Size: 32, 40

Description	Quantity								
	Mounting type								
	NZ	NY	NX	NW	NV	NU	NT		NM2
Motor side hub	1	1	1	1	1	1	1	1	1
Hexagon socket head cap screw/set screw (to secure the hub)* 1	1	1	1	1	1	1	1	1	1
Ring spacer	-	-	1	-	1	-	-	1	1

*1 For screw sizes, refer to the hub mounting dimensions.

Motor Mounting：Motor Parallel

Mounting type：NZ，NY，NX，NW，NU，NT，NM2

Size： 25 Pulley Mounting Dimensions［mm］

Mounting type	MM	TT	PD	FP	BT
NZ／NY	$\mathrm{M} 2.5 \times 10$	1.0	8	8	19.6
NX	$\mathrm{M} 2.5 \times 10$	1.0	8	5	19.6
NM1	$\mathrm{M} 3 \times 5$	0.63	5	12.5	19.6
NM2	$\mathrm{M} 2.5 \times 10$	1.0	6	5.5	19.6
NM3	$\mathrm{M} 3 \times 5$	0.63	5	9.5	19.6

Size： 32 Pulley Mounting Dimensions $[\mathrm{mm}]$

Mounting type	MM	TT	PD	FP	BT
NZ	$\mathrm{M} 3 \times 12$	1.5	14	6.6	49
NY	$\mathrm{M} 3 \times 12$	1.5	11	6.6	49
NW	$\mathrm{M} 4 \times 12$	2.5	9	6.6	49
NU	$\mathrm{M} 3 \times 12$	1.5	11	4.2	49
NT	$\mathrm{M} 3 \times 12$	1.5	12	10.6	49
NM1	$\mathrm{M} 3 \times 4$	0.63	6.35	10.6	49
NM2	$\mathrm{M} 3 \times 12$	1.5	10	5.1	49

Size： 40 Pulley Mounting Dimensions［mm］

Mounting type	MM	TT	PD	FP	BT
NZ／NY	$\mathrm{M} 4 \times 12$	2.5	14	4.5	98.1
NW	$\mathrm{M} 4 \times 12$	2.5	9	4.5	98.1
NT	$\mathrm{M} 4 \times 12$	2.5	12	8	98.1

Included Parts List

Size： 25

Description	Quantity
Motor flange	1
Motor side pulley	1
Cover plate	1
Timing belt	1
Hexagon socket head cap screw／set screw （to secure the pulley）＊1	1
Hexagon socket head cap screw M3 x （to secure the motor flange）	2
Round head combination screw M3 x6	4

＊1 For screw sizes，refer to the pulley mounting dimensions．

Size：32， 40

Description	Quantity	
	$\mathbf{3 2}$	$\mathbf{4 0}$
Motor flange	1	1
Motor side pulley	1	1
Cover plate	1	1
Timing belt	1	1
Hexagon socket head cap screw／set screw （to secure the pulley）＊1	1	1
Hexagon socket head cap screw M4 x 12 （to secure the motor flange）	2	4
Round head combination screw M3 x6	4	4

＊1 For screw sizes，refer to the pulley mounting dimensions．

LEFS Series

Motor Mounting Parts

Motor Flange Option

A motor can be added to the motorless specification after purchase. The applicable mounting types are shown below. (Except NM1 and NM3) Use the following part numbers to select a compatible motor flange option and place an order.

How to Order

* Select only NZ, NY, NX or NM2 for the LEFS-MF25.

Compatible Motors and Mounting Types

Applicable motor model		Size/Mounting type														
Manufacturer	Series	25						32/40								
Manufacturer		NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
YASKAWA Electric Corporation	2-V/7	-*4	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	\bullet	-	-	-	-	-	-	\bullet	-	-	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6	$\begin{gathered} \bullet \\ \hline \text { (MHMF } \\ \text { only) } \end{gathered}$	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-
FANUC CORPORATION	β is (-B)	\bullet	-	-	-	-	-	$\left\|\begin{array}{c} \bullet \\ \mid(\beta 1 \text { only } \end{array}\right\|$	-	-	\bullet	-	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	-*4	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
MinebeaMitsumi Inc.	Hybrid stepping motors	-	-	-	-*1	-	$\bullet * 3$	-	-	-	-	-	-	-	-*2	-
Shinano Kenshi Co., Ltd.	CSB-BZ	-	-	-	$\bullet * 1$	-	$\bullet * 3$	-	-	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	-	-	-	-	$\mid(46 \text { only } \mid$	-	-	-	-	-	-	-	-	-	-*2
FASTECH Co.,Ltd.	Ezi-SERVO	-	-	-	\bullet	-	-	-	-	-	-	-	-	-	$\bullet * 2$	-
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	$\underset{\text { (TL only) }}{\stackrel{\bullet}{2}}$	-	-	-	-	-	-	-	$\begin{gathered} \boldsymbol{Q}^{* * 1} \\ \text { (MPNP } \\ \text { only) } \end{gathered}$	-	-	-	$\mid \underset{(T L \text { only } y}{\bullet}$	-	-
Beckhoff Automation GmbH	AM 30/31/80/81	\bullet	-	-	-	-	-	-	-		-	$\left\|\begin{array}{c} \bullet * 1 \\ (30 \text { ony } \end{array}\right\|$	$\left\|\begin{array}{c} \bullet * 2 \\ (31 \text { ony } y \end{array}\right\|$	-	-	-
Siemens AG	SIMOTICS S-1FK7	-	-	\bullet	-	-	-	-	-	-*1	-	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
ANCA Motion	AMD2000	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-

* When the LEF $\square \square \square{ }_{\mathrm{NM} 3}^{\mathrm{NM1}} \square-\square$ is purchased, it is not possible to change to other
mounting types.
*1 Motor mounting position: In-line only
*2 Only size 32 is available when the motor mounting position is right (or left) side parallel.
*3 Motor mounting position: Right (or left) side parallel only

Dimensions：Motor Flange Option

Motor mounting position：In－line

Component Parts

No．	Description	Quantity
$\mathbf{1}$	Motor flange	1
$\mathbf{2}$	Hub（Motor side）	1
$\mathbf{3}$	Hexagon socket head cap screw（to secure the hub）	1
$\mathbf{4}$	Hexagon socket head cap screw（to mount the motor flange）	2
$\mathbf{5}$	Ring spacer（Only for NX，NV and NM2 of size 32，40）	1

For NM2
$4 \times$ FA，

Dimensions

Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	FH	FJ	FK	M1	M2	PD
25	NZ／NX	M4 $\times 0.7$	8	$\varnothing 46$	30	3.5	35.5	－	－	57.8	46.5	M 2.5×10	M 4×35	8
	NY	M3 x 0.5	8	$\varnothing 45$	30	3.5	35.5	－	－	57.8	46.5	M2．5 x 10	M 4×35	8
	NM2	$\varnothing 3.4$	－	$\square 31$	22＊1	2．5＊1	33.1	6.5	22.6	57.8	46.5	M 2.5×10	M 4×18	6
32	NZ	M5 x 0.8	9	ø70	50	5	46	－	－	69.8	61.4	M3 $\times 12$	M5 x 40	14
	NY	M4 x 0.7	8	ø70	50	5	46	－	－	69.8	61.4	M 4×12	M5 x 40	11
	NX	M5 x 0.8	9	ø63	50	5	49.7	－	－	69.8	61.4	M 4×12	M5 x 40	9
	NW	M5 x 0.8	9	ø70	50	5	47.5	－	－	69.8	61.4	M 4×12	M5 x 40	9
	NV	M4 x 0.7	8	ø63	50	5	49.7	－	－	69.8	61.4	$\mathrm{M} 4 \times 12$	M5 x 40	9
	NU	M5 x 0.8	9	$\varnothing 70$	50	5	47.5	－	－	69.8	61.4	M 4×12	M5 x 40	11
	NT	M5 x 0.8	9	$\varnothing 70$	50	5	46	－	－	69.8	61.4	M3 $\times 12$	M5 x 40	12
	NM2	M4 x 0.7	8	$\square 50$	36＊1	4．5＊1	40.1	－	－	69.8	61.4	$\mathrm{M} 4 \times 12$	M5 x 25	10
40	NZ	M5 x 0.8	9	$\varnothing 70$	50	5	47.5	－	－	89.8	66.9	M3 $\times 12$	M5 x 40	14
	NY	M4 x 0.7	8	$\varnothing 70$	50	5	47.5	－	－	89.8	66.9	M3 $\times 12$	M5 x 40	14
	NX	M5 x 0.8	9	ø63	50	5	51	－	－	89.8	66.9	$\mathrm{M} 4 \times 12$	M5 x 40	9
	NW	M5 x 0.8	9	$\varnothing 70$	50	5	48.8	－	－	89.8	66.9	$\mathrm{M} 4 \times 12$	M5 x 40	9
	NV	$\mathrm{M} 4 \times 0.7$	8	ø63	50	5	51	－	－	89.8	66.9	$\mathrm{M} 4 \times 12$	M5 x 40	9
	NU	M5 x 0.8	9	ø70	50	5	48.8	－	－	89.8	66.9	$\mathrm{M} 4 \times 12$	M5 x 40	11
	NT	M5 x 0.8	9	$\varnothing 70$	50	5	47.5	－	－	89.8	66.9	M3 $\times 12$	M5 x 40	12
	NM2	M4 x 0.7	8	$\square 50$	36＊1	4．5＊1	41.4	－	－	89.8	66.9	M 4×12	M5 x 25	10

[^2]
LEFS Series

Dimensions: Motor Flange Option

Component Parts

No.	Description	Quantity	
		Size	
		$\mathbf{2 5 , 3 2}$	$\mathbf{4 0}$
$\mathbf{1}$	Motor flange	1	1
$\mathbf{2}$	Motor pulley	1	1
$\mathbf{3}$	Hexagon socket head cap screw (to secure the pulley)	1	1
$\mathbf{4}$	Hexagon socket head cap screw (to mount the motor flange)	2	4

Motor flange details

Size 25: NM2
$2 \times$ FA
Counterbore diameter FG , depth FH

Size 32: NM2

Dimensions

Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	FH	FJ	FK	M1	M2	PD
25	NZ	$2 \times \mathrm{M} 4 \times 0.7$	7.5	ø46	30	3.7	11	-	-	42	-	M2.5 x 10	M3 x 8	8
	NY	$2 \times \mathrm{M} 3 \times 0.5$	5.5	$\varnothing 45$	30	5	11	-	-	38	-	M2.5 x 10	M3 $\times 8$	8
	NX	$2 \times \mathrm{M} 4 \times 0.7$	7	$\varnothing 46$	30	3.7	8	-	-	42	-	M 2.5×10	M3 x 8	8
	NM2	$\varnothing 3.4$	-	$\square 31$	28	-	8.5	7	3.5	42	-	M 2.5×10	M3 x 8	6
32	NZ	$2 \times \mathrm{M} 5 \times 0.8$	8.5	¢70	50	4.6	13	-	-	60	-	M 3×12	M 4×12	14
	NY	$2 \times \mathrm{M} 4 \times 0.7$	8	ø70	50	4.6	13	-	-	60	-	M3 x 12	M 4×12	11
	NW	$2 \times \mathrm{M} 5 \times 0.8$	8.5	$\varnothing 70$	50	4.6	13	-	-	60	-	M 4×12	M 4×12	9
	NU	$2 \times \mathrm{M} 5 \times 0.8$	8.5	ø70	50	4.6	10.6	-	-	60	-	M3 x 12	$\mathrm{M} 4 \times 12$	11
	NT	$2 \times \mathrm{M} 5 \times 0.8$	8.5	$\varnothing 70$	50	4.6	17	-	-	60	-	M3 $\times 12$	$\mathrm{M} 4 \times 12$	12
	NM2	M4 x 0.7	8	$\square 50$	38.2	-	11.5	-	-	60	7	M3 x 12	M 4×12	10
40	NZ	$4 \times \mathrm{M} 5 \times 0.8$	8.5	$\varnothing 70$	50	4.6	11	-	-	60	-	M 4×12	$\mathrm{M} 4 \times 12$	14
	NY	$4 \times \mathrm{M} 4 \times 0.7$	8	$\varnothing 70$	50	4.6	11	-	-	60	-	M 4×12	$\mathrm{M} 4 \times 12$	14
	NW	$4 \times \mathrm{M} 5 \times 0.8$	8.5	¢70	50	4.6	11	-	-	60	-	$\mathrm{M} 4 \times 12$	$\mathrm{M} 4 \times 12$	9
	NT	$4 \times \mathrm{M} 5 \times 0.8$	8.5	ø70	50	4.6	14.5	-	-	60	-	M 4×12	M 4×12	12

Motorless Type

Electric Actuator／Slider Type

Belt Drive／LEFB Series

Selection Procedure

Check the work load－speed． Step 2 Check the cycle time． Step 3

Check the allowable moment．

Selection Example

The model selection method shown below corresponds to SMC＇s standard motor． For use in combination with a motor from a different manufacturer，check the available product information of the motor to be used．
Operating
conditions

Step 1
Check the work load－speed．＜Speed－Work Load Graph＞
Select a model based on the workpiece mass and speed which are within the range of the actu－ ator body specifications while referencing the speed－work load graph（guide）on page 847.
Selection example）The LEFB40 $\square \mathbf{S} \mathbf{- 2 0 0 0}$ can be temporarily selected as a possible candidate based on the graph shown on the right side．
＊Refer to the selection method of motor manufacturers for regeneration resistance．

Step 2

Check the cycle time．
Calculate the cycle time using the following calculation method．
Cycle time：
T can be found from the following equation．
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$
－T1：Acceleration time and T3：Deceleration time can be found by the following equation．
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]$
－T2：Constant speed time can be found from the following equation．

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

－T4：Settling time varies depending on the motor type and load．The value below is recommended．

Calculation example）
T1 to T4 can be calculated as follows．

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=1500 / 3000=0.5[\mathrm{~s}], \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=1500 / 3000=0.5[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{2000-0.5 \cdot 1500 \cdot(0.5+0.5)}{1500} \\
& =0.83[\mathrm{~s}] \\
\mathrm{T} 4 & =0.05[\mathrm{~s}]
\end{aligned}
$$

The cycle time can be found as follows．

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.5+0.83+0.5+0.05 \\
& =1.88[\mathbf{s}]
\end{aligned}
$$

T4＝ 0.05 ［s］
＊The conditions for the settling time vary depending on the motor or driver to be used．
Step 3 Check the allowable moment．＜Static allowable moment＞（page 823－1） ＜Dynamic allowable moment＞（page 848） Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions．

Based on the above calculation result，the LEFB40 \square S－2000 should be selected．

＜Speed－Work Load Graph＞ （LEFB40）

L ：Stroke［mm］…（Operating condition）
V ：Speed［mm／s］．．．（Operating condition） a1：Acceleration［mm／s²］．．．（Operating condition） a2：Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$（Operating condition）

T1：Acceleration time［s］
Time until reaching the set speed
T2：Constant speed time［s］
Time while the actuator is operating
at a constant speed
T3：Deceleration time［s］
Time from the beginning of the constant speed operation to stop
T4：Settling time［s］
Time until positioning is completed

年药

LEFB Series

Motorless Type

Speed-Work Load Graph (Guide)

LEFB $\square / B e l t$ Drive

Cycle Time Graph (Guide)

LEFB $\square /$ Belt Drive

LEFB25/32/40

* Cycle time is for when maximum speed.
* Maximum stroke: LEFB25: 2000 mm LEFB32: 2500 mm LEFB40: 3000 mm Do not use the actuator so that it exceeds these specification ranges.

Work Load-Acceleration/Deceleration Graph (Guide)

LEFB $\square /$ Belt Drive

LEFB25 \square (Duty ratio)

LEFB32 \square (Duty ratio)

LEFB40 \square (Duty ratio)

＊This graph shows the amount of allowable overhang（guide unit）when the center of gravity of the work－ piece overhangs in one direction．When selecting the overhang，refer to the＂Calculation of Guide Load Factor＂or the Electric Actuator Model Selection Software for confirmation：https：／／www．smcworld．com
Dynamic Allowable Moment
Acceleration／Deceleration－ $1000 \mathrm{~mm} / \mathrm{s}^{2} \quad---3000 \mathrm{~mm} / \mathrm{s}^{2} \quad \cdots \cdots \cdots 5000 \mathrm{~mm} / \mathrm{s}^{2} \quad----10000 \mathrm{~mm} / \mathrm{s}^{2} \quad---\mathbf{-} \quad 20000 \mathrm{~mm} / \mathrm{s}^{2}$

LEFB Series

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LEFB
Acceleration [mm/s²]: a
Size: 25/32/40
Mounting orientation: Horizontal/Bottom/Wall

Work load [kg]: m

Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph while referencing the model, size, and mounting orientation.
3. Based on the acceleration and work load, find the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.
$\alpha \mathbf{x}=\mathbf{X c} / L \mathbf{x}, \alpha \mathbf{y}=\mathrm{Yc} / \mathrm{Ly}, \alpha z=\mathbf{Z c} / L z$
5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$, and $\alpha \mathbf{z}$ is 1 or less.
$\alpha x+\alpha y+\alpha z \leq 1$
When 1 is exceeded, consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LEFB40
Size: 40
3. $L x=\mathbf{2 5 0} \mathbf{~ m m}, L y=180 \mathrm{~mm}, \mathrm{Lz}=\mathbf{1 0 0 0} \mathbf{~ m m}$

Mounting orientation: Horizontal
Acceleration [mm/s²]: 3000
Work load [kg]: 20
Work load center position [mm]: Xc=0, Yc=50, Zc = 200
2. Select the graphs for horizontal of the LEFB40 \square on page 848.
4. The load factor for each direction can be found as follows.

$$
\alpha x=0 / 250=0
$$

$\alpha y=50 / 180=0.27$
$\alpha z=200 / 1000=0.2$
5. $\alpha x+\alpha y+\alpha z=0.47 \leq 1$

Table Accuracy（Reference Value）

Model	Traveling parallelism［mm］（Every 300 mm ）	
	1）C side traveling parallelism to A side	（2）D side traveling parallelism to B side
	0.05	0.03
LEFB32	0.05	0.03
LEFB40	0.05	0.03

＊Traveling parallelism does not include the mounting surface accuracy．

Table Displacement（Reference Value）

＊This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table．
＊Check the clearance and play of the guide separately．

Overhang Displacement Due to Table Clearance（Initial Reference Value）

Electric Actuator/Slider Type Belt Drive
 LEFB Series LeFb25, 32, 40

RoHS

How to Order

Refer to the applicable stroke table.

2 Motor mounting position	
$\mathbf{N i l}$	Top mounting
\mathbf{U}	Bottom mounting

(6) Auto switch compatibility

Nil	None
\mathbf{C}	With (Includes 1 mounting bracket)

* If 2 or more are required, please order them separately. (Part no.: LEF-D-2-1 For details, refer to page 868.)
* Order auto switches separately. (For details, refer to pages 869 t 0871 .)
* When "Nil" is selected, the product will not come with a built-in magnet tor an auto swich, and so a mounting bracket cannot be secured. Be sure to select an appropriate model initially as the product cannot be changed to have auto switch compatibility ater purchase.
3 3 Mounting type

NZ	NW	NT
NY	NV	NM1
NX	NU	NM2

7 Positioning pin hole

Nil	Housing B bottom*1	Housing B bottom
K	Body bottom 2 locations	

*1 Refer to the body mounting example on page 873 for the mounting method.

Applicable Stroke Table

- Standard/O: Produced upon receipt of order

	$\mathbf{3 0 0}$	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$	$\mathbf{6 0 0}$	$\mathbf{7 0 0}$	$\mathbf{8 0 0}$	$\mathbf{9 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{1 1 0 0}$	$\mathbf{1 2 0 0}$	$\mathbf{1 3 0 0}$	$\mathbf{1 4 0 0}$	$\mathbf{1 5 0 0}$	$\mathbf{1 6 0 0}$	$\mathbf{1 7 0 0}$	$\mathbf{1 8 0 0}$	$\mathbf{1 9 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{2 5 0 0}$	$\mathbf{3 0 0 0}$
LEFB25	\bullet	\bigcirc	\bullet	\bigcirc	\bigcirc	\bullet	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bullet	-	-							
LEFB32	\bullet	\bigcirc	\bullet	\bullet	\bigcirc	\bigcirc	\bullet	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bullet								
LEFB40	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	-													

* Please consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.

Compatible Motors and Mounting Types

Applicable motor model		Size/Mounting type													
Manufacturer	Series	25					32/40								
		NZ	NY	NX	NM1	NM2	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
YASKAWA Electric Corporation	$\Sigma-\mathrm{V} / 7$	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6		\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
FANUC CORPORATION	β is (-B)	\bigcirc	-	-	-	-	(31 only)	-	-	\bigcirc	-	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
MinebeaMitsumi Inc.	Hybrid stepping motors	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	-
Shinano Kenshi Co., Ltd.	CSB-BZ	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	-	-	-	-	$\underset{(46 \text { only })}{\bullet}$	-	-	-	-	-	-	-	-	\bigcirc
FASTECH Co., Ltd.	Ezi-SERVO	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	-
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	(TL only)	-	-	-	-	-	-		-	-	-	(TL only)	-	-
Beckhoff Automation GmbH	AM 30/31/80/81	\bigcirc	-	-	-	-	-	-	(80/81 only)	-	$(30 \text { only })$	(31 only)	-	-	-
Siemens AG	SIMOTICS S-1FK7	-	-	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
ANCA Motion	AMD2000	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-

Electric Actuator／Slider Type
 Belt Drive LEFB Series
 Motorless Type

Specifications＊2
－Values in this specifications table are the allowable values of the actuator body with the standard motor mounted．
－Do not use the actuator so that it exceeds these values．

Model			LEFB25	LEFB32	LEFB40
$\stackrel{0}{\circ}$	Stroke［mm］＊1		$\begin{gathered} 300,400,500 \\ 600,700,800 \\ 900,1000,(11100) \\ 1200,(1300,1400) \\ 1500,(1600,1700) \\ (1800,1900), 2000 \end{gathered}$	$\begin{gathered} 300,400,500 \\ 600,700,800 \\ 900,1000,(11100) \\ 1200,(1300,1400) \\ 1500,(1600,1700) \\ (1800,1900,2000 \\ 2500 \end{gathered}$	$\begin{gathered} 300,400,500 \\ 600,700,800 \\ 900,1000,(1100) \\ 1200,(1300,1400) \\ 1500,(1600,1700) \\ (1800,1900), 2000 \\ 2500,3000 \end{gathered}$
	Work load［kg］	Horizontal	5	15	25
	Speed［mm／s］		2000		
	Pushing return to origin speed［mm／s］		30 or less		
	Positioning repeatability［mm］		± 0.06		
	Lost motion［mm］＊3		0.1 or less		
	Equivalent lead［mm］		54		
	Max．acceleration／deceleration［ $\mathrm{mm} / \mathrm{s}^{2}$ ］		20000＊4		
	Impact／Vibration resistance［m／s²］		50／20		
	Actuation type		Belt		
	Guide type		Linear guide		
	Static allowable moment＊5 ［ $\mathrm{N} \cdot \mathrm{m}$ ］	Mep（Pitching）	27	46	110
		Mey（Yawing）	27	46	110
		Mer（Rolling）	52	101	207
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		5 to 40		
	Operating humidity range［\％RH］		90 or less（No condensation）		
	Actuation unit weight［kg］		0.2	0.3	0.55
	Other inertia $\left[\mathrm{kg} \cdot \mathrm{cm}^{2}\right]$		0.1	0.2	0.25
	Friction coefficient		0.05		
	Mechanical efficiency		0.8		
	Motor type		AC servo motor（ $100 \mathrm{~V} / 200 \mathrm{~V}$ ）		
	Rated output capacity［W］		100	200	400
	Rated torque［ $\mathrm{N} \cdot \mathrm{m}$ ］		0.32	0.64	1.3

＊1 Please consult with SMC as all non－standard and non－made－to－order strokes are produced as special orders．
＊2 Do not allow collisions at either end of the table traveling distance at a speed exceeding＂pushing return to origin speed．＂
Additionally，when running the positioning operation，do not set within 3 mm of both ends．
＊3 A reference value for correcting an error in reciprocal operation
＊4 Maximum acceleration／deceleration changes according to the work load．
Refer to the＂Work Load－Acceleration／Deceleration Graph（Guide）＂for belt drive on page 847
＊5 The static allowable moment is the amount of static moment which can be applied to the actuator when it is stopped．
If the product is exposed to impact or repeated load，be sure to take adequate safety measures when using the product．
＊6 Each value is only to be used as a guide to select a motor of the appropriate capacity．
＊7 For other specifications，refer to the specifications of the motor that is to be installed．

Weight

Model																		
Stroke $[\mathrm{mm}]$	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000
Product weight $[\mathrm{kg}]$	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	5.5	5.75	6	6.25	6.5	6.75

Model	LEFB32																		
Stroke［mm］	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500
Product weight［kg］	4.00	4.35	4.70	5.05	5.40	5.75	6.10	6.45	6.80	7.15	7.50	7.85	8.20	8.55	8.90	9.25	9.60	9.95	11.70

Model	LEFB40																			
Stroke［mm］	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500	3000
Product weight［kg］	5.72	6.17	6.62	7.07	7.52	7.97	8.42	8.87	9.32	9.77	10.22	10.67	11.12	11.57	12.02	12.47	12.92	13.32	15.62	17.87

LEFB Series

Motorless Type

Dimensions: Belt Drive
Refer to the "Motor Mounting" on page 865 for details about motor mounting and included parts.

LEFB25/Motor top mounting type

Mounting type: NM1, NM2
Mounting type: NZ, NY, NX

Applicable motor dimensions

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
$\mathbf{3 0 0}$	552	306	467	6	2	340
$\mathbf{4 0 0}$	652	406	567	8	3	510
$\mathbf{5 0 0}$	752	506	667	8	3	510
$\mathbf{6 0 0}$	852	606	767	10	4	680
$\mathbf{7 0 0}$	952	706	867	10	4	680
$\mathbf{8 0 0}$	1052	806	967	12	5	850
$\mathbf{9 0 0}$	1152	906	1067	14	6	1020
$\mathbf{1 0 0 0}$	1252	1006	1167	14	6	1020
$\mathbf{1 1 0 0}$	1352	1106	1267	16	7	1190
$\mathbf{1 2 0 0}$	1452	1206	1367	16	7	1190
$\mathbf{1 3 0 0}$	1552	1306	1467	18	8	1360
$\mathbf{1 4 0 0}$	1652	1406	1567	20	9	1530
$\mathbf{1 5 0 0}$	1752	1506	1667	20	9	1530
$\mathbf{1 6 0 0}$	1852	1606	1767	22	10	1700
$\mathbf{1 7 0 0}$	1952	1706	1867	22	10	1700
$\mathbf{1 8 0 0}$	2052	1806	1967	24	11	1870
$\mathbf{1 9 0 0}$	2152	1906	2067	24	11	1870
$\mathbf{2 0 0 0}$	2252	2006	2167	26	12	2040
$\mathbf{8}$						

Dimensions：Belt Drive

LEFB25／Motor top mounting type

Positioning pin hole＊1（Option）：Body bottom

＊1 When using the body bottom positioning pin holes，do not simultaneously use the housing B bottom pin hole．

With auto switch（Option）

Dimensions	
Stroke	G
$\mathbf{3 0 0}$	320
$\mathbf{4 0 0}$	490
$\mathbf{5 0 0}$	490
$\mathbf{6 0 0}$	660
$\mathbf{7 0 0}$	660
$\mathbf{8 0 0}$	830
$\mathbf{9 0 0}$	1000
$\mathbf{1 0 0 0}$	1000
$\mathbf{1 1 0 0}$	1170
$\mathbf{1 2 0 0}$	1170
$\mathbf{1 3 0 0}$	1340
$\mathbf{1 4 0 0}$	1510
$\mathbf{1 5 0 0}$	1510
$\mathbf{1 6 0 0}$	1680
$\mathbf{1 7 0 0}$	1680
$\mathbf{1 8 0 0}$	1850
$\mathbf{1 9 0 0}$	1850
$\mathbf{2 0 0 0}$	2020

LEFB Series

Motorless Type

Dimensions: Belt Drive
Refer to the "Motor Mounting" on page 865 for details about motor mounting and included parts.

Mounting type: NZ, NY, NX

Mounting type: NM1, NM2
*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

FI x FA
FG depth of counterbore FH

* Spot facing is on the reverse side.

Motor mating part: \varnothing FD, depth $\mathbf{F E}$

Applicable motor dimensions

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA		FB	FC	FD	$\binom{\text { FE }}{(\text { Max. })}$	FF	FG	FH	FI	FJ	FK
	Mounting type	Appicable motor										
NZ	M 4×0.7	ø4.5	8	ø46	30	3.5	27	-	-	2	8	25 ± 1
NY	M3 0.5	ø3.4	8	ø45	30	3.5	27	-	-	4	8	25 ± 1
NX	M 4×0.7	ø4.5	8	ø46	30	3.5	27	-	-	2	8	18 ± 1
NM1	ø3.4	M3	-	$\square 31$	22*1	2.5*1	27	6	21	4	5*2	18 to 25
NM2	ø3.4	M3	-	$\square 31$	22*1	2.5*1	27	6	21	4	6	20 ± 1

*1 Dimensions after mounting a ring spacer (Refer to page 865.)
*2 Shaft type: D-cut shaft

Dimensions: Belt Drive

LEFB25U/Motor bottom mounting type

Positioning pin hole*1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

| Dimensions | |
| :---: | :---: | [mm] | Stroke | \boldsymbol{G} |
| :---: | :---: |
| $\mathbf{3 0 0}$ | 320 |
| $\mathbf{4 0 0}$ | 490 |
| $\mathbf{5 0 0}$ | 490 |
| $\mathbf{6 0 0}$ | 660 |
| $\mathbf{7 0 0}$ | 660 |
| $\mathbf{8 0 0}$ | 830 |
| $\mathbf{9 0 0}$ | 1000 |
| $\mathbf{1 0 0 0}$ | 1000 |
| $\mathbf{1 1 0 0}$ | 1170 |
| $\mathbf{1 2 0 0}$ | 1170 |
| $\mathbf{1 3 0 0}$ | 1340 |
| $\mathbf{1 4 0 0}$ | 1510 |
| $\mathbf{1 5 0 0}$ | 1510 |
| $\mathbf{1 6 0 0}$ | 1680 |
| $\mathbf{1 7 0 0}$ | 1680 |
| $\mathbf{1 8 0 0}$ | 1850 |
| $\mathbf{1 9 0 0}$ | 1850 |
| $\mathbf{2 0 0 0}$ | 2020 |

LEFB Series

Motorless Type

Dimensions: Belt Drive
Refer to the "Motor Mounting" on page 865 for details about motor mounting and included parts.

LEFB32/Motor top mounting type

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensions

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
$\mathbf{3 0 0}$	590	306	430	6	2	400
$\mathbf{4 0 0}$	690	406	530	6	2	400
$\mathbf{5 0 0}$	790	506	630	8	3	600
$\mathbf{6 0 0}$	890	606	730	8	3	600
$\mathbf{7 0 0}$	990	706	830	10	4	800
$\mathbf{8 0 0}$	1090	806	930	10	4	800
$\mathbf{9 0 0}$	1190	906	1030	12	5	1000
$\mathbf{1 0 0 0}$	1290	1006	1130	12	5	1000
$\mathbf{1 1 0 0}$	1390	1106	1230	14	6	1200
$\mathbf{1 2 0 0}$	1490	1206	1330	14	6	1200
$\mathbf{1 3 0 0}$	1590	1306	1430	16	7	1400
$\mathbf{1 4 0 0}$	1690	1406	1530	16	7	1400
$\mathbf{1 5 0 0}$	1790	1506	1630	18	8	1600
$\mathbf{1 6 0 0}$	1890	1606	1730	18	8	1600
$\mathbf{1 7 0 0}$	1990	1706	1830	20	9	1800
$\mathbf{1 8 0 0}$	2090	1806	1930	20	9	1800
$\mathbf{1 9 0 0}$	2190	1906	2030	22	10	2000
$\mathbf{2 0 0 0}$	2290	2006	2130	22	10	2000
$\mathbf{2 5 0 0}$	2790	2506	2630	28	13	2600
$\mathbf{8 5}$						

Applicable motor dimensions

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	Mounting type		Applicale motor	FB	FC	FD	FE (Max.)	FF	FJ
NZ	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 70$	50	4	95.5	14	30 ± 1
NY	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	$\varnothing 70$	50	4	95.5	11	30 ± 1
NX	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 63$	$40^{* 1}$	$4.5^{* 1}$	99.2	9	20 ± 1
NW	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 70$	50	5	96.5	9	25 ± 1
NV	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	$\varnothing 63$	$40^{* 1}$	$4.5^{* 1}$	99.2	9	20 ± 1
NU	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 70$	50	5	96.5	11	23 ± 1
NT	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 70$	50	4	95.5	12	30 ± 1
NM1	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	$\square 47.14$	$38.1^{* 1}$	$4.5^{* 1}$	82.5	$6.35^{* 2}$	20 ± 1
NM2	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	$\square 50$	$36^{* 1}$	$4.5^{* 1}$	90.0	10	24 ± 1

*1 Dimensions after mounting a ring spacer (Refer to page 865.)
*2 Shaft type: D-cut shaft

Dimensions：Belt Drive

Refer to the＂Motor Mounting＂on page 865 for details about motor mounting and included parts．

LEFB32／Motor top mounting type

Positioning pin hole＊1（Option）：Body bottom

＊1 When using the body bottom positioning pin holes，do not simultaneously use the housing B bottom pin hole．

With auto switch（Option）

Dimensions	
Stroke	G
$\mathbf{3 0 0}$	380
$\mathbf{4 0 0}$	380
$\mathbf{5 0 0}$	580
$\mathbf{6 0 0}$	580
$\mathbf{7 0 0}$	780
$\mathbf{8 0 0}$	780
$\mathbf{9 0 0}$	980
$\mathbf{1 0 0 0}$	980
$\mathbf{1 1 0 0}$	1180
$\mathbf{1 2 0 0}$	1180
$\mathbf{1 3 0 0}$	1380
$\mathbf{1 4 0 0}$	1380
$\mathbf{1 5 0 0}$	1580
$\mathbf{1 6 0 0}$	1580
$\mathbf{1 7 0 0}$	1780
$\mathbf{1 8 0 0}$	1780
$\mathbf{1 9 0 0}$	1980
$\mathbf{2 0 0 0}$	1980
$\mathbf{2 5 0 0}$	2580

LEFB Series

Motorless Type

Dimensions: Belt Drive
Refer to the "Motor Mounting" on page 865 for details about motor mounting and included parts.

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensions

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
$\mathbf{3 0 0}$	590	306	430	6	2	400
$\mathbf{4 0 0}$	690	406	530	6	2	400
$\mathbf{5 0 0}$	790	506	630	8	3	600
$\mathbf{6 0 0}$	890	606	730	8	3	600
$\mathbf{7 0 0}$	990	706	830	10	4	800
$\mathbf{8 0 0}$	1090	806	930	10	4	800
$\mathbf{9 0 0}$	1190	906	1030	12	5	1000
$\mathbf{1 0 0 0}$	1290	1006	1130	12	5	1000
$\mathbf{1 1 0 0}$	1390	1106	1230	14	6	1200
$\mathbf{1 2 0 0}$	1490	1206	1330	14	6	1200
$\mathbf{1 3 0 0}$	1590	1306	1430	16	7	1400
$\mathbf{1 4 0 0}$	1690	1406	1530	16	7	1400
$\mathbf{1 5 0 0}$	1790	1506	1630	18	8	1600
$\mathbf{1 6 0 0}$	1890	1606	1730	18	8	1600
$\mathbf{1 7 0 0}$	1990	1706	1830	20	9	1800
$\mathbf{1 8 0 0}$	2090	1806	1930	20	9	1800
$\mathbf{1 9 0 0}$	2190	1906	2030	22	10	2000
$\mathbf{2 0 0 0}$	2290	2006	2130	22	10	2000
$\mathbf{2 5 0 0}$	2790	2506	2630	28	13	2600
$\mathbf{8}$						

Applicable motor dimensions

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA								
Mounting type	Aøplicable motor	FB	FC	FD	FE (Max.)	FF	FJ	FK	
NZ	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 70$	50	4	37.5	14	30 ± 1
NY	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	$\varnothing 70$	50	4	37.5	11	30 ± 1
NX	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 63$	$40^{* 1}$	$4.5^{* 1}$	41.2	9	20 ± 1
NW	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 70$	50	5	38.5	9	25 ± 1
NV	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	$\varnothing 63$	$40^{* 1}$	$4.5^{* 1}$	41.2	9	20 ± 1
NU	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 70$	50	5	38.5	11	23 ± 1
NT	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 70$	50	4	37.5	12	30 ± 1
NM1	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	$\square 47.14$	$38.1^{* 1}$	$4.5^{* 1}$	24.5	$6.35^{* 2}$	20 ± 1
NM2	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	$\square 50$	$36^{* 1}$	$4.5^{* 1}$	32.0	10	24 ± 1

*1 Dimensions after mounting a ring spacer (Refer to page 865.)
*2 Shaft type: D-cut shaft

Dimensions: Belt Drive

LEFB32U/Motor bottom mounting type

Positioning pin hole*1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

Dimensions	
Stroke	$\mathrm{Gm}]$
300	380
400	380
500	580
600	580
700	780
800	780
900	980
1000	980
1100	1180
1200	1180
1300	1380
1400	1380
1500	1580
1600	1580
1700	1780
1800	1780
1900	1980
2000	1980
2500	2580

LEFB Series

Motorless Type

Dimensions: Belt Drive
Refer to the "Motor Mounting" on page 865 for details about motor mounting and included parts.

LEFB40/Motor top mounting type

Belt tension adjustment bolt (

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensions

Applicable motor dimensions

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA		FB	FC	FD	$\begin{gathered} \text { FE } \\ (\text { Max. }) \end{gathered}$	FF	FJ	FK
	Mounting type	$\begin{gathered} \text { Applicable } \\ \text { motor } \end{gathered}$							
NZ	M5 x 0.8	ø5.8	9	ø70	50	4	100	14	30 ± 1
NY	M4 x 0.7	ø4.5	8	ø70	50	4	100	14	30 ± 1
NX	M5 x 0.8	ø5.8	9	ø63	40*1	4.5*1	103.2	9	20 ± 1
NW	M5 x 0.8	ø5.8	9	¢70	50	5	101	9	25 ± 1
NV	M4 x 0.7	ø4.5	8	ø63	40*1	4.5*1	103.2	9	20 ± 1
NU	M5 x 0.8	$\varnothing 5.8$	9	ø70	50	5	101	11	23 ± 1
NT	M5 0.8	ø5.8	9	ø70	50	4	100	12	30 ± 1
NM1	M4 x 0.7	ø4.5	8	$\square 47.14$	38.1*1	4.5*1	87	6.35*2	20 ± 1
NM2	M4 x 0.7	ø4.5	8	$\square 50$	36*1	4.5*1	94.0	10	24 ± 1

*1 Dimensions after mounting a ring spacer (Refer to page 865.)
*2 Shaft type: D-cut shaft

Dimensions: Belt Drive

LEFB40/Motor top mounting type

Positioning pin hole*1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

Dimensions	
Stroke	$\mathrm{Gm}]$
$\mathbf{3 0 0}$	380
400	380
500	580
$\mathbf{6 0 0}$	580
$\mathbf{7 0 0}$	780
$\mathbf{8 0 0}$	780
$\mathbf{9 0 0}$	980
$\mathbf{1 0 0 0}$	980
$\mathbf{1 1 0 0}$	1180
$\mathbf{1 2 0 0}$	1180
$\mathbf{1 3 0 0}$	1380
$\mathbf{1 4 0 0}$	1380
$\mathbf{1 5 0 0}$	1580
$\mathbf{1 6 0 0}$	1580
$\mathbf{1 7 0 0}$	1780
$\mathbf{1 8 0 0}$	1780
$\mathbf{1 9 0 0}$	1980
2000	1980
$\mathbf{2 5 0 0}$	2580
$\mathbf{3 0 0 0}$	2980

LEFB Series

Motorless Type

Dimensions: Belt Drive
Refer to the "Motor Mounting" on page 865 for details about motor mounting and included parts.

Dimensions

Stroke	L	A	B	n	D	E
300	641.5	306	478	6	2	400
400	741.5	406	578	6	2	400
500	841.5	506	678	8	3	600
600	941.5	606	778	8	3	600
700	1041.5	706	878	10	4	800
800	1141.5	806	978	10	4	800
900	1241.5	906	1078	12	5	1000
1000	1341.5	1006	1178	12	5	1000
1100	1441.5	1106	1278	14	6	1200
1200	1541.5	1206	1378	14	6	1200
1300	1641.5	1306	1478	16	7	1400
1400	1741.5	1406	1578	16	7	1400
1500	1841.5	1506	1678	18	8	1600
1600	1941.5	1606	1778	18	8	1600
1700	2041.5	1706	1878	20	9	1800
1800	2141.5	1806	1978	20	9	1800
1900	2241.5	1906	2078	22	10	2000
2000	2341.5	2006	2178	22	10	2000
2500	2841.5	2506	2678	28	13	2600
3000	3341.5	3006	3178	32	15	3000

Motor Mounting, Applicable Motor Dimensions
[mm]

Mounting type	FA		FB	FC	FD	FE (Max.)	FF	FJ	FK
	Mounting type	Appicable motor							
NZ	M5 x 0.8	ø5.8	9	$\varnothing 70$	50	4	34	14	30 ± 1
NY	M 4×0.7	ø4.5	8	ø70	50	4	34	14	30 ± 1
NX	M5 $\times 0.8$	ø5.8	9	ø63	40*1	4.5*1	37.2	9	20 ± 1
NW	M5 x 0.8	ø5.8	9	ø70	50	5	35	9	25 ± 1
NV	M 4×0.7	ø4.5	8	ø63	40*1	4.5*1	37.2	9	20 ± 1
NU	M5 x 0.8	ø5.8	9	$\varnothing 70$	50	5	35	11	23 ± 1
NT	M5 x 0.8	ø5.8	9	$\varnothing 70$	50	4	34	12	30 ± 1
NM1	M 4×0.7	ø4.5	8	$\square 47.14$	38.1*1	4.5*1	21	6.35*2	20 ± 1
NM2	M 4×0.7	ø4.5	8	$\square 50$	36*1	4.5*1	28.0	10	24 ± 1

*1 Dimensions after mounting a ring spacer (Refer to page 865.)
*2 Shaft type: D-cut shaft

Dimensions: Belt Drive

Refer to the "Motor Mounting" on page 865 for details about motor mounting and included parts.

LEFB40U/Motor bottom mounting type

Positioning pin hole *1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

Dimensions	
Stroke	Gm
$\mathbf{3 0 0}$	380
$\mathbf{4 0 0}$	380
$\mathbf{5 0 0}$	580
$\mathbf{6 0 0}$	580
$\mathbf{7 0 0}$	780
$\mathbf{8 0 0}$	780
$\mathbf{9 0 0}$	980
$\mathbf{1 0 0 0}$	980
$\mathbf{1 1 0 0}$	1180
$\mathbf{1 2 0 0}$	1180
$\mathbf{1 3 0 0}$	1380
$\mathbf{1 4 0 0}$	1380
$\mathbf{1 5 0 0}$	1580
$\mathbf{1 6 0 0}$	1580
$\mathbf{1 7 0 0}$	1780
$\mathbf{1 8 0 0}$	1780
$\mathbf{1 9 0 0}$	1980
$\mathbf{2 0 0 0}$	1980
$\mathbf{2 5 0 0}$	2580
$\mathbf{3 0 0 0}$	2980

- When mounting a hub, remove all oil content, dust, and dirt adhered to the shaft and the inside of the hub.
- This product does not include the motor and motor mounting screws. (Provided by the customer)
- Prepare a motor with a round shaft end.

For the "NM1," prepare a D-cut shaft.

- Take measures to prevent the loosening of the motor mounting screws and hexagon socket head set screws.

Mounting type: NZ, NY, NX, NW, NV, NU, NT, NM2

Mounting type: NM1

* Note for mounting a motor to the NM2 mounting type Motor mounting screws for the LEFB25 are fixed starting from the motor flange side. (Opposite of the drawing)
* Note for mounting a hub to the NM1 mounting type When mounting the hub to the motor, make sure to position the set screw vertical to the D-cut surface of the motor shaft. (Refer to the figure shown below)
* Motor mounting screws for the LEFB25 are fixed starting from the motor flange side. (Opposite of the drawing)

Motor Mounting Diagram

Mounting type: NZ, NY, NW, NU, NT

Mounting procedure

1) Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head cap screw.
2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
3) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).

Mounting type: NX, NV, NM1, NM2

Mounting procedure

1) Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head cap screw (Mounting type: NX, NV, NM2) or MM hexagon socket head set screw (Mounting type: NM1).
2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
3) Mount the ring spacer to the motor.
4) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).

* For the LEFB25

4) Remove the motor flange, which has been temporarily mounted, from the housing B, and secure the motor to the motor flange using the motor mounting screws (that are to be prepared by the customer).
5) Tighten the motor flange to the housing B using motor flange mounting screws (included parts).

Match the convex part of the motor hub to the concave part of the spider that is mounted on the body side hub.

Spider [Built-in parts]

Size: 40 Hub Mounting Dimensions [mm]

Mounting type	MM	TT	PD	FP
NZ	$\mathrm{M} 3 \times 12$	1.5	14	17.5
NY	$\mathrm{M} 3 \times 12$	1.5	14	17.5
NX	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NW	$\mathrm{M} 4 \times 12$	2.5	9	13
NV	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NU	$\mathrm{M} 4 \times 12$	2.5	11	13
NT	$\mathrm{M} 3 \times 12$	1.5	12	17.5
NM1	$\mathrm{M} 4 \times 5$	1.5	6.35	5
NM2	$\mathrm{M} 4 \times 12$	2.5	10	12

Included Parts List

Size: 32 Hub Mounting Dimensions [mm]

Mounting type	MM	TT	PD	FP
NZ	$\mathrm{M} 3 \times 12$	1.5	14	17.5
NY	$\mathrm{M} 4 \times 12$	2.5	11	17.5
NX	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NW	$\mathrm{M} 4 \times 12$	2.5	9	12.5
NV	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NU	$\mathrm{M} 4 \times 12$	2.5	11	12.5
NT	$\mathrm{M} 3 \times 12$	1.5	12	17.5
NM1	$\mathrm{M} 4 \times 5$	1.5	6.35	4.5
NM2	$\mathrm{M} 4 \times 12$	2.5	10	12

Size: 32, 40

Description	Quantity								
	Mounting type								
	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Motor side hub	1	1	1	1	1	1	1	1	1
Hexagon socket head cap screw/set screw (to secure the hub)*1	1	1	1	1	1	1	1	1	1
Ring spacer	-	-	1	-	1	-	-	1	1

[^3]Size: 25

Description	Quantity				
	Mounting type				
	NZ	NY	NX	NM1	
	NM2				
	1	1	1	1	

*1 For screw sizes, refer to the hub mounting dimensions.

LEFB Series
 Motor Mounting Parts

Motor Flange Option

After purchasing the product，the motor can be changed to the mounting types shown below by replacing with this option．（Except NM1） Use the following part numbers to select a compatible motor flange option and place an order．

How to Order

1 Size
$\mathbf{2 5}$
$\mathbf{3 2}$
$\mathbf{4 0}$

（2）Mounting type

$N Z$	NV
NY	NU
NX	NT
NW	NM2

＊Select only NZ，NY，NX or NM2 for the LEFB－MF25．

Compatible Motors and Mounting Types

Applicable motor model		Size／Mounting type													
Manufacturer	Series	25					32／40								
		NZ	NY	NX	NM1	NM2	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN／44／J5	\bullet	－	－	－	－	\bullet	－	－	－	－	－	－	－	－
YASKAWA Electric Corporation	г－V／7	\bullet	－	－	－	－	\bullet	－	－	－	－	－	－	－	－
SANYO DENKI CO．，LTD．	SANMOTION R	\bullet	－	－	－	－	\bullet	－	－	－	－	－	－	－	－
OMRON Corporation	OMNUC G5／1S	－	－	－	－	－	－	－	－	－	－	－	－	－	－
Panasonic Corporation	MINAS A5／A6	$\begin{gathered} \bullet \\ \text { (MHMF } \\ \text { only) } \end{gathered}$	－	－	－	－	－	\bullet	－	－	－	－	－	－	－
FANUC CORPORATION	β is（－B）	\bullet	－	－	－	－	$\underset{(\beta 1 \text { only) })}{\bullet}$	－	－	\bullet	－	－	－	－	－
NIDEC SANKYO CORPORATION	S－FLAG	\bullet	－	－	－	－	\bullet	－	－	－	－	－	－	－	－
KEYENCE CORPORATION	SV／SV2	\bullet	－	－	－	－	\bullet	－	－	－	－	－	－	－	－
FUJI ELECTRIC CO．，LTD．	ALPHA7	\bullet	－	－	－	－	\bullet	－	－	－	－	－	－	－	－
MinebeaMitsumi Inc．	Hybrid stepping motors	－	－	－	\bullet	－	－	－	－	－	－	－	－	\bullet	－
Shinano Kenshi Co．，Ltd．	CSB－BZ	－	－	－	\bullet	－	－	－	－	－	－	－	－	－	－
ORIENTAL MOTOR Co．，Ltd．	α STEP AR／AZ	－	－	－	－	$\underset{(46 \text { only) }}{\bullet}$	－	－	－	－	－	－	－	－	\bullet
FASTECH Co．，Ltd．	Ezi－SERVO	－	－	－	\bullet	－	－	－	－	－	－	－	－	－	－
Rockwell Automation，Inc． （Allen－Bradley）	Kinetix MP／VP／TL	(TL only)	－	－	－	－	－	－	$\underset{\substack{\bullet \\ \text { (MPNP } \\ \text { only) }}}{\bullet}$	－	－	－	(TL only)	－	－
Beckhoff Automation GmbH	AM 30／31／80／81	\bullet	－	－	－	－	－	－	（80／81 only）	－	$\text { (} 30 \text { only) }$	$\underset{(31 \stackrel{\bullet}{\circ} l y)}{\stackrel{\rightharpoonup}{2}}$	－	－	－
Siemens AG	SIMOTICS S－1FK7	－	－	－	－	－	－	－	－	－	－	－	－	－	－
Delta Electronics，Inc．	ASDA－A2	\bullet	－	－	－	－	\bullet	－	－	－	－	－	－	－	－
ANCA Motion	AMD2000	\bullet	－	－	－	－	\bullet	－	－	－	－	－	－	－	－

[^4]
LEFB Series

Dimensions: Motor Flange Option

Component Parts

No.	Description	Quantity
$\mathbf{1}$	Motor flange	1
2	Hub (Motor side)	1
$\mathbf{3}$	Hexagon socket head cap screw (to secure the hub)	1
4	Hexagon socket head cap screw (to mount the motor flange)	2
5	Ring spacer (Only for mounting types "NM2" in size 25 and "NX," "NV," and "NM2" in sizes 32 and 40)	1

For NM2

$4 \times$ FA,
$\xrightarrow{\text { Counterbore diameter FG, depth FH }}$

* Spot facing is on the reverse side

Dimensions

Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	FH	FJ	FK	M1	M2	PD
25	NZ/NX	M4 x 0.7	8	ه46	30	3.5	31.5	-	-	57.8	65.5	M2.5 x 10	M4 x 30	8
	NY	M3 x 0.5	8	$\varnothing 45$	30	3.5	31.5	-	-	57.8	65.5	M 2.5×10	M 4×30	8
	NM2	$\varnothing 3.4$	-	$\square 31$	22*1	2.5*1	31.5	6	21	57.8	65.5	M 2.5×10	M 4×30	6
32	NZ	M5 x 0.8	9	$\varnothing 70$	50	4	44	-	-	69.8	83.5	M3 $\times 12$	M5 x 45	14
	NY	M4 x 0.7	8	ø70	50	4	44	-	-	69.8	83.5	M 4×12	M5 x 45	11
	NX	M5 x 0.8	9	ø63	50	5	47.7	-	-	69.8	83.5	M 4×12	M5 x 45	9
	NW	M5 x 0.8	9	$\varnothing 70$	50	5	45	-	-	69.8	83.5	$\mathrm{M} 4 \times 12$	M5 x 45	9
	NV	M4 $\times 0.7$	8	ø63	50	5	47.7	-	-	69.8	83.5	M 4×12	M5 x 45	9
	NU	M5 $\times 0.8$	9	$\varnothing 70$	50	5	45	-	-	69.8	83.5	$\mathrm{M} 4 \times 12$	M5 x 45	11
	NT	M5 $\times 0.8$	9	$\varnothing 70$	50	4	44	-	-	69.8	83.5	M3 x 12	M5 x 45	12
	NM2	M4 x 0.7	8	$\square 50$	36*1	4.5*1	38.5	-	-	69.8	83.5	$\mathrm{M} 4 \times 12$	M 5×25	10
40	NZ	M5 x 0.8	9	$\varnothing 70$	50	4	44	-	-	89.8	85	M3 x 12	M5 x 45	14
	NY	M 4×0.7	8	$\varnothing 70$	50	4	44	-	-	89.8	85	M3 $\times 12$	M5 x 45	14
	NX	M5 x 0.8	9	ø63	50	5	47.2	-	-	89.8	85	$\mathrm{M} 4 \times 12$	M5 x 45	9
	NW	M5 $\times 0.8$	9	$\varnothing 70$	50	5	45	-	-	89.8	85	$\mathrm{M} 4 \times 12$	M5 x 45	9
	NV	M4 x 0.7	8	ø63	50	5	47.2	-	-	89.8	85	$\mathrm{M} 4 \times 12$	M 5×45	9
	NU	M5 x 0.8	9	$\varnothing 70$	50	5	45	-	-	89.8	85	M 4×12	M5 x 45	11
	NT	M5 x 0.8	9	$\varnothing 70$	50	4	44	-	-	89.8	85	M 3×12	M5 x 45	12
	NM2	$\mathrm{M} 4 \times 0.7$	8	$\square 50$	36*1	4.5*1	38	-	-	89.8	85	M 4×12	M5 x 25	10

[^5]LEF Series
Auto Switch Mounting

Auto Switch Mounting Position

［mm］

Model	Size	A	B	Operating range
LEFS	25	45	51	4.9
	32	55	61	3.9
	40	79	85	5.3

＊The applicable auto switch is D－M9（N／P／B）（W）（M／L／Z）．
＊The operating range is a guideline including hysteresis，not meant to be guaranteed．There may be large variations depending on the ambient environment．
＊Adjust the auto switch after confirming the operating conditions in the actual setting．

Auto Switch Mounting

Rotate the bolts for auto switch mounting bracket three to four times to loosen them（Removing them is not required），and slide and remove the auto switch mounting bracket．Then，insert a switch into the groove on the mounting bracket．
As the mounting bolts for installing the product body interfere with the auto switch mounting bracket，mount the auto switch mounting bracket after installing the product body．After installing product body，tighten the bolts for the auto switch mounting bracket．

＊The applicable auto switch is D－M9（N／P／B）（W）（M／L／Z）．
＊The direction of the lead wire entry is specified．If it is mounted in the opposite direction，the auto switch may malfunction．
＊Tighten the auto switch mounting screws（provided together with the auto switch），using a precision screwdriver with a handle diameter of approximately 5 to 6 mm ．
＊If more than two auto switch mounting brackets are required，please order them separately．All eight bolts for attaching the auto switch mounting bracket at the stroke end are tightened into the body when the product is shipped．
For strokes of 99 mm or less，only four bolts are tightened on the motor side．

Solid State Auto Switch Direct Mounting Type D-M9N/D-M9P/D-M9B

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Oilproof Heavy-duty Lead Wire Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square, D-M9 \square V (With indicator light)			
Auto switch model	D-M9N	D-M9P	D-M9B
Electrical entry direction	In-line		
Wiring type	3-wire		2-wire
Output type	NPN	PNP	-
Applicable load	IC circuit, Relay, PLC		24 VDC relay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)		-
Current consumption	10 mA or less		-
Load voltage	28 VDC or less	-	24 VDC (10 to 28 VDC)
Load current	40 mA or less		2.5 to 40 mA
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)		4 V or less
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC		0.8 mA or less
Indicator light	Red LED illuminates when turned ON.		
Standard	CE marking, RoHS		

Auto switch model		D-M9N	D-M9P	D-M9B
Sheath	Outside diameter $[\mathrm{mm}]$	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $[\mathrm{mm} 2]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius $[\mathrm{mm}]$ (Reference values)		17		

* Refer to page 996 for solid state auto switch common specifications
* Refer to page 996 for lead wire lengths.

Weight

Auto switch model		D-M9N	D-M9P	D-M9B
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

Normally Closed Solid State Auto Switch Direct Mounting Type D－M9NE（V）／D－M9PE（V）／D－M9BE（V）

Grommet

－Output signal turns on when no magnetic force is detected．
－Can be used for the actuator adopted by the solid state auto switch D－M9 series（excluding special order products）

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body．The auto switch may be damaged if a screw other than the one supplied is used．

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards．

PLC：Programmable Logic Controller

D－M9 $\square E$ ，D－M9 \square EV（With indicator light）						
Auto switch model	D－M9NE	D－M9NEV	D－M9PE	D－M9PEV	D－M9BE	D－M9BEV
Electrical entry direction	In－line	Perpendicular	In－line	Perpendicular	In－line	Perpendicular
Wiring type	3－wire				2－wire	
Output type	NPN		PNP		－	
Applicable load	IC circuit，Relay，PLC				24 VDC relay，PLC	
Power supply voltage	5，12， 24 VDC （ 4.5 to 28 V ）				－	
Current consumption	10 mA or less				－	
Load voltage	28 VDC or less		－		24 VDC（10 to 28 VDC）	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA （ 2 V or less at 40 mA ）				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED illuminates when turned ON．					
Standard	CE marking，RoHS					

Oilproof Heavy－duty Lead Wire Specifications

Auto switch model		D－M9NE（V）	D－M9PE（V）	D－M9BE（V）
Sheath	Outside diameter［mm］	2.6		
Insulator	Number of cores	3 cores（Brown／Blue／Black）	2 cores（Brown／Blue）	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $[\mathrm{mm} 2]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius $[\mathrm{mm}]$（Reference values）		17		

＊Refer to page 996 for solid state auto switch common specifications．
＊Refer to page 996 for lead wire lengths．

Weight

［g］

Auto switch model			D－M9NE（V）	D－M9PE（V）
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	D－M9BE（V）	
	$1 \mathrm{~m}(\mathbf{M}) * 1$	14	7	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z}) * 1$	68	63	

＊1 The 1 m and 5 m options are produced upon receipt of order．

2-Color Indicator Solid State Auto Switch Direct Mounting Type

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

\triangle Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square W, D-M9 \square WV (With indicator light)			
Auto switch model	D-M9NW	D-M9PW	D-M9BW
Electrical entry direction	In-line		
Wiring type	3-wire		2-wire
Output type	NPN	PNP	-
Applicable load	IC circuit, Relay, PLC		24 VDC relay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)		-
Current consumption	10 mA or less		-
Load voltage	28 VDC or less	-	24 VDC (10 to 28 VDC)
Load current	40 mA or less		2.5 to 40 mA
Internal voltage drop	0.8 V or less at $10 \mathrm{~mA}(2 \mathrm{~V}$ or less at 40 mA$)$		4 V or less
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC		0.8 mA or less
Indicator light	Operating range Red LED illuminates. Proper operating range \qquad Green LED illuminates.		
Standard	CE marking, RoHS		

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW	D-M9PW	D-M9BW
Sheath	Outside diameter [mm]	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius $[\mathrm{mm}]$ (Reference values)				

* Refer to page 996 for solid state auto switch common specifications.
* Refer to page 996 for lead wire lengths.

Weight

Auto switch model				D-M9NW
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	D-M9PW	D-M9BW
	$1 \mathrm{~m}(\mathbf{M})$	14	73	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m} \mathrm{(Z)}$	68	63	

LEF Series

Be sure to read this before handling the products．Refer to page 984 for safety instructions，pages 985 to 990 for electric actuator precautions，and pages 991 to 1000 for auto switch precautions．

Design

\triangle Caution

1．Do not apply a load in excess of the specification limits．
Select a suitable actuator by work load and allowable moment． If a load in excess of the specification limits is applied to the guide，adverse effects such as the generation of play in the guide，reduced accuracy，or reduced service life of the product may occur．

2．Do not use the product in applications where exces－ sive external force or impact force is applied to it．
This can cause a malfunction．

Selection

© Warning

1．Do not increase the speed in excess of the specifi－ cation limits．
Select a suitable actuator by the relationship of the allowable work load and speed，and the allowable speed of each stroke． If the product is used outside of the specification limits，ad－ verse effects such as the generation of noise，reduced accura－ cy ，or reduced service life of the product may occur．
2．Do not use the product in applications where exces－ sive external force or impact force is applied to it． This can cause a malfunction．

3．When the product repeatedly cycles with partial strokes（see the table below），operate it at a full stroke at least once every few dozens of cycles．
Failure to do so may result in the product running out of lubrication．

Model	Partial stroke
LEF $\square \mathbf{2 5}$	65 mm or less
LEF $\square \mathbf{3 2}$	70 mm or less
LEF $\square \mathbf{4 0}$	105 mm or less

4．When external force is to be applied to the table，it is necessary to add the external force to the work load as the total carried load when selecting a size．
When a cable duct or flexible moving tube is attached to the ac－ tuator，the sliding resistance of the table will increase，which may lead to the malfunction of the product．
5．Depending on the shape of the motor to be mount－ ed，some of the product＇s interior parts（hub，spi－ der，etc．）may be visible from the motor mounting surface．If this is undesirable，please contact your nearest sales office for details on options such as covers．

\triangle Caution

1．Never allow the table to collide with the stroke end．
When the driver parameters，origin or programs are set incor－ rectly，the table may collide with the stroke end of the actuator during operation．Be sure to check these points before use． If the table collides with the stroke end of the actuator，the guide，ball screw，belt，or internal stopper may break．This can result in abnormal operation．

Handle the actuator with care when it is used in the vertical di－ rection as the workpiece will fall freely from its own weight．

2．The actual speed of this actuator is affected by the work load and stroke．
Check the model selection section of the catalog．
3．Do not apply a load，impact，or resistance in addi－ tion to the transferred load during return to origin．
4．Do not dent，scratch，or cause other damage to the body or table mounting surfaces．
Doing so may cause unevenness in the mounting surface，play in the guide，or an increase in the sliding resistance．

5．Do not apply strong impact or an excessive moment while mounting a workpiece．
If an external force over the allowable moment is applied，it may cause play in the guide or an increase in the sliding resistance．

6．Keep the flatness of the mounting surface within 0.1 $\mathrm{mm} / 500 \mathrm{~mm}$ ．

If a workpiece or base does not sit evenly on the body of the product，play in the guide or an increase in the sliding resist－ ance may occur．

7．Do not allow a workpiece to collide with the table during the positioning operation or within the posi－ tioning range．

8．Grease is applied to the dust seal band for sliding． When wiping off the grease to remove foreign matter， etc．，be sure to apply it again．

9．When bottom mounted，the dust seal band may be－ come warped．

LEF Series

Specific Product Precautions 2

Be sure to read this before handling the products. Refer to page 984 for safety instructions, pages 985 to 990 for electric actuator precautions, and pages 991 to 1000 for auto switch precautions.

Handling

\triangle Caution

10. When mounting the product, use screws of adequate length and tighten them with adequate torque.

Tightening the screws with a higher torque than recommended may result in a malfunction, while tightening with a lower torque can result in the displacement of the mounting position or, in extreme conditions, the actuator could become detached from its mounting position
Body fixed

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	$\varnothing \mathbf{A}$ $[\mathrm{mm}]$	\mathbf{L} $[\mathrm{mm}]$
LEF $\square \mathbf{2 5}$	M4	1.5	4.5	24
LEF $\square \mathbf{3 2}$	M5	3.0	5.5	30
LEF $\square \mathbf{4 0}$	M6	5.2	6.6	31

The traveling parallelism is the reference plane for the body mounting reference plane. If the traveling parallelism for a table is required, set the reference plane against parallel pins, etc.

Workpiece fixed

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	$\mathrm{L}($ Max. screw-in depth) $[\mathrm{mm}]$
LEF $\square \mathbf{2 5}$	M5 50.8	3.0	8
LEF $\square \mathbf{3 2}$	$\mathrm{M} 6 \times 1$	5.2	9
LEF $\square \mathbf{4 0}$	M8 $\times 1.25$	12.5	13

To prevent the workpiece retaining screws from touching the body, use screws that are 0.5 mm or shorter than the maximum screw-in depth. If long screws are used, they may touch the body and cause a malfunction.
12. The belt drive actuator cannot be used for vertical applications.
13. Check the specifications for the minimum speed of each actuator.

Failure to do so may result in unexpected malfunctions such as knocking.
14. In the case of the belt drive actuator, vibration may occur during operation at speeds within the actuator specifications due to the operating conditions. Change the speed setting to a speed that does not cause vibration.

Maintenance

© Warning

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months $/ 1000 \mathrm{~km} /$ 5 million cycles*1	\bigcirc	\bigcirc

*1 Select whichever comes first.

- Items for visual appearance check

1. Loose set screws, Abnormal amount of dirt, etc
2. Check for visible damage, Check of cable joint
3. Vibration, Noise

- Items for internal check

1. Lubricant condition on moving parts
2. Loose or mechanical play in fixed parts or fixing screws
3. Do not operate by fixing the table and moving the actuator body.

Motorless Type Electric Actuators

High Rigidity Slider Type

Ball Screw Drive LEJS Series

Motorless Type

Electric Actuator/High Rigidity Slider Type
Ball Screw Drive/LEJS(-M) Series
Model Selection
LEJS Series \upharpoonright p. 885 LEJS-M Series $>$ p. 889
Selection Procedure

Check the allowable moment.

Selection Example

The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.

| Operating
 conditions | \bullet Work load: $60[\mathrm{~kg}]$ |
| :--- | :--- | :--- |
| \bullet Speed: $300[\mathrm{~mm} / \mathrm{s}]$ | |
| \bullet Acceleration/Deceleration: $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ | |
| \bullet Stroke: $300[\mathrm{~mm}]$ | |
| \bullet Mounting orientation: Horizontal | |
| \bullet External force: $10[\mathrm{~N}]$ | |

Check the speed-work load.
Select a model based on the workpiece mass and speed which are within the range of the actuator body specifications while referencing the speed-work load graph (guide) on page 876.
Selection example) The LEJS63■B-300 can be temporarily selected as a possible candidate based on the graph shown on the right side.

* Refer to the selection method of motor manufacturers for regeneration resistance.

Step 2 Check the cycle time.

Refer to method 1 for a rough estimate, and method 2 for a more precise value.
Method 1: Check the cycle time graph. (Page 877)
The graph is based on the maximum speed of each size.

Method 2: Calculation

Cycle time:
T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$

- T1 and T3 can be found by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

The acceleration and deceleration values have upper limits depending on the workpiece mass and the duty ratio.
Confirm that they do not exceed the upper limit, by referring to the "Work load-Acceleration/Deceleration Graph (Guide)" on pages 878 and 879
For the ball screw type, there is an upper limit of the speed depending on the stroke. Confirm that it does not exceed the upper limit, by referring to the specifications on page 886.

- T2 can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

- T4 varies depending on the motor type and load. The value below is recommended.
T4 = 0.05 [s]

Calculation example) T1 to T4 can be calculated as follows.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}]$,
$\mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}$

$$
=\frac{300-0.5 \cdot 300 \cdot(0.1+0.1)}{300}
$$

$$
=0.90[\mathrm{~s}]
$$

$\mathrm{T} 4=0.05[\mathrm{~s}]$
The cycle time can be found as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4$

$$
\begin{aligned}
& =0.1+0.90+0.1+0.05 \\
& =1.15[\mathbf{s}]
\end{aligned}
$$

* The conditions for the settling time vary depending on the motor or driver to be used.

Check the allowable moment.
<Static allowable moment> (page 879-1)
<Dynamic allowable moment> (page 880)
Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

[^6]
<Speed-Work Load Graph> (LEJS63)

L : Stroke [mm]
V : Speed [mm/s]
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right.$]
a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right.$]
T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until positioning is completed
T5: Resting time [s]
Time the product is not running
T6: Total time [s]
Total time from T1 to T5
Duty ratio: Ratio of T to T6 $T \div T 6 \times 100$

<Dynamic Allowable Moment> (LEJS63)

* The values shown below are allowable values of the actuator body. Do not use the actuator so that it exceeds these specification ranges.
Speed-Work Load Graph (Guide)
* The allowable speed is restricted depending on the stroke. Select it by referring to the "Allowable Stroke Speed."

LEJS40/Ball Screw Drive

Horizontal

Vertical

LEJS63/Ball Screw Drive

Horizontal

Vertical

Allowable Stroke Speed

[mm/s]																	
Model	Motor	Lead		Stroke [mm]													
		Symbol	[mm]	Up to 200	Up to 300	Up to 400	Up to 500	Up to 600	Up to 700	Up to 800	Up to 900	Up to 1000	Up to 1100	Up to 1200	Up to 1300	Up to 1400	Up to 1500
LEJS40	100 W equivalent	H	24	1800				1580	1170	910	720	580	480	410	-	-	-
		A	16	1200				1050	780	600	480	390	320	270	-	-	-
		B	8	600				520	390	300	240	190	160	130	-	-	-
		(Motor rotation speed)		(4500 rpm)				(3938 rpm)	(2925 rpm)	(2250 rpm)	(1800 rpm)	(1463 rpm)	(1200 rpm)	(1013 rpm)	-	-	-
LEJS63	$\begin{gathered} 200 \mathrm{~W} \\ \text { equivalent } \end{gathered}$	H	30	-	1800					1390	1110	900	750	630	540	470	410
		A	20	-	1200					930	740	600	500	420	360	310	270
		B	10	-	600					460	370	300	250	210	180	150	130
		(Motor rotation speed)		-	(3600 rpm)					(2790 rpm)	(2220 rpm)	(1800 rpm)	(1500 rpm)	(1260 rpm)	(1080 rpm)	(930 rpm)	(810 rpm)

LEJS Series

Motorless Type

Cycle Time Graph (Guide)

LEJS40/Ball Screw Drive

LEJS40 $\square \mathrm{H}$

LEJS40 $\square \mathbf{A}$

LEJS40 \square B

LEJS63/Ball Screw Drive

LEJS63 $\square \mathrm{H}$

LEJS63 \square A

LEJS63 \square B

* These graphs show the cycle time for each acceleration/deceleration.
* These graphs show the cycle time for each stroke at the maximum speed.

Work Load－Acceleration／Deceleration Graph（Guide）

LEJS40／Ball Screw Drive：Horizontal

LEJS40■H

LEJS40■A

LEJS40 $\square \mathbf{B}$

LEJS63／Ball Screw Drive：Horizontal
LEJS63 $\square \mathrm{H}$

LEJS63 \square A

LEJS63 \square B

LEJS Series

Motorless Type

Work Load-Acceleration/Deceleration Graph (Guide)

LEJS40/Ball Screw Drive: Vertical

LEJS40 $\square \mathrm{H}$

LEJS63/Ball Screw Drive: Vertical
LEJS63 $\square \mathrm{H}$

LEJS63 \square A

LEJS63 \square B

LEJS40 \square B

LEJS40 \square A

Static Allowable Moment＊${ }^{* 1}$

Model	Size	Pitching	Yawing	Rolling
LEJS	$\mathbf{4 0}$	83.9	88.2	88.2
	$\mathbf{6 3}$	121.5	135.1	135.1

＊1 The static allowable moment is the amount of static moment which can be applied to the actuator when it is stopped．
If the product is exposed to impact or repeated load，be sure to take adequate safety measures when using the product．
＊This graph shows the amount of allowable overhang（guide unit）when the center of gravity of the work－ piece overhangs in one direction．When selecting the overhang，refer to the＂Calculation of Guide Load Factor＂or the Electric Actuator Model Selection Software for confirmation：https：／／www．smcworld．com

Dynamic Allowable Moment
ーー－ $3000 \mathrm{~mm} / \mathrm{s}^{2}$
－ $5000 \mathrm{~mm} / \mathrm{s}^{2}$
Acceleration／Deceleration
—— $1000 \mathrm{~mm} / \mathrm{s}^{2}$ ．．．．．．．．． $20000 \mathrm{~mm} /{ }^{2}$

Model

LEJS40 \quad LEJS63

L6

Z

LEJS Series

Motorless Type

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the work-

Dynamic Allowable Moment piece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

Calculation of Guide Load Factor

1．Decide operating conditions．
Model：LEJS
Acceleration［mm／s²］：a
Size：40／63
Mounting orientation：Horizontal／Bottom／Wall／Vertical
Work load［kg］：m
Work load center position［mm］：Xc／Yc／Zc
2．Select the target graph while referencing the model，size，and mounting orientation．
3．Based on the acceleration and work load，find the overhang［mm］：Lx／Ly／Lz from the graph．
4．Calculate the load factor for each direction．
$\alpha x=X c / L x, \alpha y=Y c / L y, \alpha z=Z c / L z$
5．Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$ ，and $\alpha \mathbf{z}$ is 1 or less．
$\alpha x+\alpha y+\alpha z \leq 1$
When 1 is exceeded，consider a reduction of acceleration and work load，or a change of the work load center position and series．

Example

1．Operating conditions
Model：LEJS
Size： 40
Mounting orientation：Horizontal
Acceleration［mm／s²］： 5000
Work load［kg］： 20
Work load center position［mm］：Xc＝0，Yc＝50，Zc＝ 200
2．Select the graph on page 880，top and left side first row．

3．$L x=220$ mm，$L y=210$ mm，Lz＝ $\mathbf{4 3 0} \mathbf{~ m m}$
4．The load factor for each direction can be found as follows．

$$
\begin{aligned}
& \alpha x=0 / 220=0 \\
& \alpha y=50 / 210=0.24 \\
& \alpha z=200 / 430=0.47
\end{aligned}
$$

5．$\alpha \mathbf{x}+\alpha \mathbf{y}+\alpha z=0.71 \leq 1$

4．Vertica

3．Wall

岑

LEJS Series

Table Accuracy (Reference Value)

Model	Traveling parallelism [mm] (Every 300 mm)	
	1) C side traveling parallelism to A side	(2) D side traveling parallelism to B side
LEJS40	0.05	0.03
LEJS63	0.05	0.03

* Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)

[^7]
Electric Actuator/High Rigidity Slider Type Ball Screw Drive

 LEJS Series LeJs40,63RoHS

How to Order

LEJS | | 40 | NZ | A-500 |
| :---: | :---: | :---: | :---: |
| 0 | 9 | θ | 0 |

1 Accuracy		2 (Size 40 63	(3) Mounting type NZ	(4) Lead [mm]			$5 \text { Stroke [mm] }$
Nil	Basic type			Symbol	LEJS40	LEJS63	
H	High-precision type		NY	H	24	30	to
			NX	A	16	20	1500
			NW*1	B	8	10	* For details, refer to
			NV*1				
			NU*1				
			NT*1				
			*1 Size 63 only				

Applicable Stroke Table

ModelStroke Imm	200	$\mathbf{3 0 0}$	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$	$\mathbf{6 0 0}$	$\mathbf{7 0 0}$	$\mathbf{8 0 0}$	$\mathbf{9 0 0}$	$\mathbf{1 0 0 0}$	1200	1500
LEJS40	\bullet	-									
LEJS63	-	\bullet									

* Please consult with SMC for non-standard strokes as they are produced as special orders.

For auto switches, refer to pages 894 to 897.
Compatible Motors and Mounting Types

Applicable motor model		Size/Mounting type									
Manufacturer	Series	40			63						
		NZ	NY	NX	NZ	NY	NX	NW	NV	NU	NT
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	-	-	-	\bigcirc	-	-	-	-	-	-
YASKAWA Electric Corporation	$\Sigma-\mathrm{V} / 7$	- *1	-	-	\bigcirc	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6	(MHMF only)	-	-	-	\bigcirc	-	-	-	-	-
FANUC CORPORATION	β is (-B)	\bigcirc	-	-	($\beta 1$ only)	-	-	\bigcirc	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	\bigcirc	-	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	- *1	-	-	\bigcirc	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	(TL only)	-	-	-	-	(MP/VP only)	-	-	-	(TL only)
Beckhoff Automation GmbH	AM 30/31/80/81	-	-	-	-	-	(80/81 only)	-	(30 only)	(31 only)	-
Siemens AG	SIMOTICS S-1FK7	-	-	\bigcirc	-	-	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-
ANCA Motion	AMD2000	-	-	-	-	-	-	-	-	-	-

[^8]| Model | | | | LEJS40 | | | LEJS63 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Stroke［mm］＊1 | | | $\begin{gathered} 200,300,400,500,600,700,800 \\ 900,1000,1200 \end{gathered}$ | | | $\begin{gathered} 300,400,500,600,700,800,900 \\ 1000,1200,1500 \end{gathered}$ | | |
| | Work load［kg］＊2 | | Horizontal | 15 | 30 | 55 | 30 | 45 | 85 |
| | | | Vertical | 3 | 5 | 10 | 6 | 10 | 20 |
| | Speed＊3 | Stroke range | Up to 500 | 1800 | 1200 | 600 | 1800 | 1200 | 600 |
| | | | 501 to 600 | 1580 | 1050 | 520 | | | |
| | | | 601 to 700 | 1170 | 780 | 390 | | | |
| | | | 701 to 800 | 910 | 600 | 300 | 1390 | 930 | 460 |
| | | | 801 to 900 | 720 | 480 | 240 | 1110 | 740 | 370 |
| | | | 901 to 1000 | 580 | 390 | 190 | 900 | 600 | 300 |
| | | | 1001 to 1100 | 480 | 320 | 160 | 750 | 500 | 250 |
| | | | 1101 to 1200 | 410 | 270 | 130 | 630 | 420 | 210 |
| | | | 1201 to 1300 | － | － | － | 540 | 360 | 180 |
| | | | 1301 to 1400 | － | － | － | 470 | 310 | 150 |
| | | | 1401 to 1500 | － | － | － | 410 | 270 | 130 |
| | Max．acceleration／deceleration［mm／s ${ }^{\text {2 }}$ ］ | | | 20000 | | | | | |
| | Positioning repeatability［mm］ | | Basic type | ± 0.02 | | | | | |
| | | | High－precision type | ± 0.01 | | | | | |
| | Lost motion［mm］＊4 | | Basic type | 0.1 or less | | | | | |
| | | | High－precision type | 0.05 or less | | | | | |
| | Ball screw specifications | | Thread size［mm］ | $\varnothing 12$ | | | $\varnothing 15$ | | |
| | | | Lead［mm］ | 24 | 16 | 8 | 30 | 20 | 10 |
| | | | Shaft length［mm］ | Stroke＋ 118.5 | | | Stroke＋ 126.5 | | |
| | Impact／Vibration resistance［m／s ${ }^{\mathbf{2}}$ ］＊5 | | | 50／20 | | | | | |
| | Actuation type | | | Ball screw | | | | | |
| | Guide type | | | Linear guide | | | | | |
| | Static allowable moment＊6 ［ $\mathrm{N} \cdot \mathrm{m}$ ］ | | lep（Pitching） | 83.9 | | | 121.5 | | |
| | | | Mey（Yawing） | 88.2 | | | 135.1 | | |
| | | | ler（Rolling） | | 88.2 | | 135.1 | | |
| | Operating temperature range［ ${ }^{\mathbf{C}}$ ］ | | | 5 to 40 | | | | | |
| | Operating humidity range［\％RH］ | | | 90 or less（No condensation） | | | | | |
| | Actuation unit weight［kg］ | | | 0.86 | | | 1.37 | | |
| | Other inertia［ $\mathrm{kg} \cdot \mathrm{cm}^{2}$ ］ | | | 0.031 | | | 0.129 | | |
| | Friction coefficient | | | 0.05 | | | | | |
| | Mechanical efficiency | | | 0.8 | | | | | |
| 흘 둔 | Motor type | | | AC servo motor（100 V／200 V） | | | | | |
| | Rated output capacity［W］ | | | 100 | | | 200 | | |
| | Rated torque［ $\mathrm{N} \cdot \mathrm{m}$ ］ | | | 0.32 | | | 0.64 | | |

＊1 Please consult with SMC for non－standard strokes as they are produced as special orders．
＊2 Check the＂Speed－Work Load Graph（Guide）＂on page 876.
＊3 The allowable speed changes according to the stroke．
＊4 A reference value for correcting an error in reciprocal operation
＊5 Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpen－ dicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊6 The static allowable moment is the amount of static moment which can be applied to the actuator when it is stopped．
If the product is exposed to impact or repeated load，be sure to take adequate safety measures when using the product．
＊7 Each value is only to be used as a guide to select a motor of the appropriate capacity．
＊8 For other specifications，refer to the specifications of the motor that is to be installed．
＊Sensor magnet position is located in the table center．
For detailed dimensions，refer to the＂Auto Switch Mounting Position．＂
＊Do not allow collisions at either end of the table traveling distance．
Additionally，when running the positioning operation，do not set within 2 mm of both ends．
＊Please consult with SMC for the manufacture of intermediate strokes．
（LEJS40／Manufacturable stroke range： 200 to 1200 mm ，LEJS63／Manufacturable stroke range： 300 to 1500 mm ）

Weight

Model	LEJS40									
Stroke［mm］	200	300	400	500	600	700	800	900	1000	1200
Product weight［kg］	5.0	5.8	6.5	7.3	8.1	8.8	9.6	10.4	11.1	12.7
Model	LEJS63									
Stroke［mm］	300	400	500	600	700	800	900	1000	1200	1500
Product weight［kg］	10.4	11.7	12.9	14.2	15.4	16.7	17.9	19.1	21.6	25.4

LEJS Series

Motorless Type

Dimensions: Ball Screw Drive
Refer to the "Motor Mounting" on page 891 for details about motor mounting and included parts.

LEJS40

Applicable motor dimensions

*1 When mounting the actuator using the body mounting reference plane, use a pin. Set the height of the pin to be 5 mm or more because of round chamfering. (Recommended height 6 mm)

Dimensions

Model	n	C	D	E
LEJS $\square 40 N \square \square-200$	6	1	200	80
LEJS $\square 40 N \square \square-300$	6	1	200	180
LEJS $\square 40 \mathrm{~N} \square \square-400$	8	2	400	80
LEJS $\square 40 N \square \square-500$	8	2	400	180
LEJS $\square 40 \mathrm{~N} \square \square-600$	10	3	600	80
LEJS $\square 40 \mathrm{~N} \square \square-700$	10	3	600	180
LEJS $\square 40 \mathrm{~N} \square \square-800$	12	4	800	80
LEJS $\square 40 N \square \square-900$	12	4	800	180
LEJS \square 40N $\square \square-1000$	14	5	1000	80
LEJS $\square 40 \mathrm{~N} \square \square-1200$	16	6	1200	80

887

Motor Mounting, Applicable Motor Dimensions

Mounting type	n	FA		FB	FC	FD	$\begin{gathered} \text { FE } \\ (\text { Max. }) \end{gathered}$	FJ	FK
		Mounting type	Applicable motor						
NZ	2	M4 x 0.7	$\varnothing 4.5$	7	ø46	30	3.5	8	25 ± 1
NY	4	M3 $\times 0.5$	$\varnothing 3.4$	6	๑45	30	3.5	8	25 ± 1
NX	2	M 4×0.7	$\varnothing 4.5$	7	ø46	30	3.5	8	18 ± 1

Dimensions：Ball Screw Drive

Refer to the＂Motor Mounting＂on page 891 for details about motor mounting and included parts．

LEJS63

صٌ

$\stackrel{\sim}{\text { 山゙ }}$

필

Applicable motor dimensions

＊1 When mounting the actuator using the body mounting reference plane，use a pin．Set the height of the pin to be 5 mm or more because of round chamfering．（Recommended height 6 mm ）

Dimensions				［mm］
Model	n	C	D	E
LEJS $\square 63 \mathrm{~N} \square \square$－300	6	1	200	180
LEJS $\square 63 \mathrm{C} \square \square-400$	8	2	400	80
LEJS $\square 63 \mathrm{~N} \square \square-500$	8	2	400	180
LEJS $\square 63 \mathrm{~N} \square \square-600$	10	3	600	80
LEJS $\square 63 \mathrm{C} \square \square-700$	10	3	600	180
LEJS $\square 63 \mathrm{C} \square \square-800$	12	4	800	80
LEJS $\square 63 \mathrm{C} \square \square-900$	12	4	800	180
LEJS $\square 63 \mathrm{~N} \square \square-1000$	14	5	1000	80
LEJS $\square 63 \mathrm{~N} \square \square-1200$	16	6	1200	80
LEJS $\square 63 N \square \square-1500$	18	7	1400	180

Motor Mounting，Applicable Motor Dimensions
［mm］

Mounting type	FA		FB	FC	FD	FE $($ Max．$)$	FJ	FK
	Applicable motor							
NZ	M5 $\times 0.8$	$\varnothing 5.8$	7	$\varnothing 70$	50	3.3	14	30 ± 1
NY	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	6	$\varnothing 70$	50	3.3	11	30 ± 1
NX	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	6	$\varnothing 63$	40	3.5	9	20 ± 1
NW	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	7	$\varnothing 70$	50	3.3	9	25 ± 1
NV	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	6	$\varnothing 63$	40	3.5	9	20 ± 1
NU	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	7	$\varnothing 70$	50	3.3	11	23 ± 1
NT	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	7	$\varnothing 70$	50	3.3	12	30 ± 1

 爻热

(1) Accuracy
Nil
H
High-precision type

Size

63

Mounting type

NZ
NY
NX
NW
NV
NU
NT

Lead [mm]

\mathbf{H}	30
\mathbf{A}	20
\mathbf{B}	10

Stroke [mm] ${ }^{* 1}$ Standard OProduced upon receipt of order | 790 | 890 | 990 | 1190 | 1490 | 1790 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - | \bullet | \bigcirc | \bigcirc | \bigcirc | \bigcirc |

*1 Please consult with SMC for non-standard strokes as they are produced as special orders.
6 Built-in intermediate supports
M \quad Built-in intermediate supports

Specifications

Lead [mm]			30	20	10
Speed [mm/s]	Stroke range	790	1800	1200	600
		890			
		990			
		1190			
		1490			
		1790			

For the model selection method, refer to page 875. Specifications other than those listed are the same as the standard product. Refer to page 886 for details. For details on the construction, refer to page 194.

For auto switches, refer to pages 894 to 897.

Compatible Motors and Mounting Types

Applicable motor model		Size/Mounting type						
Manufacturer	Series	63						
		NZ	NY	NX	NW	NV	NU	NT
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	-	-	-	-	-	-	-
YASKAWA Electric Corporation	$\Sigma-\mathrm{V} / 7$	- *1	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	-	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	-	\bigcirc	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6	-	-	-	-	-	-	-
FANUC CORPORATION	β is (-B)	($\beta 1$ only)	-	-	\bigcirc	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	* ${ }^{*}$	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	-	-	-	-	-	-	-
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	-	-	(MP/VP only)	-	-	-	(TL only)
Beckhoff Automation GmbH	AM 30/31/80/81	-	-	(80/81 only)	-		(31 only)	-
Siemens AG	SIMOTICS S-1FK7	-	-	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bigcirc	-	-	-	-	-	-
ANCA Motion	AMD2000	-	-	-	-	-	-	-

889

The motor mounting method and the included parts are the same as the standard product. Refer to page 891 for details.

*1 Upper dimension: 790 to 1190 mm stroke
*2 Lower dimension: 1490 to 1790 mm stroke

Applicable motor dimensions
*3 When mounting the actuator using the body mounting reference plane, use a pin. Set the height of the pin to be 5 mm or more because of round chamfering. (Recommended height 6 mm)

\triangle Caution

1. During operation, the intermediate support mechanism emits a collision noise due to the structure.
2. Compared to the standard product, the entire length of the product will be longer for each stroke. For details, refer to the dimensions.
3. The stopper type origin position return method cannot be used as the return to origin method (due to the bumper as shown in Construction (4) on page 194).

Dimensions and Weight

Model	L	B	n	C	D	E	Product weight [kg]
LEJS $\square 63 \mathrm{~N} \square \square$-790M	1154.5	970	12	4	800	180	18.4
LEJS $\square 63 \mathrm{~N} \square \square$-890M	1254.5	1070	14	5	1000	80	19.7
LEJS $\square 63 \mathrm{~N} \square \square$-990M	1354.5	1170	14	5	1000	180	20.9
LEJS $\square 63 \mathrm{~N} \square \square$-1190M	1554.5	1370	16	6	1200	180	23.4
LEJS $\square 63 \mathrm{~N} \square \square-1490 \mathrm{M}$	1954.5	1770	20	8	1600	180	28.9
LEJS $\square 63 \mathrm{~N} \square \square-1790 \mathrm{M}$	2254.5	2070	24	10	2000	80	32.7

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FAMounting type		Applicable motor	FB	FC	FD	FE (Max.)	FJ
	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	7	$\varnothing 70$	50	3.3	14	30 ± 1
NY	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	6	$\varnothing 70$	50	3.3	11	30 ± 1
NX	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	6	$\varnothing 63$	40	3.5	9	20 ± 1
NW	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	7	$\varnothing 70$	50	3.3	9	25 ± 1
NV	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	6	$\varnothing 63$	40	3.5	9	20 ± 1
NU	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	7	$\varnothing 70$	50	3.3	11	23 ± 1
NT	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	7	$\varnothing 70$	50	3.3	12	30 ± 1

LEJS Series

Motorless Type

Motor Mounting

- When mounting a hub, remove all oil content, dust, and dirt adhered to the shaft and the inside of the hub. - This product does not include the motor and motor mounting screws. (Provided by the customer)

Prepare a motor with a round shaft end.

- Take measures to prevent the loosening of the motor mounting screws.

Dimensions					[mm]
Size	Mounting type	MM	TT	NN	PD
40	NZ	M 2.5×10	0.65	12.5	8
	NY	M 2.5×10	0.65	12.5	8
	NX	M 2.5×10	0.65	7	8
63	NZ	M3 x 12	1.5	18	14
	NY	M 4×12	2.7	18	11
	NX	M 4×12	2.7	8	9
	NW	M 4 x 12	2.7	12	9
	NV	M4 x 12	2.7	8	9
	NU	M 4 x 12	2.7	12	11
	NT	M3 $\times 12$	1.5	18	12

Included Parts List

Size: 40

Description	Quantity	Note
Motor hub	1	-
Hexagon socket head cap screw (to secure the hub)	1	M2.5 x 10: Mounting type "NZ," "NY," "NX"

Size: 63

Description	Quantity	Note
Motor hub	1	-
Hexagon socket head cap screw (to secure the hub)	1	M3 x 12: Mounting type "NZ," "NT"
Hexagon socket thin head cap screw (to secure the hub)		M4 x 12: Mounting type "NY," "NX," "NW," "NV," "NU"

LEJS Series
 Motor Mounting Parts

Motor Flange Option

As the mounting type＂NZ＂is selected for the model and this option is mounted，the mounting types that can be used are shown below．

How to Order

＊Component parts vary depending on the mounting type．Refer to the＂Component Parts＂on page 893.

Compatible Motors and Mounting Types

Applicable motor model		Size／Mounting type									
Manufacturer	Series	40			63						
		NZ	NY	NX	NZ	NY	NX	NW	NV	NU	NT
Mitsubishi Electric Corporation	MELSERVO JN／J4／J5	－	－	－	－	－	－	－	－	－	－
YASKAWA Electric Corporation	इ－V／7	－＊1	－	－	－	－	－	－	－	－	－
SANYO DENKI CO．，LTD．	SANMOTION R	\bigcirc	－	－	\bigcirc	－	－	－	－	－	－
OMRON Corporation	OMNUC G5／1S	\bigcirc	－	－	－	\bigcirc	－	－	－	－	－
Panasonic Corporation	MINAS A5／A6	（MHMF only）	\bigcirc	－	－	\bigcirc	－	－	－	－	－
FANUC CORPORATION	β is（－B）	－	－	－	（ $\beta 1$ only）	－	－	\bigcirc	－	－	－
NIDEC SANKYO CORPORATION	S－FLAG	\bigcirc	－	－	\bigcirc	－	－	－	－	－	－
KEYENCE CORPORATION	SV／SV2	－＊1	－	－	－	－	－	－	－	－	－
FUJI ELECTRIC CO．，LTD．	ALPHA7	\bigcirc	－	－	\bigcirc	－	－	－	－	－	－
Rockwell Automation，Inc． （Allen－Bradley）	Kinetix MP／VP／TL	（TL only）	－	－	－	－	（MP／VP only）	－	－	－	（TL only）
Beckhoff Automation GmbH	AM 30／31／80／81	\bigcirc	－	－	－	－	（80／81 only）	－	（30 only）	（31 only）	－
Siemens AG	SIMOTICS S－1FK7	－	－	\bigcirc	－	－	\bigcirc	－	－	－	－
Delta Electronics，Inc．	ASDA－A2	－	－	－	\bigcirc	－	－	－	－	－	－
ANCA Motion	AMD2000	－	－	－	－	－	－	－	－	－	－

[^9]
LEJS Series

Motorless Type

Dimensions: Motor Flange Option

Motor plate details

Dimensions

Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	FH	M1	T1	M2	T2	PD	FP
40	NY	M3 $\times 0.5$	6	ø45	30	3.5	6	99	49	M 4×12	2.7	M 2.5×10	0.65	8	12.5
	NX	-	-	-	-	-	-	-	-	-	-	M 2.5×10	0.65	8	7
63	NY	M4 x 0.7	6	$\varnothing 70$	50	3.5	6	123	68	M 4×12	2.7	M4 x 12	2.7	11	18
	NX	M5 x 0.8	6	ø63	40	3.5	6	123	68	M4 x 12	2.7	M4 x 12	2.7	9	8
	NW	-	-	-	-	-	-	-	-	-	-	M 4×12	2.7	9	12
	NV	M4 x 0.7	6	$ø 63$	40	3.5	6	123	68	M4 $\times 12$	2.7	M 4×12	2.7	9	8
	NU	-	-	-	-	-	-	-	-	-	-	M 4×12	2.7	11	12
	NT	-	-	-	-	-	-	-	-	-	-	M3 x 12	1.5	12	18

Component Parts

Size: 40

No.	Description	Quantity	
		Mounting type	
		NY	NX
$\mathbf{1}$	Motor plate	1	-
$\mathbf{2}$	Ring	1	-
$\mathbf{3}$	Hub (Motor side)	1	1
$\mathbf{4}$	Hexagon socket thin head cap screw	1	1
$\mathbf{5}$	Hexagon socket head cap screw	4	-

Size: 63

No.	Description	Quantity						
		NY	NX	NW	NV	NU	NT	
$\mathbf{1}$		1	1	-	1	-	-	
$\mathbf{2}$		1	1	-	1	-	-	
$\mathbf{3}$		1	1	1	1	1	$\mathbf{1}$	
$\mathbf{4}$		1	1	1	1	1	1	
$\mathbf{5}$	Hexagon socket head cap screw	4	4	-	4	-	-	

LEJS Series
 Auto Switch Mounting

Auto Switch Mounting Position

$[\mathrm{mm}]$						
Model	Size	A	B	C	Operatingrange	
LEJS	40	77	80	160	5.5	
	63	83	86	172	7.0	

＊Since the operating range is provided as a guideline including hysteresis，
it cannot be guaranteed（assuming approximately $\pm 30 \%$ dispersion）．
It may change substantially depending on the ambient environment．

Auto Switch Mounting

When mounting the auto switches，they should be inserted into the actuator＇s auto switch mounting groove as shown in the drawing below． After setting in the mounting position，use a flat head watchmaker＇s screwdriver to tighten the auto switch mounting screw that is included．

Auto Switch Mounting Screw Tightening Torque

Auto switch model	Tightening torque
D－M9 $\square \mathbf{(V)}$	0.10 to 0.15
D－M9 $\square \mathbf{W}(\mathbf{V})$	

[^10]
Solid State Auto Switch Direct Mounting Type D-M9N(V)/D-M9P(V)/D-M9B(V) C €

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square, D-M9 \square V (With indicator light)						
Auto switch model	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10	to 28 VDC$)$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED illuminates when turned ON.					
Standard	CE marking, RoHS					

Oilproof Heavy-duty Lead Wire Specifications

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Sheath	Outside diameter $[\mathrm{mm}]$	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $\left[\mathrm{mm}{ }^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius [mm] (Reference values)		17		

* Refer to page 996 for solid state auto switch common specifications
* Refer to page 996 for lead wire lengths.

Weight

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

D-M9 \square V

Normally Closed Solid State Auto Switch Direct Mounting Type D－M9NE（V）／D－M9PE（V）／D－M9BE（V）

Grommet

－Output signal turns on when no magnetic force is detected．
－Can be used for the actuator adopted by the solid state auto switch D－M9 series（excluding special order products）

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body．The auto switch may be damaged if a screw other than the one supplied is used．

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards．

PLC：Programmable Logic Controller

D－M9 $\square E$ ，D－M9 \square EV（With indicator light）						
Auto switch model	D－M9NE	D－M9NEV	D－M9PE	D－M9PEV	D－M9BE	D－M9BEV
Electrical entry direction	In－line	Perpendicular	In－line	Perpendicular	In－line	Perpendicular
Wiring type	3－wire				2－wire	
Output type	NPN		PNP		－	
Applicable load	IC circuit，Relay，PLC				24 VDC relay，PLC	
Power supply voltage	5，12， 24 VDC （ 4.5 to 28 V ）				－	
Current consumption	10 mA or less				－	
Load voltage	28 VDC or less		－		24 VDC（10 to 28 VDC）	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA （ 2 V or less at 40 mA ）				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED illuminates when turned ON．					
Standard	CE marking，RoHS					

Oilproof Heavy－duty Lead Wire Specifications

Auto switch model		D－M9NE（V）	D－M9PE（V）	D－M9BE（V）
Sheath	Outside diameter $[\mathrm{mm}]$	2.6		
Insulator	Number of cores	3 cores（Brown／Blue／Black）	2 cores（Brown／Blue）	
	Outside diameter［mm］	0.88		
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius $[\mathrm{mm}]$（Reference values）				

＊Refer to page 996 for solid state auto switch common specifications．
＊Refer to page 996 for lead wire lengths．

Weight

［g］

Auto switch model		D－M9NE（V）	D－M9PE（V）	D－M9BE（V）
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})^{* 1}$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})^{* 1}$	68	63	

＊1 The 1 m and 5 m options are produced upon receipt of order．

2-Color Indicator Solid State Auto Switch Direct Mounting Type

D-M9NW(V)/D-MMPW(V)/D-M9BW(V) C ϵ

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square W, D-M9 \square WV (With indicator light)						
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC	or less			24 VDC (10	to $28 \mathrm{VDC)}$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range \qquad Red LED illuminates. Proper operating range \qquad Green LED illuminates.					
Standard	CE marking, RoHS					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
Sheath	Outside diameter $[\mathrm{mm}]$	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius $[\mathrm{mm}]$ (Reference values)				

* Refer to page 996 for solid state auto switch common specifications.
* Refer to page 996 for lead wire lengths.

Weight

Auto switch model				D-M9NW(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	D-M9PW(V)	D-M9BW(V)
	$1 \mathrm{~m}(\mathbf{M})$	14		13
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m} \mathrm{(Z)}$	68	63	

D-M9 $\square \mathbf{W}$

LEJS Series Specific Product Precautions 1

\triangle
Be sure to read this before handling the products．Refer to page 984 for safety instructions，pages 985 to 990 for electric actuator precautions，and pages 991 to 1000 for auto switch precautions．

Design

\triangle Caution

1．Do not apply a load in excess of the specification limits．
Select a suitable actuator by work load and allowable moment． If a load in excess of the specification limits is applied to the guide，adverse effects such as the generation of play in the guide，reduced accuracy，or reduced service life of the product may occur．

2．Do not use the product in applications where exces－ sive external force or impact force is applied to it．
The product can be damaged．
The components including the motor are manufactured to pre－ cise tolerances．So that even a slight deformation may cause a malfunction or seizure．

Selection

\triangle Warning

1．Do not increase the speed in excess of the specifi－ cation limits．
Select a suitable actuator by the relationship of the allowable work load and speed，and the allowable speed of each stroke． If the product is used outside of the specification limits，ad－ verse effects such as the generation of noise，reduced accura－ cy，or reduced service life of the product may occur．
2．When the product repeatedly cycles with partial strokes（ 100 mm or less），lubrication can run out． Operate it at a full stroke at least once a day or ev－ ery a thousand cycles．
3．When external force is to be applied to the table，it is necessary to add the external force to the work load as the total carried load when selecting a size．
When a cable duct or flexible moving tube is attached to the actuator，the sliding resistance of the table will increase，which may lead to the malfunction of the product．

4．Depending on the shape of the motor to be mount－ ed，some of the product＇s interior parts（hub，spi－ der，etc．）may be visible from the motor mounting surface．If this is undesirable，please contact your nearest sales office for details on options such as covers．

\triangle Caution

1．Never allow the table to collide with the end of stroke．
When the driver parameters，origin or programs are set incor－ rectly，the table may collide with the stroke end of the actuator during operation．Be sure to check these points before use．
If the table collides with the stroke end of the actuator，the guide，ball screw，belt，or internal stopper may break．This can result in abnormal operation．

Handle the actuator with care when it is used in the vertical di－ rection as the workpiece will fall freely from its own weight．

2．The actual speed of this actuator is affected by the work load and stroke．

Check the model selection section of the catalog．
3．Do not apply a load，impact，or resistance in addi－ tion to the transferred load during return to origin．
4．Do not dent，scratch，or cause other damage to the body or table mounting surfaces．
Doing so may cause unevenness in the mounting surface，play in the guide，or an increase in the sliding resistance．
5．Do not apply strong impact or an excessive moment while mounting the product or a workpiece．
If an external force over the allowable moment is applied，it may cause play in the guide or an increase in the sliding resistance．

6．Keep the flatness of the mounting surface within 0.1 $\mathrm{mm} / 500 \mathrm{~mm}$ ．
If a workpiece or base does not sit evenly on the body of the product，play in the guide or an increase in the sliding resist－ ance may occur．
In the case of overhang mounting（including cantilever），use a support plate or support guide to avoid deflection of the actua－ tor body．

7．When mounting the actuator，use all mounting holes．
If all mounting holes are not used，it influences the specifica－ tions，e．g．，the amount of displacement of the table increases．
8．Do not allow a workpiece to collide with the table during the positioning operation or within the positioning range．
9．Do not apply external force to the dust seal band．
Particularly during the transportation

LEJS Series Specific Product Precautions 2

\triangle
Be sure to read this before handling the products. Refer to page 984 for safety instructions, pages 985 to 990 for electric actuator precautions, and pages 991 to 1000 for auto switch precautions.

Handling

\triangle Caution

10. When mounting the product, use screws of adequate length and tighten them with adequate torque.

Tightening the screws with a higher torque than recommended may result in a malfunction, while tightening with a lower torque can result in the displacement of the mounting position or, in extreme conditions, the actuator could become detached from its mounting position.

Workpiece fixed

To prevent the workpiece retaining screws from touching the body, use screws that are 0.5 mm or shorter than the maximum screw-in depth. If long screws are used, they may touch the body and cause a malfunction.
11. Do not operate by fixing the table and moving the actuator body.
12. When mounting the actuator using the body mounting reference plane, use a pin. Set the height of the pin to be 5 mm or more because of round chamfering. (Recommended height 6 mm)

Maintenance

© Warning

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months $/ 1000 \mathrm{~km} / 5$ million cycles*1	\bigcirc	\bigcirc

*1 Select whichever comes first.

- Items for visual appearance check

1. Loose set screws, Abnormal amount of dirt, etc.
2. Check for visible damage, Check of cable joint
3. Vibration, Noise

- Items for internal check

1. Lubricant condition on moving parts

* For lubrication, use lithium grease No. 2.

2. Loose or mechanical play in fixed parts or fixing screws

Motorless Type Electric Actuators

Rod Type LEY Series

Motorless Type

Electric Actuator/Rod Type

LEY Series

Model Selection

Selection Procedure

Positioning Control Selection Procedure

Step 1

 Check the work load-speed. (Vertical transfer)
Step 2 Check the cycle time.

Selection Example

The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.
Operating
conditions
-Work load: $16[\mathrm{~kg}] \quad$ - Speed: $300[\mathrm{~mm} / \mathrm{s}]$

- Acceleration/Deceleration: $5000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$
- Stroke: $300[\mathrm{~mm}]$
- Workpiece mounting condition: Vertical upward
downward transfer

Step 1
Check the work load-speed. <Speed-Vertical Work Load Graph> Select a model based on the workpiece mass and speed which are within the range of the actuator body specifications while referencing the speed-vertical work load graph on page 903.
Selection example) The LEY25B can be temporarily selected as a possible candidate based on the graph shown on the right side.

* It is necessary to mount a guide outside the actuator when used for horizontal transfer. When selecting the

<Speed-Vertical Work Load Graph> (LEY25) target model, refer to horizontal work load in the specifications on pages 908 and 909 and, the precautions.
* Refer to the selection method of motor manufacturers for regeneration resistance.

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method. Cycle time:
T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

- T1: Acceleration time and T3: Deceleration time can be found by the following equation.

$$
\begin{array}{|l|l|}
\hline \mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}] \\
\hline
\end{array}
$$

- T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

- T4: Settling time varies depending on the motor type and load. The value below is recommended.

$$
\mathrm{T} 4=0.05[\mathrm{~s}]
$$

* The conditions for the settling time vary depending on the motor or driver to be used.
Calculation example)
T1 to T4 can be calculated as follows.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=300 / 5000=0.06[\mathrm{~s}], \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=300 / 5000=0.06[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}=\frac{300-0.5 \cdot 300 \cdot(0.06+0.06)}{300}=0.94[\mathrm{~s}]$
$\mathrm{T} 4=0.05[\mathrm{~s}]$
The cycle time can be found as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4=0.06+0.94+0.06+0.05=1.11[\mathbf{s}]$

Based on the above calculation result, the LEY25B-300 should be selected.

Selection Procedure

Pushing Control Selection Procedure

Operating conditions

Selection Example

$\stackrel{\sim}{u}$

The model selection method shown below corresponds to SMC＇s standard motor．
For use in combination with a motor from a different manufacturer，check the available product
information of the motor to be used．

Step 1 Check the force．

＜Force Conversion Graph＞

Select a model based on the ratio to rated torque and force while referencing the force conversion graph．
Selection example）
Based on the graph shown on the right side，
－Ratio to rated torque： 90 ［\％］
－Force： 255 ［N］
The LEY25B can be temporarily selected as a possible candidate．

Step 2 Check the lateral load on the rod end．

＜Graph of Allowable Lateral Load on the Rod End＞
Confirm the allowable lateral load on the rod end of the actuator： LEY25B，which has been selected temporarily while referencing the graph of allowable lateral load on the rod end．
Selection example）
Based on the graph shown on the right side，
－Attachment weight： $0.5[\mathrm{~kg}] \approx 5[\mathrm{~N}]$
－Product stroke： 300 ［mm］
The lateral load on the rod end is within the allowable range．
Based on the above calculation result， the LEY25B－300 should be selected．

＜Force Conversion Graph＞
（LEY25）

＜Graph of Allowable Lateral Load on the Rod End＞

LEY Series

 Stroke Speed."
LEY25 \square (Motor mounting position: Parallel/In-line)

LEY32 \square (Motor mounting position: Parallel)

LEY32D (Motor mounting position: In-line)

LEY63 \square (Motor mounting position: Parallel/In-line)

LEY100 \square (Motor mounting position: In-line)

[^11]The values shown below are allowable values of the actuator body．Do not use the actuator so that it exceeds these specification ranges．
Speed－Horizontal Work Load Graph
＊The allowable speed is restricted depending on the stroke．Select it by referring to the＂Allowable Stroke Speed．＂

LEY25 \square（Motor mounting position：Parallel／In－line）

LEY63 \square（Motor mounting position：Parallel／In－line）

LEY100 \square（Motor mounting position：In－line）

＊Each value is the value when a reducer is built into the product．

Allowable Stroke Speed

［mm／s］

Model	Motor	Lead		Stroke［mm］								
		Symbol	［mm］	Up to 100	Up to 200 Up to 300	Up to 400	Up to 500	Up to 600	Up to 700	Up to 800	Up to 900	Up to 1000
$\left(\begin{array}{c} \text { LEY25 } \square \\ \text { Motor mounting position: } \\ \text { Parallel/In-line } \end{array}\right)$	100 W equivalent	A	12		900	600	－	－	－	－	－	－
		B	6		450	300	－	－	－	－	－	－
		C	3		225	150	－	－	－	－	－	－
		（Motor rotation speed）			（4500 rpm）	（3000 rpm）	－	－	－	－	－	－
$\left.\begin{array}{c}\text { LEY32 } \square \\ \text { Motor mounting position：} \\ \text { Parallel }\end{array}\right)$	200 W equivalent	A	20		1200		800	－	－	－	－	－
		B	10		600		400	－	－	－	－	－
		C	5		300		200	－	－	－	－	－
		（Motor rotation speed）			（3600 rpm）		（2400 rpm）	－	－	－	－	－
$\left(\begin{array}{c} \text { LEY32D } \\ \left(\begin{array}{c} \text { Motor mounting position: } \\ \text { In-line } \end{array}\right. \end{array}\right.$	200 W equivalent	A	16		1000		640	－	－	－	－	－
		B	8		500		320	－	－	－	－	－
		C	4		250		160	－	－	－	－	－
		（Motor rotation speed）			（3750 rpm）		（2400 rpm）	－	－	－	－	－
$\left(\begin{array}{c} \text { LEY63 } \square \\ \text { Motor mounting position: } \\ \text { Parallel/In-line } \end{array}\right)$	400 W equivalent	A	20		1000			800	600	500	－	－
		B	10		500			400	300	250	－	－
		C	5		250			200	150	125	－	－
		（Motor rotation speed）			（3000 rpm）			（2400 rpm）	（1800 rpm）	（1500 rpm）	－	－
		L	2．86＊1	70							－	－
		（Motor rotation speed）		（1470 rpm）							－	－
LEY100D \square $\left[\begin{array}{c}\text { Motor mounting position：} \\ \text { In－line }\end{array}\right]$	750 W equivalent	B	10	500				370	285	225	180	150
		＊2	3.3	167				123	95	75	60	50
		＊3	2	100				74	57	45	36	30
		（Motor rotation speed）		（3000 rpm）				（2225 rpm）	（1708 rpm）	（1353 rpm）	（1098 rpm）	（908 rpm）

[^12]
LEY Series

Force Conversion Graph (Guide)

* These graphs show an example of when the standard motor is mounted. Calculate the force based on used motor and driver.

LEY25 \square (Motor mounting position: Parallel/In-line)

LEY32 \square (Motor mounting position: Parallel)

LEY32D \square (Motor mounting position: In-line)

* When using the force control or speed control, set the maximum value to be no more than 90% of the rated torque.

LEY63 \square (Motor mounting position: Parallel/ln-line)

LEY100 \square (Motor mounting position: In-line)

* Each value is the value when a reducer is built into the product.

Graph of Allowable Lateral Load on the Rod End (Guide)
[Stroke] $=$ [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]

Force－Stroke Graph
＊The values shown below are allowable values of the actuator body． Do not use the actuator so that it exceeds these specification ranges．

LEY100 \square（Motor mounting position：In－line）

Motorless Type

Electric Actuator Rod Type LEY Series LEY25, 32,63

How to Order

LEY H 25 NZ B-500

1 Accuracy
NiI
H
High-precision type
:---:
Nil
R
L
Right side parallel
D

2 Size
25
32
63

4	
Mounting type	
NZ	NU
NY	NT
NX	NM1
NW	NM2
NV	NM3

5 Lead [mm]

Symbol	LEY25	LEY32	LEY63
A	12	$16(20)$	20
B	6	$8(10)$	10
C	3	$4(5)$	5
L	-	-	$2.86^{* 1}$

*1 Only available for top/right/left side parallel motor types (Equivalent leads which include the pulley ratio [4:7])

* The values shown in () are the leads for the top/right/left side parallel motor types. Except mounting type NM1 (Equivalent leads which include the pulley ratio [1.25:1])

6 Stroke $[\mathrm{mm}]$	
$\mathbf{3 0}$	30
to	to
$\mathbf{8 0 0}$	800

* Refer to the applicable stroke table.

8 Rod end thread

| Nil | Rod end female thread |
| :--- | :--- | M

9 Mounting*

Symbol	Type	Motor mounting position	
		Parallel	In-line
Nil	Ends tapped/Body bottom tapped*2	-	\bigcirc
L	Foot	-	-
F	Rod flange*2	- *	\bigcirc
G	Head flange*2	- *5	-
D	Double clevis*3	-	-

*1 The mounting bracket is shipped together with the product but does not come assembled.
*2 For the horizontal cantilever mounting with the ends tapped, rod flange, or head flange types, use the actuator within the following stroke range. LEY25: 200 mm or less, LEY32: 100 mm or less, LEY63: 400 mm or less
*3 For the mounting with the double clevis type, use the actuator within the following stroke range.
. LEY25: 200 mm or less, LEY32: 200 mm or less
*4 If the stroke of the LEY25 is 30 mm or less, the rod flange may interfere with the motor.
*5 The head flange type is not available for the in-line type and the LEY32/63.

Compatible Motors and Mounting Types

Applicable motor model		Size/Mounting type																					
Manufacturer	Series	25						32									63						
		NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2	NZ	NY	NX	NW	NV	NU	NT
Mitsubishi Electric Corporation	MELSERVO JN/44/5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-	-
YASKAWA Electric Corporation	Σ-V/7	**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	\bullet	-	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6	$$	-	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-
FANUC CORPORATION	β is (-B)	-	-	-	-	-	-	(B1 only)	-	-	-	-	-	-	-	-	($\beta 1$ only)	-	-	\bullet	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	\bullet	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	${ }^{* 3}$	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-	-
MinebeaMitsumi Inc.	Hypid stepping motors	-	-	-	**	-	-*2	-	-	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
Shinano Kenshi Co., Ltd.	CSB-BZ	-	-	-	** ${ }^{1}$	-	-*2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	-	-	-	-		-	-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-	-	-
FASTECH Co., Ltd.	Ezi-SERVO	-	-	-	\bullet	-	-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MPNP/TL	$\mid(T L \text { only }) \mid$	-	-	-	-	-	-	-	$\begin{gathered} \boldsymbol{e}^{* 1} \\ \text { (MPNP } \\ \text { only) } \end{gathered}$	-	-	-	$\mid(T L \text { only }) \mid$	-	-	-	-	$\begin{gathered} \boldsymbol{e}^{* 1} \\ \text { (MPVP } \\ \text { only) } \end{gathered}$	-	-	-	$\mid(T L \text { only })$
Beckhoff Automation GmbH	AM 30/31/80/81	\bullet	-	-	-	-	-	-	-		-	$\underset{\left(\begin{array}{c} \boldsymbol{e}^{* 1} \\ \text { (AM30 } \\ \text { only) } \end{array}\right.}{ }$	$\underset{\substack{\bullet \\ \text { (AM31 } \\ \text { only) }}}{\bullet}$	-	-	-	-	-	$\begin{aligned} & \hline \bullet^{* 1} \\ & \text { (AM80/ } \\ & \text { AM81 } \\ & \text { only) } \\ & \hline \end{aligned}$	-	$\begin{gathered} \boldsymbol{e}^{*} \text { (AM30 } \\ \text { only) } \end{gathered}$	$\begin{gathered} \boldsymbol{e}^{* 1} \\ (\text { AM31 } \\ \text { only) } \end{gathered}$	-
Siemens AG	SIMOTICS S-1FK7	-	-	-	-	-	-	-	-	-*1	-	-	-	-	-	-	-	-	- *1	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-	-
ANCA Motion	AMD2000	\bullet	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-	-

[^13]*3 For some motors, the connector may protrude from the motor body. Be sure to check for interreference with the mounting surface before selecting a motor.
－Values in this specifications table are the allowable values of the actuator body with the standard motor mounted．
－Do not use the actuator so that it exceeds these values．

Model				LEY25（Parallel） LEY25D（In－line）			LEY32（Parallel）			LEY32D（In－line）		
	Work load［kg］		Horizonta＊＊	18	50	50	30	60	60	30	60	60
			Vertical	8	16	30	9	19	37	12	24	46
	Force［N］＊2（Set value：Rated torque 45 to 90% ）			65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	Max．＊3 speed ［mm／s］	Stroke range	－Up to 300	900	450	225	1200	600	300	1000	500	250
			305 to 400	600	300	150						
			405 to 500	－	－	－	800	400	200	640	320	160
	Pushing speed［ $\mathrm{mm} / \mathrm{s}]^{* 4}$			35 or less			30 or less					
	Max．acceleration／deceleration［mm／s²］			5000								
	Positioning repeatability［mm］		Basic type	± 0.02								
			High－precision type	± 0.01								
	$\begin{aligned} & \text { Lost motion*5 } \\ & {[\mathrm{mm}]} \end{aligned}$		Basic type	0.1 or less								
			High－precision type	0.05 or less								
	Ball screw specifications		Thread size［mm］	$\varnothing 10$			812					
			Lead $[\mathrm{mm}]$ $\times 9$（incudung pulley ratio $1.5: 1$ ：1）	12	6	3	$\begin{gathered} 16 \\ (20) * 9 \end{gathered}$	$\begin{gathered} 8 \\ (10) * 9 \end{gathered}$	$\underset{(5)^{*} * 9}{ }$	16	8	4
			Shaft length［mm］	Stroke＋ 93.5			Stroke＋ 104.5					
	Impact／Vibration resistance $\left[\mathrm{m} / \mathrm{s}^{2}\right]^{* 6}$			50／20								
	Actuation type			Ball screw＋Belt（Parallel） Ball screw（In－line）			$\begin{gathered} \text { Ball screw + Belt } \\ \text { [Pulley ratio 1.25:1] } \end{gathered}$			Ball screw		
	Guide type			Sliding bushing（Piston rod）								
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］			5 to 40								
	Operating humidity range［\％RH］			90 or less（No condensation）								
	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Actuation unit weight [kg] } \\ \text { (* [ST]: Stroke) } \end{array} \\ \hline \end{array}$			$\begin{aligned} & 0.15+\left(0.69 \times 10^{-3}\right) \times[\mathrm{ST}]: 100 \text { st or less } \\ & 0.16+\left(0.69 \times 10^{-3}\right) \times[\mathrm{ST}]: \text { Over } 100 \text { st } \end{aligned}$			$\begin{aligned} & 0.24+\left(1.40 \times 10^{-3}\right) \times[\mathrm{ST}]: 100 \text { st or less } \\ & 0.28+\left(1.40 \times 10^{-3}\right) \times[\mathrm{ST}]: \text { Over } 100 \mathrm{st} \\ & \hline \end{aligned}$					
	Other inertia［kg．cm²］			0.012 （LEY25）， 0.015 （LEY25D）			0.035 （LEY32）， 0.061 （LEY32D）					
	Friction coefficient			0.05								
	Mechanical efficiency			0.8								
	Motor type			AC servo motor								
	Rated output capacity［W］			100			200					
	Rated torque［ $\mathrm{N} \cdot \mathrm{m}$ ］			0.32			0.64					

＊1 This is the maximum value of the horizontal work load．An external guide is necessary to support the load（Friction coefficient of guide： 0.1 or less）． The actual work load changes according to the condition of the external guide．Confirm the load using the actual device．
＊2 The force setting range for the force control（Speed control mode， Torque control mode）
The force changes according to the set value．Set it with reference to the＂Force Conversion Graph（Guide）＂on page 905.
＊3 The allowable speed changes according to the stroke．
＊4 The allowable collision speed for collision with the workpiece
＊5 A reference value for correcting an error in reciprocal operation
＊6 Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．） Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊7 Each value is only to be used as a guide to select a motor of the appropriate capacity．
＊8 For other specifications，refer to the specifications of the motor that is to be installed．

Weight

Product Weight

Series	LEY25（Motor mounting position：Parallel）									LEY32（Motor mounting position：Parallel）										
Stroke［mm］	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product weight［kg］	0.8	0.9	1.1	1.3	1.5	1.7	1.8	2.0	2.2	1.4	1.5	1.8	2.3	2.6	2.9	3.1	3.4	3.7	4.0	4.3
Series	LEY25D（Motor mounting position：In－line）									LEY32D（Motor mounting position：In－line）										
Stroke［mm］	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product weight［kg］	0.8	0.9	1.1	1.3	1.5	1.7	1.9	2.0	2.2	1.4	1.6	1.8	2.3	2.6	2.9	3.2	3.4	3.7	4.0	4.3

Additional Weight

Additional Weight

Size		$\mathbf{2 5}$	$\mathbf{3 2}$
Rod end male thread	Male thread	0.03	0.03
	Nut	0.02	0.02
Foot bracket（2 sets including mounting bolt）	0.08	0.14	
Rod flange（including mounting bolt）	0.17	0.20	
Head flange（including mounting bolt）			
Double clevis（including pin，retaining ring，and mounting bolt）		0.16	0.22

Specifications $\quad \bullet$ Values in this specifications table are the allowable values of the actuator body with the standard motor mounted.

- Do not use the actuator so that it exceeds these values.

Model				LEY63D (In-line)			LEY63 (Parallel)			
	Work load [kg]		Horizontal* ${ }^{\text {\% }}$	40	70	80	40	70	80	200
			Vertical	19	38	72	19	38	72	115
	Force [N]*2 (Set value: Rated torque 45 to 150\%)			156 to 521	304 to 1012	573 to 1910	156 to 521	304 to 1012	573 to 1910	1003 to 3343
	Max.*3 speed [mm/s]	Stroke range	Up to 500	1000	500	250	1000	500	250	70
			505 to 600	800	400	200	800	400	200	
			605 to 700	600	300	150	600	300	150	
			705 to 800	500	250	125	500	250	125	
	Pushing speed [mm/s]*4			30 or less						
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			5000						3000
	Positioning repeatability [mm]		Basic type	± 0.02						
			High-precision type	± 0.01						
	Lost motion*5 [mm]		Basic type	0.1 or less						
			High-precision type	0.05 or less						
	Ball screw specifications		Thread size [mm]	ø20						
			Lead [mm]	20	10	5	20	10	5	5 (2.86)
			Shaft length [mm]	Stroke + 147						
	Impact/Vibration resistance [m/s ${ }^{2}{ }^{* 6}$			50/20						
	Actuation type			Ball screw			Ball screw + Belt [Pulley ratio 1:1]			Ball screw + Belt [Pulley ratio 4:7]
	Guide type			Sliding bushing (Piston rod)						
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40						
	Operating humidity range [\%RH]			90 or less (No condensation)						
	Actuation unit weight [kg] (* [ST]: Stroke)			$\begin{aligned} & 0.84+\left(2.77 \times 10^{-3}\right) \times[\mathrm{ST}]: 200 \mathrm{st} \text { or less } \\ & 0.94+\left(2.77 \times 10^{-3}\right) \times[\mathrm{ST}]: \text { Over } 200 \mathrm{st}, 500 \mathrm{st} \text { or less } \\ & 1.03+\left(2.77 \times 10^{-3}\right) \times[\mathrm{ST}]: \text { Over } 500 \mathrm{st} \end{aligned}$						
	Other inertia [kg.cm ${ }^{2}$]			0.056 (LEY63D)			0.110			0.053
	Friction coefficient			0.05						
	Mechanical efficiency			0.8						
	Motor type			AC servo motor						
	Rated output capacity [W]			400						
	Rated torque [N.m]			1.27						

*1 This is the maximum value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
*2 The force setting range for the force control (Speed control mode, Torque control mode)
The force changes according to the set value. Set it with reference to the "Force Conversion Graph (Guide)" on page 905.
*3 The allowable speed changes according to the stroke.
*4 The allowable collision speed for collision with the workpiece
*5 A reference value for correcting an error in reciprocal operation
*6 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*7 Each value is only to be used as a guide to select a motor of the appropriate capacity.
*8 For other specifications, refer to the specifications of the motor that is to be installed.

Weight

Product Weight

Model	LEY63D (Motor mounting position: In-line)												
Stroke [mm]	50	100	150	200	250	300	350	400	450	500	600	700	800
Product weight [kg]	3.7	4.2	4.8	5.3	6.5	7.0	7.6	8.2	8.8	9.3	11.0	12.1	13.3
Model	LEY63 (Motor mounting position: Parallel)												
Stroke [mm]	50	100	150	200	250	300	350	400	450	500	600	700	800
Product weight [kg]	3.5	4.0	4.7	5.2	6.4	6.9	7.5	8.0	8.6	9.1	10.8	12.0	13.1

Additional Weight
Size [kg] Rod end male thread Male thread Nut 0.12
Rod flange (including mounting bolt)

LEY25, 32, 63

*1 Do not allow collisions at either end of the rod operating range at a speed exceeding "pushing speed." Additionally, when running the positioning operation, do not set within 2 mm of both ends for size 25, 32, and do not set within 4 mm of both ends for size 63.
*2 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.

IP65 equivalent (Dust-tight/Water-jet-proof):

LEY63 $\square \square \square-\square \mathbf{P}$ (View ZZ)

*3 When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water. The fitting and tubing should be provided separately by the customer.
Select [Applicable tubing O.D.: ø4 or more, Connection thread: Rc1/8].

Dimensions

* The L measurement is when the unit is at the retracted stroke end position.

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 39	20	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100									
	101 to 124					75				
	125 to 200		59	49.5						
	201 to 400		76	58						
32	20 to 39	25	22	36	30		M6 x 1	8.5	5	6
	40 to 100					50				
	101 to 124					80				
	125 to 200		53	51.5						
	201 to 500		70	60						
63	50 to 70	38	24	50	44	65	M8 $\times 1.25$	10	6	7
	75 to 120		45	60.5						
	125 to 200		58	67						
	205 to 500					100				
	505 to 800		86	81		135				

Motor flange dimensions
LEY25: NZ, NY, NX
LEY32: NZ, NY, NW, NU, NT

LEY63: NZ, NY, NW, NT
$4 \times$ FA
thread depth FB

LEY25: NM1, NM2, NM3

LEY32: NM1, NM2

Applicable motor dimensions

[^14]
LEY Series

Motorless Type

Dimensions: In-line Motor

Refer to the "Motor Mounting" on page 927 for details about motor mounting and included parts.

LEY25, 32

*1 Do not allow collisions at either end of the rod operating range at a speed exceeding "pushing
speed." Additionally, when running the positioning operation, do not set within 2 mm of both ends.
*2 The direction of rod end width across flats $(\square \mathrm{K})$ differs depending on the products.

Dimensions

Size	Stroke range [mm]	B	C	D	EH	EV	H	J	K	L	M	01	R	S	T	U
25	$\frac{15}{}$ to 100	89.5 1145	13	20	44	45.5	M8× 1.25	24	17	12.5	34	M5 x 0.8	8	45	46.5	1.5
	105 to 400	114.5 96		25	51	56.5	M8 x 1.25	31	22	16.5	40	M6 x 1.0		60	61	
32	105 to 500	126	13										10			1

* The L measurement is when the unit is at the retracted stroke end position.

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 35	20	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100		42	41						
	105 to 120					75				
	125 to 200		59	49.5						
	205 to 400		76	58						
32	20 to 35	25	22	36	30	50	M6 x 1.0	8.5	5	6
	40 to 100		36	43		50				
	105 to 120					80				
	125 to 200		53	51.5						
	205 to 500		70	60						

Refer to the＂Motor Mounting＂on page 927 for details about motor mounting and included parts．

Motor flange dimensions

LEY25：NZ，NY，NX
LEY32：NZ，NY，NX，NW，NV，NU，NT

LEY32：NM1

LEY25：NM1，NM2

LEY32：NM2

Refer to the＂Motor Mounting＂on page 928 for details about motor mounting and included parts．

LEY63

＊1 Do not allow collisions at either end of the rod operating range at a speed exceeding ＂pushing speed．＂Additionally，when running the positioning operation，do not set within 4 mm of both ends．
＊2 The direction of rod end width across flats（ $\square \mathrm{K}$ ）differs depending on the products．
IP65 equivalent（Dust－tight／Water－jet－proof）：LEY63DNपロ－\square P（View Z）
（Diew

＊3 When using the dust－tight／water－jet－proof（IP65 equivalent），correctly mount the fitting and tubing to the vent hole tap，and then place the end of the tubing in an area not exposed to dust or water．The fitting and tubing should be provided separately by the customer．
Select［Applicable tubing O．D．：$\varnothing 4$ or more，Connection thread：Rc1／8］．

Dimensions

Size	Stroke range［mm］	B	C	D	EH	EV	H	J	K	L	M	O1	R	S	T	U
63	50 to 200	123	21	40	76	82	M16 x 2	44	36	33.4	60	M8 x 1.25				
	205 to 500 505 to 800	158											16	78	83	5

＊The L measurement is when the unit is at the retracted stroke end position．

Size	Stroke range［mm］	MA	MC	MD	MH	ML	MO	MR	XA	XB
63	50 to 70	38	24	50	44		M8 x 1.25	10	6	7
	75 to 120		45	60.5		65				
	125 to 200		58	67						
	205 to 500		86	81		100				
	505 to 800					135				

Motor Mounting，Applicable Motor Dimensions

Size	Mounting type	FA		FB	FC	FD	$\begin{gathered} \text { FE } \\ (\text { Max. }) \end{gathered}$	FF	FG	FH	FK	FJ	FL
		Mounting type	Applicable motor										
63	NZ	M5 x 0.8	$\varnothing 5.5$	10	$\varnothing 70$	50	3.5	67.7	78	22.5	50	14	30 ± 1
	NY	M4 x 0.7	$\varnothing 4.5$	8	$\varnothing 70$	50	3.5	67.7	78	22.5	50	14	30 ± 1
	NX	M5 x 0.8	$\varnothing 5.5$	10	$\varnothing 63$	40	3.5	72.7	78	27.5	55	9	20 ± 1
	NW	M5 x 0.8	$\varnothing 5.5$	10	$\varnothing 70$	50	3.5	67.7	78	22.5	50	9	25 ± 1
	NV	M4 x 0.7	$\varnothing 4.5$	8	$\varnothing 63$	40	3.5	72.7	78	27.5	55	9	20 ± 1
	NU	M5 x 0.8	$\varnothing 5.5$	10	$\varnothing 70$	50	3.5	67.7	78	22.5	50	11	23 ± 1
	NT	M5 x 0.8	$\varnothing 5.5$	10	$\varnothing 70$	50	3.5	67.7	78	22.5	50	12	30 ± 1

LEY Series

Motorless Type

Dimensions

25 A

Rod end male thread: LEY32 $\square \square B-\square \square M$
63 C

* Refer to page 361 for details on the rod end nut and mounting bracket.
* Refer to the precautions on pages 938 and 939 when mounting end brackets such as knuckle joint or workpieces.

Size	B1	$\mathbf{C} 1$	$\mathbf{H} 1$	L1	L2	MM
$\mathbf{2 5}$	22	20.5	8	36	23.5	M14 $\times 1.5$
$\mathbf{3 2}$	22	20.5	8	40	23.5	M14 $\times 1.5$
$\mathbf{6 3}$	27	26	11	72.4	39	M18 $\times 1.5$

* The L1 measurement is when the unit is at the retracted stroke end position.

Included parts

- Foot bracket - Body mounting bolt

Outward mounting

Size	Stroke range [mm]	A	LS	LS 1	LL	LD	LG	LH	LT	LX	LY	LZ	X	Y
	15 to 100	134.6	98.8	19.8	6.4	6.6	3.5	30	2.6	57	51.5	71	11.2	5.8
25	105 to 400	159.6	123.8											
32	20 to 100	153.7	114	19.2	9.3	6.6	4	36	3.2	76	61.5	90	11.2	7
	105 to 500	183.7	144											
63	50 to 200	196.8	133.2	25.2	25.2	9	5	50	3.2	95	88	110	14.2	8
	205 to 500	231.8	168.2											
	505 to 800	266.8	203.2											

Material: Carbon steel (Chromating)

* The A and LL measurements are when the unit is at the retracted stroke end position.
* When the motor mounting is the right or left side parallel type, the head side foot bracket should be mounted outward.

Dimensions

Rod flange：LEY3225 63

A
Head flange：LEY25 $\square \square \mathbf{B}-\square \square \square \mathbf{G}$

Rod／Head Flange

Material：Carbon steel（Nickel plating）
＊The LL measurement is when the unit is at the retracted stroke end position．

Double clevis：LEY | 2525 |
| :---: |
| 63 |

Included parts －Double clevis －Body mounting bolt
－Clevis pin
－Retaining ring
＊Refer to page 361 for details on the rod end nut and mounting bracket．

Double Clevis
［mm］

Size	Stroke range［mm］	A	CL	CD	CT	CU	CW	CX	CZ	L	RR
25	15 to 100	158.5	148.5	10	5	14	20	18	36	12.5	10
	105 to 200	183.5	173.5								
32	20 to 100	178.5	168.5	10	6	14	22	18	36	16.5	10
	105 to 200	208.5	198.5								
63	50 to 200	232.6	218.6	14	8	22	30	22	44	33.4	14
	205 to 300	267.6	253.6								

Material：Cast iron（Coating）
＊The A，CL，and L measurements are when the unit is at the retracted stroke end position．

Electric Actuator/ Rod Type

How to Order

(3) Mounting type
 NN

* Order the motor adapter and motor flange separately. Refer to page 916-4.

(6) Rod end thread

Nil	Rod end female thread
\mathbf{M}	Rod end male thread (1 rod end nut is included.)

7 Mounting*2

Symbol	Type
$\mathbf{N i l}$	Ends tapped ${ }^{* 3}$
\mathbf{L}	Foot
\mathbf{F}	Flange $^{* 3}$

*2 The mounting bracket is shipped together with the product but does not come assembled.
*3 Do not mount using the "ends tapped" or "flange" options for the horizontal type with one end secured.

Applicable Stroke Table

- Standard

Size	Stroke [mm]									
	100	200	300	400	500	600	700	800	900	1000
100	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

* Please contact SMC for non-standard strokes as they are produced as special orders.

Compatible Motors

Manufacturer	Series	NN
Mitsubishi Electric Corporation	MELSERVO-J4/J5	\bullet
YASKAWA Electric Corporation	Σ-V/7	\bullet
NIDEC SANKYO CORPORATION	S-FLAG	\bullet
KEYENCE CORPORATION	SV/SV2	\bullet
Delta Electronics, Inc.	ASDA-A2	\bullet

Specifications \quad * The values in this specifications table are the allowable values of the actuator body with the standard motor mounted.
Specifications * Do not use the actuator so that it exceeds these values.

Model				LEY100DNNB
	Stroke [mm]			100, 200, 300, 400, 500, 600, 700, 800, 900, 1000
	Work load [kg]		Horizontal*1	240/1200 [When equipped with reducer (reduction ratio 1/5)]
			Vertical	80/200 [When equipped with reducer (reduction ratio 1/5)]
	Rated force [N$] /$ Set value: Rated torque $87 \% * 2$			1100/5500 [When equipped with reducer (reduction ratio 1/5)]
	Max. force [N]/Set value: Max. torque 192\%*2*3			2600/12000 [When equipped with reducer (reduction ratio 1/5)]
	Max. speed [mm/s]*4	Stroke range	Up to 500	500
			600	370
			700	285
			800	225
			900	180
			1000	150
	Pushing speed [mm/s] ${ }^{* 5}$			20 or less
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			3000/2000 [When equipped with reducer (reduction ratio 1/5)]
	Positioning repeatability [mm]			± 0.02
	Lost motion [mm]*6			0.1 or less
	Ball screw specifications	Thread size [mm]		$ø 32$
		Lead [mm]		10
		Shaft length [mm]		Stroke + 202
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{* 7}$			50/20
	Actuation type			Ball screw
	Guide type			Sliding bushing (Piston rod)
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40
	Operating humidity range [\%RH]			90 or less (No condensation)
	Actuation unit weight [kg] (* [ST]: Stroke)			$2.80+\left(7.50 \times 10^{-3}\right) \times[$ [ST]
	Other inertia [kg.cm]			0.047
	Friction coefficient			0.05
	Mechanical efficiency			0.9
	Motor type			AC servo motor
	Rated output capacity [W]			750
	Rated torque [$\mathrm{N} \cdot \mathrm{m}$]			2.4
	Rated rotation [rpm]			3000

*1 This is the max. value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less).
The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
*2 The force setting range for the force control (Speed control mode, Torque control mode)
The force changes according to the set value. Set it with reference to the "Force Conversion Graph (Guide)" on page 905.
*3 The allowable speed changes according to the stroke. Check the "Force-Stroke Graph" on page 905-1.
*4 The allowable speed changes according to the stroke.
*5 The allowable collision speed for collision with the workpiece
*6 A reference value for correcting errors in reciprocal operation
*7 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*8 Each value is only to be used as a guide to select a motor of the appropriate capacity.

Weight

Product Weight
Stroke [mm] 100 200 300 400 500 600 700 800 900 1000 Motor type LEY100DNNB Motorless 8.1 9.8 11.4 13.1 14.7 16.3 18.0 19.6 21.3 22.9

Additional Weight

Size		$[\mathrm{kg}]$
Motor option	With lock	1.0
Rod end thread	Male thread	0.11
	Nut	0.05
Mounting	Foot	1.1
	Flange	0.8

Electric Actuator／Rod Type LEY Series
 Motorless Type
 size 100

Refer to the＂Motor Mounting＂on pages 925 and 926 for details about motor mounting and included parts．

Dimensions：In－line Motor

LEY100

＊part dimensions indicate the dimensions when a male rod end is selected．

Rod end female thread：LEY100DNNB－$\square \square \square$

Rod flange shape：LEY100DNNB－$\square \square \square \mathrm{F}$

Foot：LEY100DNNB－$\square \square \square$

LEY100 Series
 Option

Motor Flange Assembly

1 Mounting Type

Mounting type	Component parts						
		B Motor flange		C Coupling		(D) Reducer	
		Mounting type NZ	Mounting type NG	O.D. $\varnothing 40$	O.D. ø55	Reduction ratio $1 / 3$	Reduction ratio $1 / 5$
NZ	-	\bigcirc	-	\triangle	-	-	-
NZC	\bigcirc	\bigcirc	-	\bigcirc	-	-	-
NG	\bigcirc	-	\bigcirc	-	\triangle	\triangle	
NGC	-	-	\bigcirc	-	\bigcirc	\triangle	
NGC3	-	-	\bigcirc	-	\bigcirc	\bigcirc	-
NGC5	\bigcirc	-	\bigcirc	-	\bigcirc	-	\bigcirc
N	-	\triangle		\triangle		\triangle	

* The parts marked with a are component parts. The parts marked with a \triangle should be prepared by the customer as necessary.
* Component parts A, B, © and (D) come with mounting screws.
* The motor mounting screws should be provided by the customer.

Compatible Motors

Manufacturer	Series	NZC/NGC3/NGC5
Mitsubishi Electric Corporation	MELSERVO-J4/J5	\bullet
YASKAWA Electric Corporation	Σ-V/7	\bullet
NIDEC SANKYO CORPORATION	S-FLAG	\bullet
KEYENCE CORPORATION	SV/SV2	\bullet
Delta Electronics, Inc.	ASDA-A2	\bullet

Applicable motor dimensions

Applicable Motor Dimensions

Applicable Motor Dimensions							
Size	FA	FC	FD	FE (Max.)	FJ	FL	
$\mathbf{1 0 0}$	$ø 6.6$	$ø 90$	70	4.5	19	40 to 44	

(A) Motor adapter

A-A

OCoupling
D Reducer (Reduction ratio 1:3/1:5)

$4 \times$ M6 thread depth 13

	$-\triangle 100$
(1) Mounting bracket	
	Nounting barack
F	Fange

Motorless Type

Electric Actuator/Guide Rod Type

LEYG Series
Model Selection

LEYG Series $>$ p. 921

Moment Load Graph

The model selection method shown below corresponds to SMC's standard motor.
For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.

Selection Conditions

Mounting orientation		Vertical	Horizontal	
Max. speed [mm/s]		"Speed-Vertical Work Load Graph"	200 or less	Over 200
Bearing	Sliding bearing	Graph (1), (2)	Graph (5), (6)*1	Graph (7), 8)
	Ball bushing bearing	Graph (3), (4)	Graph (9, (10)	Graph (11), (12)

*1 For the sliding bearing type, the speed is restricted with a horizontal/moment load.
Vertical Mounting, Sliding Bearing

[^15]
Moment Load Graph

Horizontal Mounting, Sliding Bearing

(7) $L=50$ mm Max. speed $=$ Over 200 mm/s

(6) $L=\mathbf{1 0 0} \mathbf{~ m m}$ Max. speed $=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(8) $L=100$ mm Max. speed $=$ Over 200 mm/s

Horizontal Mounting, Ball Bushing Bearing
(9) $L=\mathbf{5 0} \mathbf{~ m m ~ M a x . ~ s p e e d ~}=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(11) $L=50 \mathrm{~mm}$ Max. speed $=$ Over $200 \mathrm{~mm} / \mathrm{s}$

(10) $L=100 \mathrm{~mm}$ Max. speed $=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less
(12) $L=100 \mathrm{~mm}$ Max. speed $=$ Over $\mathbf{2 0 0} \mathrm{mm} / \mathrm{s}$

Operating Range when Used as a Stopper

$\underline{L E Y G} \square M$ (Sliding bearing)

[^16]

LEYG Series

Motorless Type

Speed-Vertical Work Load Graph

LEYG25 \square (Motor mounting position: Parallel/In-line)

LEYG32 \square (Motor mounting position: Parallel)

LEYG32D (Motor mounting position: In-line)

Speed-Horizontal Work Load Graph * These graphs stow the work load when the exemana guide is ssed togetere. When using the LevG aone, reier to pages 917 and 918.
LEYG25 \square (Motor mounting position: Parallel/ln-line)

LEYG32 \square (Motor mounting position: Parallel)

LEYG32D (Motor mounting position: In-line)

Force Conversion Graph
＊These graphs show an example of when the standard motor is mounted．Calculate the force based on used motor and driver．

LEYG25 \square（Motor mounting position：Parallel／In－line）

LEYG32 \square（Motor mounting position：Parallel）

LEYG32D（Motor mounting position：In－line）

[^17]
Electric Actuator Guide Rod Type

How to Order

For auto switches, refer to pages 933 to 936.

Compatible Motors and Mounting Types

Applicable motor model		Size/Mounting type														
Manufacturer	Series	25						32								
		NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/44/5	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
YASKAWA Electric Corporation	г-V/7	-*3	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
SANYO DENKICO., LTD.	SANMOTION R	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	\bigcirc	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6		\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-
FANUC CORPORATION	β is (-B)	\bigcirc	-	-	-	-	-	(31 only)	-	-	\bigcirc	-	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	*3	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
MinebeaMitsumi Inc.	Hybrid stepping motors	-	-	-	- *1	-	*2	-	-	-	-	-	-	-	\bigcirc	-
Shinano Kenshi Co., Ltd.	CSB-BZ	-	-	-	- *1	-	*2	-	-	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	-	-	-	-		-	-	-	-	-	-	-	-	-	\bigcirc
FASTECH Co., Ltd.	Ezi-SERVO	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	-	\bigcirc	-
Rockwell Automation, Inc. (Allen-Bradley)	$\begin{gathered} \hline \text { Kinetix MP/VP/ } \\ \text { TL } \\ \hline \end{gathered}$	$\underset{\text { (TL only) }}{\boldsymbol{\ominus}}$	-	-	-	-	-	-	-	$\begin{array}{\|c\|} \hline \mathbf{Q P}^{*} \\ \text { (MPNPonly) } \\ \hline \end{array}$	-	-	-	$\underset{\text { (TL only) }}{\boldsymbol{\ominus}}$	-	-
Beckhoff Automation GmbH	AM 30/31/80/81	\bigcirc	-	-	-	-	-	-	-	\qquad	-	$\begin{array}{\|c\|} \hline \mathbf{O}^{* 1} \\ \text { (AM30 } \\ \text { only) } \\ \hline \end{array}$	(AM31 only)	-	-	-
Siemens AG	SIMOTICS S-1FK7	-	-	\bigcirc	-	-	-	-	-	**1	-	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
ANCA Motion	AMD2000	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-

*1 Motor mounting position: In-line only *2 Motor mounting position: Parallel only
*3 For some motors, the connector may protrude from the motor body. Be sure to check for interreference with the mounting surface before selecting a motor.

Electric Actuator
 Guide Rod Type LEYG Series
 Motorless Type

Specifications
 - Values in this specifications table are the allowable values of the actuator body with the standard motor mounted.

Model			LEYG25 ${ }_{L}^{M}$ (Parallel) LEYG25MD (In-line)			LEYG32 ${ }_{\text {L }}^{\text {L }}$ (Parallel			LEYG32 ${ }_{\text {L }}{ }_{\text {L }}$ (In-line)		
	Work load [kg]	Horizontal*1	18	50	50	30	60	60	30	60	60
		Vertical	7	15	29	7	17	35	10	22	44
	Force [N] ${ }^{*}$ (Set value: Rated torque 30 to 90%)		65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	Max. speed [mm/s]		900	450	225	1200	600	300	1000	500	250
	Pushing speed [mm/s]*3		35 or less			30 or less					
	Max. acceleration/deceleration [mm/s²]		5000								
	Positioning repeatability [mm]	Basic type	± 0.02								
		High-precision type	± 0.01								
	Lost motion*4 [mm]	Basic type	0.1 or less								
		High-precision type	0.05 or less								
	Ball screw specifications	Thread size [mm]	$\varnothing 10$			$\varnothing 12$					
		Lead [mm] *8 (including pulley ratio $1.25: 1$)	12	6	3	$\begin{gathered} 16 \\ (20) * 8 \end{gathered}$	$\begin{gathered} 8 \\ (10) * 8 \end{gathered}$	$\begin{gathered} 4 \\ (5)^{* 8} \end{gathered}$	16	8	4
		Shaft length [mm]	Stroke + 93.5			Stroke + 104.5					
	Impact/Vibration resistance [$\left.\mathrm{m} / \mathrm{s}^{2}\right]^{* 5}$		50/20								
	Actuation type		Ball screw + Belt (LEY \square) Ball screw (LEYロD)			Ball screw + Belt [Pulley ratio 1.25:1]			Ball screw		
	Guide type		Sliding bearing (LEYG $\square \mathrm{M}$), Ball bushing bearing (LEYG $\square \mathrm{L}$)								
	Operating temperature range [${ }^{\mathrm{C}}$]		5 to 40								
	Operating humidity range [\%RH]		90 or less (No condensation)								
	Actuation unit weight [kg] (* [ST]: Stroke)	Sliding bearing LEYG $\square \mathrm{M}$	$\begin{aligned} & 0.29+\left(2.20 \times 10^{-3}\right) \times[\mathrm{ST}]: 185 \mathrm{st} \text { or less } \\ & 0.34+\left(1.92 \times 10^{-3}\right) \times[\mathrm{ST}]: \text { Over } 185 \mathrm{st} \end{aligned}$			$0.48+\left(2.91 \times 10^{-3}\right) \times[S T]: 180$ st or less $0.55+\left(2.62 \times 10^{-3}\right) \times[\mathrm{ST}]:$ Over 180 st					
		Ball bushing bearing LEYG \square L	$\begin{aligned} & 0.33+\left(1.69 \times 10^{-3}\right) \times[\mathrm{ST}]: 110 \text { st or less } \\ & 0.36+\left(1.80 \times 10^{-3}\right) \times[\mathrm{ST}]: \text { Over } 110 \text { st } \end{aligned}$			$\begin{aligned} & 0.50+\left(2.40 \times 10^{-3}\right) \times[\mathrm{ST}]: 110 \mathrm{st} \text { or less } \\ & 0.55+\left(2.51 \times 10^{-3}\right) \times[\mathrm{ST}]: \text { Over } 110 \mathrm{st} \end{aligned}$					
	Other inertia [$\mathrm{kg} \cdot \mathrm{cm}^{2}$]		$\begin{gathered} 0.012 \text { (LEYG25) } \\ 0.015 \text { (LEYG25D) } \end{gathered}$			0.035 (LEYG32)			0.061 (LEYG32D)		
	Friction coefficient		0.05								
	Mechanical efficiency		0.8								
	Motor type		AC servo motor								
	Rated output capacity [W]		100			200					
	Rated torque [$\mathrm{N} \cdot \mathrm{m}$]		0.32			0.64					

*1 This is the maximum value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
*2 The force setting range for the force control (Speed control mode, Torque control mode)
The force changes according to the set value. Set it with reference to the "Force Conversion Graph" on page 920
*3 The allowable collision speed for collision with the workpiece
*4 A reference value for correcting an error in reciprocal operation

* Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*6 Each value is only to be used as a guide to select a motor of the appropriate capacity.
*7 For other specifications, refer to the specifications of the motor that is to be installed

Weight

Product Weight

Model	LEYG25 ${ }_{\text {L }}^{\text {M }}$ (Motor mounting position: Parallel)							LEYG32 ${ }_{\mathrm{L}}^{\mathrm{M}}$ (Motor mounting position: Parallel)						
Stroke [mm]	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Sliding bearing LEYG $\square \mathbf{M}$	1.3	1.5	1.8	2.2	2.6	2.9	3.2	2.2	2.5	3.1	3.8	4.4	4.8	5.3
Ball bushing bearing LEYG $\square \mathbf{L}$	1.3	1.5	1.8	2.2	2.5	2.8	3.0	2.2	2.5	2.9	3.6	4.1	4.6	5.0

Model	LEYG25 ${ }_{\text {L }}^{\text {M }}$ (Motor mounting position: In-line)							LEYG32 ${ }_{\text {L }}^{\text {L }}$ (Motor mounting position: In -line)						
Stroke [mm]	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Sliding bearing LEYG $\square M$	1.3	1.5	1.8	2.3	2.6	2.9	3.2	2.3	2.5	3.1	3.8	4.4	4.9	5.3
Ball bushing bearing LEYG \square L	1.3	1.6	1.8	2.2	2.5	2.8	3.0	2.3	2.5	2.9	3.7	4.1	4.6	5.0

LEYG Series

Motorless Type

Dimensions: Top Side Parallel Motor
Refer to the "Motor Mounting" on page 925 for details about motor mounting and included parts.

LEYG25, 32

*1 Do not allow collisions at either end of the rod operating range at a speed exceeding "pushing speed."
Additionally, when running the positioning operation, do not set within 2 mm of both ends.
*2 For size 32, the through-holes cannot be used when they are blocked by the overall length of the mounted motor. Use taps for mounting.

LEYG $\square \mathbf{L}$ (Ball bushing bearing) $\quad[\mathrm{mm}]$

Size	Stroke range $[\mathrm{mm}]$	L	DB
$\mathbf{2 5}$	30 to 110	91	
	115 to 190	115	10
	195 to 300	133	
$\mathbf{3 2}$	30 to 110	97.5	13
	115 to 190	116.5	
	195 to 300	134	

LEYG $\square \mathbf{M}$ (Sliding bearing)			$[\mathrm{mm}]$
Size	Stroke range $[\mathrm{mm}]$	\mathbf{L}	DB
	30 to 55	67.5	
$\mathbf{2 5}$	60 to 185	100.5	12
	190 to 300	138	
$\mathbf{3 2}$	30 to 50	74	
	55 to 180	107	
	185 to 300	144	

* The motor mounting and applicable motor dimensions are the same as those of the LEY series. Refer to page 911.

LEYG \square M, LEYG \square L Common

Size	Stroke range [mm]	B	C	DA	EA	EB	EH	EV	EC	ED	G	GA	H	J	K	M	NA	NB
25	30 to 35	89.5	50	20	46	85	103	52.3	11	12.5	5.4	40.3	98.8	30.8	29	34	M5 x 0.8	8
	40 to 100		67.5															
	105 to 120	114.5																
	125 to 200		84.5															
	205 to 300		102															
32	30 to 35	96	55	25	60	101	123	63.8	12	16.5	5.4	50.3	125.3	38.3	30	40	M6 x 1.0	10
	40 to 100		68															
	105 to 120	126																
	125 to 200		85															
	205 to 300		102															
Size	Stroke range [mm]	NC	OA	OB	P	Q	S	T	U	WA	WB	WC	X	XA	XB	Y1	Y2	Z
25	30 to 35	6.5	M6 x 1.0	12	80	18	30	95	6.8	35	26		54	4	5	26.5	22	8.5
	40 to 100									50	335	70						
	105 to 120											95						
	125 to 200									70	43.5							
	205 to 300									85	51							
32	30 to 35	8.5	M6 x 1.0	12	95	28	40	117	7.3	40	28.5	75	64	5	6	34	27	8.5
	40 to 100									50	33.5							
	105 to 120											105						
	125 to 200									70	43.5							
	205 to 300									85	51							

[^18]
Electric Actuator
 Guide Rod Type LEYG Series
 Motorless Type

Dimensions：In－line Motor
Refer to the＂Motor Mounting＂on page 927 for details about motor mounting and included parts．
 Rod operating range＊1

LEYG $\square \mathbf{M}$（Sliding bearing）［mm］

Size	Stroke range $[\mathrm{mm}]$	L	DB
$\mathbf{2 5}$	30 to 55	67.5	
	60 to 185	100.5	12
	190 to 300	138	
32	30 to 50	74	
	55 to 180	107	16
	185 to 300	144	

LEYG $\square \mathrm{L}$（Ball bushing bearing）$[\mathrm{mm}]$

Size	Stroke range $[\mathrm{mm}]$	\mathbf{L}	DB
$\mathbf{2 5}$	30 to 110	91	
	115 to 190	115	10
	195 to 300	133	
$\mathbf{3 2}$	30 to 110	97.5	13
	115 to 190	116.5	
	195 to 300	134	

[^19]

LEYG \square M，LEYG \square L Common

Size	Stroke range ［ mm ］	B	C	DA	EB	EH	EV	EC	ED	G	GA	H	J	K	NA	
25	30 to 35	89.5	50	20	85	103	52.3	11	12.5	5.4	40.3	53.3	30.8	29	M5 x 0.8	
	40 to 100		67.5													
	105 to 120	114.5														
	125 to 200		84.5													
	205 to 300		102													
32	30 to 35	96	55	25	101	123	63.8	12	16.5	5.4	50.3	68.3	38.3	30	M6 x 1.0	
	40 to 100		68													
	105 to 120	126														
	125 to 200		85													
	205 to 300		102													
Size	Stroke range ［mm］	NC	OA	OB	P	Q	S	T	U	WA	WB	WC	X	XA	XB	Z
25	30 to 35	6.5	M6x 1.0	12	80	18	30	95	6.8	35	26		54	4	5	8.5
	40 to 100									50	33.5	70				
	105 to 120											95				
	125 to 200									70	43.5					
	205 to 300									85	51					
32	30 to 35	8.5	M6 x 1.0	12	95	28	40	117	7.3	40	28.5	75	64	5	6	8.5
	40 to 100									50	33.5					
	105 to 120											105				
	125 to 200									70	43.5					
	205 to 300									85	51					

[^20]- The motor and motor mounting screws should be provided by the customer.
- Motor shaft type should be cylindrical for the NZ, NY, NW, NM2 mounting types, and D-cut type for the NM1 and NM3 mounting type.
Motor Mounting: Parallel
- When mounting a pulley, remove all oil content, dust, and dirt adhered to the shaft and the inside of the pulley.
- Take measures to prevent the loosening of the motor mounting screws and hexagon socket head set screws.

Motor flange details

LEY25: NZ, NY, NX
LEY32: NZ, NY, NW, NU, NT

Dimensions

Size	Mounting type	MM1	TT1	MM2	TT2	MM3	TT3	PD	PP	BT	FA	FB	FC	FD	FE	FF	FG
25	NZ	M2.5 x 10	1.0	M3 x 8	0.63	M4 x 10	1.5	8	7.5	19	M4 x 0.7	7.5	ø46	30	3.7	11	42
	NY	M2.5 x 10	1.0	M3 x 8	0.63	M 4×10	1.5	8	7.5	19	M3 x 0.5	5.5	$\varnothing 45$	30	5	11	38
	NX	M 2.5×10	1.0	M3 x 8	0.63	M4 $\times 10$	1.5	8	4.5	19	M4 x 0.7	7	$\varnothing 46$	30	3.7	8	42
	NM1	M3 $\times 5$	0.63	M3 x 8	0.63	M 4×10	1.5	5	11.8	19	$\varnothing 3.4$	7	$\square 31$	28	3.5	8.5	42
	NM2	M2.5 x 10	1.0	M3 $\times 8$	0.63	M4 $\times 10$	1.5	6	4.8	19	$\varnothing 3.4$	7	$\square 31$	28	3.5	8.5	42
	NM3	M3 $\times 5$	0.63	M3 x 8	0.63	M 4×10	1.5	5	8.8	19	$\varnothing 3.4$	7	$\square 31$	28	3.5	5.5	42
32	NZ	M3 $\times 12$	1.5	M 4×12	1.5	M6 x 14	5.2	14	4.5	30	M5 x 0.8	8.5	$\varnothing 70$	50	4.6	13	60
	NY	M3 $\times 12$	1.5	M 4×12	1.5	M6 x 14	5.2	11	4.5	30	M4 x 0.7	7	$\bigcirc 70$	50	4.6	13	60
	NW	M4 $\times 12$	3.6	M 4×12	1.5	M6 x 14	5.2	9	4.5	30	M5 x 0.8	8.5	ø70	50	4.6	13	60
	NU	M3 $\times 12$	1.5	M 4×12	1.5	M6 x 14	5.2	11	4.5	30	M5 x 0.8	8.5	ø70	50	4.6	13	60
	NT	M 3×12	1.5	M 4×12	1.5	M6 x 14	5.2	12	8.5	30	M5 x 0.8	8.5	$\varnothing 70$	50	4.6	17	60
	NM1	M3 $\times 5$	0.63	M 4×12	1.5	M6 x 14	5.2	6.35	8	30	M4 x 0.7	(5)	$\square 47.1$	38.2	-	5	56.4
	NM2	M3 x 12	1.5	M4 $\times 12$	1.5	M6 x 14	5.2	10	3	30	M4 x 0.7	8	$\square 50$	38.2	-	11.5	60

Motor Mounting Diagram

Mounting procedure

1) Secure the motor pulley to the motor (provided by the customer) with the MM1 hexagon socket head cap screw or hexagon socket head set screw.
2) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).
3) Put the timing belt on the motor pulley and body side pulley, and then secure it temporarily with the MM2 hexagon socket head cap screws. (Refer to the mounting diagram.)
4) Apply the belt tension and tighten the timing belt with the MM2 hexagon socket head cap screws. (The reference level is the elimination of the belt deflection.)
5) Secure the return plate with the MM3 hexagon socket head cap screws.

LEY32: NM1, NM2

Included Parts List

Size: 25, 32

Description	Quantity	
	Mounting type	
	NZ/NY/NW/NT/NM2	NM1/NM3
Motor flange		1
Motor pulley	1	1
Return plate	1	1
Timing belt	1	1
Hexagon socket head cap screw (to mount the return plate)	4	4
Hexagon socket head cap screw (to mount the motor flange)	2	2
Hexagon socket head cap screw (to secure the pulley)	1	-
Hexagon socket head set screw (to secure the pulley)	-	1

Electric Actuators Rod Type／Guide Rod Type

Motor Mounting：Parallel

Motor flange details

LEY63：NZ，NY，NW，NT

Dimensions

| $[\mathrm{Mm}]$ | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mounting type | MM1 | TT1 | MM2 | TT2 | MM3 | TT3 | PD | PP | BT | FA | FB | FC | FD | FE | FF | FG |
| NZ | $\mathrm{M} 4 \times 12$ | 3.6 | $\mathrm{M} 4 \times 12$ | 2.7 | $\mathrm{M} 8 \times 16$ | 12.5 | 14 | 4.5 | 98 | $\mathrm{M} 5 \times 0.8$ | 8.5 | $\varnothing 70$ | 50 | 4.6 | 11 | 60 |
| NY | $\mathrm{M} 4 \times 12$ | 3.6 | $\mathrm{M} 4 \times 12$ | 2.7 | $\mathrm{M} 8 \times 16$ | 12.5 | 14 | 4.5 | 98 | $\mathrm{M} 4 \times 0.7$ | 8 | $\varnothing 70$ | 50 | 4.6 | 11 | 60 |
| NW | $\mathrm{M} 4 \times 12$ | 3.6 | $\mathrm{M} 4 \times 12$ | 2.7 | $\mathrm{M} 8 \times 16$ | 12.5 | 9 | 4.5 | 98 | $\mathrm{M} 5 \times 0.8$ | 8.5 | $\varnothing 70$ | 50 | 4.6 | 11 | 60 |
| NT | $\mathrm{M} 4 \times 12$ | 3.6 | $\mathrm{M} 4 \times 12$ | 2.7 | $\mathrm{M} 8 \times 16$ | 12.5 | 12 | 8 | 98 | $\mathrm{M} 5 \times 0.8$ | 8.5 | $\varnothing 70$ | 50 | 4.6 | 14.5 | 60 |

Motor Mounting Diagram

Mounting procedure

1）Secure the motor pulley to the motor（provided by the customer）with the MM1 hexagon socket head cap screw．
2）Secure the motor to the motor flange with the motor mounting screws（provided by the customer）．
3）Put the timing belt on the motor pulley and body side pulley，and then secure it temporarily with the MM2 hexagon socket head cap screws． （Refer to the mounting diagram．）
4）Apply the belt tension and tighten the timing belt with the MM2 hexagon socket head cap screws． （The reference level is the elimination of the bell deflection．）
5）Secure the return plate with the MM3 hexagon socket head cap screws．

Included Parts List

Size： 63

Description	Quantity
	Mounting type
	NZ／NY／NW／NT
Motor flange	1
Motor pulley	1
Return plate	1
Timing belt	1
Hexagon socket head cap screw （to mount the return plate）	4
Hexagon socket head cap screw （to mount the motor flange）	4
Hexagon socket head cap screw （to secure the pulley）	1
O－ring	1

良

$\stackrel{m}{\leftrightarrows}$

LEY/LEYG Series

Motorless Type

- The motor and motor mounting screws should be provided by the customer.
- Motor shaft type should be cylindrical for the NZ, NY, NX, NW, NM2 mounting types, and D-cut type for the NM1 mounting type.
Motor Mounting: In-line
- When mounting a hub, remove all oil content, dust, and dirt adhered to the shaft and the inside of the hub.
- Take measures to prevent the loosening of the motor mounting screws and hexagon socket head set screws.
$\operatorname{LEY}_{32}^{25}$ D, LEYG ${ }_{32}{ }^{25} \square$

Mounting procedure

1) Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head cap screw.
2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
3) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).

Mounting procedure

1) Secure the motor hub to the motor (provided by the customer) with the M3 x 4 hexagon socket head set screw
2) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).
3) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
4) Secure the motor flange with the M4 x 5 hexagon socket head set screws.

LEY32D, LEYG32■D: NM1

[Included parts]
Hexagon socket head set screw/MM

Mounting procedure

1) Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head set screw.
2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
3) Secure the motor to the motor block with the motor mounting screws (provided by the customer).

LEY25D, LEYG25 DD: NM2

Mounting procedure

1) Insert the ring spacer into the motor (provided by the customer).
2) Secure the motor hub to the motor (provided by the customer) with the M2.5 x 10 hexagon socket head cap screw.
3) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).
4) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
5) Secure the motor flange with the M4 $x 5$ hexagon socket head set screws.

Motor Mounting Diagram

Dimensions					[mm]
Size	Mounting type	MM	TT	PD	PP
25	NZ	M 2.5×10	1.0	8	12.5
	NY	M 2.5×10	1.0	8	12.5
	NX	M 2.5×10	1.0	8	7
	NM1	M3 $\times 5$	0.63	5	10.5
	NM2	M 2.5×10	1.0	6	12.4
32	NZ	M3 $\times 12$	1.5	14	18
	NY	$\mathrm{M} 4 \times 12$	3.6	11	18
	NX	$\mathrm{M} 4 \times 12$	3.6	9	5
	NW	$\mathrm{M} 4 \times 12$	3.6	9	12
	NV	$\mathrm{M} 4 \times 12$	3.6	9	5
	NU	M 4×12	3.6	11	12
	NT	M3 $\times 12$	1.5	12	18
	NM1	M 4×5	1.5	6.35	2.1
	NM2	M 4×12	3.6	10	12

Included Parts List

Size: 25

Description	Quantity		
	Mounting type		
	NZ/NY/NX	NM1	NM2
Motor hub	1	1	1
Hexagon socket head cap screw (to secure the hub)	1	-	1
Motor flange	-	1	1
Hexagon socket head set screw (to osecure the hub)		1	-
Hexagon socket head set screw (to secure the motor flange)	-	2	2
Ring spacer	-	-	1

Size: 32

	Quantity	
Description	Mounting type NZ/NY/NXX NW/NV/NU// NT/NM2	NM1
Motor hub	1	1
Hexagon socket head cap screw (to secure the hub)	1	-
Hexagon socket head set screw (to secure the hub)	-	1

Electric Actuators Rod Type／Guide Rod Type

خの

Dimensions						
Size	Mounting type	MM	TT	PD	PP	
$\mathbf{6 3} 3$	NZ	$\mathrm{M} 3 \times 12$	1.5	14	17.7	
	NY					
	NX	$\mathrm{M} 4 \times 12$	3.6	9	6.7	
	NW					
	NV	$\mathrm{M} 4 \times 12$	3.6	9	6.7	
	NU	$\mathrm{M} 4 \times 12$	3.6	11	11.7	
	NT	$\mathrm{M} 3 \times 12$	1.5	12	17.7	

Included Parts List
Size： 63

Description	Quantity
	Mounting type
	NZ／NY／NX／NW／NV／NU／NT
Motor hub	1
Hexagon socket head cap screw （to secure the hub）	1
O－ring	1

LEY/LEYG Series

Motorless Type

Motor Mounting: In-line

LEY100D: LEY-MF100D-NZC

LEY-MF100D-NZ (Without coupling)

Mounting procedure

1) Separate the coupling, and attach half to the motor side and the other half to the actuator side.
2) Attach one half of the coupling to the actuator side using one of the screws included with the coupling.
3) Attach the motor adapter to the actuator using the M10 motor adapter mounting screws.
4) Attach the sintered element to the motor adapter.
5) Attach the motor flange to the motor adapter using the M5 motor flange mounting screws.
6) Attach the other half of the coupling to the motor (provided by the customer) side using the other screw included with the coupling.
7) Attach the motor to the motor flange using the M6 motor mounting screws (provided by the customer). (Align the two sides of the coupling so that they fit together.)

LEY-MF100D-NGC3/5 (Reducer included)

LEY-MF100D-NGC

LEY-MF100D-NG (Without coupling)

[NGC3/5: Included parts] [NGC/NG: Provided by the customer]

Mounting procedure

1) Attach the motor adapter to the actuator using the M10 motor adapter mounting screws.
2) Attach the coupling to the reducer using the screw included with the coupling.
3) Attach the motor flange to the reducer using the M6 reducer mounting screws.
4) Attach the motor flange to the motor adapter using the M5 motor flange mounting screws.
5) Attach the coupling to the actuator using the screw included with the coupling.
(Tighten the coupling from the hole above the motor adapter sintered element.)
6) Attach the sintered element to the motor adapter.
7) After attaching the motor to the reducer using the motor shaft mounting screw, attach a plug.
8) Attach the motor to the reducer using the M6 motor mounting screws (provided by the customer)
*2 Dimension when mounting type "NGC" or "NGC3/5" (with coupling) is selected When option "NG" (without coupling) is selected, attach at a suitable position taking the recommended value of the coupling (provided by the customer) as well as the motor flange dimensions into consideration.

Included Parts List

Description	Quantity						Tightening torque [N.m]
	(Reference value)						

LEY/LEYG Series
 Motor Mounting Parts

Motor Flange Option

A motor can be added to the motorless specification after purchase. The applicable mounting types are shown below. (Except NM1 and NM3) Use the following part numbers to select a compatible motor flange option and place an order.

How to Order

(1) Size

$\mathbf{2 5}$	For LEY25/LEYG25
$\mathbf{3 2}$	For LEY32/LEYG32
$\mathbf{6 3}$	For LEY63

2 Motor mounting position

\mathbf{P}	Parallel
PL*1	Parallel (Lead L)
\mathbf{D}	In-line

*1 Size 63 only

3 Mounting type

NZ	NV
NY	NU
NX	NT
NW	NM2

* Refer to "Compatible Motors and Mounting Types" below.

Compatible Motors and Mounting Types

Applicable motor model		Size/Mounting type											
Manufacturer	Series	25				32/63							
Manufacturer		NZ	NY	NX	NM2	NZ	NY	NX	NW	NV	NU	NT	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	\bullet	-	-	-	\bullet	-	-	-	-	-	-	-
YASKAWA Electric Corporation	£-V/7	\bullet	-	-	-	\bullet	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	\bullet	-	-	-	\bullet	-	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	\bullet	-	-	-	-	\bullet	-	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6	(MHMF only)	\bullet	-	-	-	-	-	-	-	-	-	-
FANUC CORPORATION	β is (-B)	\bullet	-	-	-	(B1 only)	-	-	\bullet	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	\bullet	-	-	-	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	\bullet	-	-	-	\bullet	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	\bullet	-	-	-	\bullet	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	-	-	-		-	-	-	-	-	-	-	$\bullet * 3$
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	$\underset{\text { (TL only) }}{\bullet}$	-	-	-	-	-	$\begin{gathered} \mathbf{Q}^{* 1} \\ \text { (MP/PP } \\ \text { onlv) } \end{gathered}$	-	-	-	$\underset{(T L \text { only) }}{\bullet}$	-
Beckhoff Automation GmbH	AM 30/31/80/81	\bullet	-	-	-	-	-	$\begin{array}{\|c\|} \hline \mathbf{O}^{* 1} \\ \text { (AM80/ } \\ \text { AM81 } \\ \text { only) } \\ \hline \end{array}$	-	$\begin{gathered} \bullet_{\text {© }}^{*+1} \\ \text { (AM30 } \\ \text { only) } \end{gathered}$	$\begin{gathered} \mathbf{Q}^{* * 2} \\ \text { (AM31 } \\ \text { only) } \end{gathered}$	-	-
Siemens AG	SIMOTICS S-1FK7	-	-	\bullet	-	-	-	-*1	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bullet	-	-	-	\bullet	-	-	-	-	-	-	-
ANCA Motion	AMD2000	\bullet	-	-	-	\bullet	-	-	-	-	-	-	-

* When the LEY $\square{ }_{32}^{25} \square{ }_{N M 3}^{N M 1} \square-\square$ or $L E Y \square G_{32}^{25} \square \square{ }_{N M 3}^{\text {NM }} \square-\square$ is purchased, it is not possible to change to other mounting types.
*1 Motor mounting position: In-line only
*2 Only in-line type is available for size 63.
*3 Except size 63

Dimensions: Motor Flange Option

Motor mounting position: Parallel

$\frac{\text { Hexagon socket head cap screw }}{\text { (Tightening torque: T1 }[\mathrm{N} \cdot \mathrm{m}] \text {) }}$

(4)

Component Parts

No.	Description	Quantity	
		Size	
		$\mathbf{2 5 , 3 2}$	$\mathbf{6 3}$
$\mathbf{1}$	Motor flange	1	1
$\mathbf{2}$	Motor pulley	1	1
$\mathbf{3}$	Hexagon socket head cap screw (to secure the pulley)	1	1
$\mathbf{4}$	Hexagon socket head cap screw (to mount the motor flange)	2	4

Motor flange details

Size: 25, 32

Size 25: NM2
$2 \times$ FA
depth of counterbore FB

Size 32: NM2

LEY/LEYG Series

Dimensions: Motor Flange Option

Motor mounting position: In-line [Size: 25, 32]
Component Parts

No.	Description	Quantity
$\mathbf{1}$	Motor flange	1
$\mathbf{2}$	Motor hub	1
$\mathbf{3}$	Hexagon socket head cap screw (to secure the hub)	1
$\mathbf{4}$	Hexagon socket head cap screw (to mount the motor block)	2

Size: 25, Motor type: NM2
Hexagon socket head cap screw: M2

> (Tightening torque: T2 [N•m])

Motor flange B details

Component Parts

No.	Description	Quantity
$\mathbf{1}$	Motor flange A	1
$\mathbf{2}$	Motor flange B	1
$\mathbf{3}$	Motor hub	1
$\mathbf{4}$	Ring spacer	1
$\mathbf{5}$	Hexagon socket head cap screw (to secure the hub)	1
$\mathbf{6}$	Hexagon socket head cap screw (to mount the motor flange A)	2
$\mathbf{7}$	Hexagon socket head set screw (to secure the motor flange B)	$\mathbf{2}$

Dimensions

Size	Motor type	FA	FB	FC	FD	FE	FF	FG	M1	T1	M2	T2	PD	PP
25	NZ	M4 x 0.7	7.5	46	30	3.7	47	45	M2.5 x 10	1.0	M4 x 40	1.5	8	12.5
	NY	M3 $\times 0.5$	6	45	30	4.2	47	45	M2.5 x 10	1.0	M4 x 40	1.5	8	12.5
	NX	M4 x 0.7	7.5	46	30	3.7	47	45	M 2.5×10	1.0	M4 x 40	1.5	8	7
	NM2	ø3.4	28	31	22	2.5	30	45	M 2.5×10	1.0	M4 $\times 40$	1.5	6	12.4
32	NZ	M5 x 0.8	8.5	70	50	3.3	60	60	M3 $\times 12$	1.5	M6 x 60	5.2	14	18
	NY	M4 x 0.7	8	70	50	3.3	60	60	M4 $\times 12$	3.6	M6 $\times 60$	5.2	11	18
	NX	M5 x 0.8	8.5	63	40	3.5	63	60	$\mathrm{M} 4 \times 12$	3.6	M6 x 60	5.2	9	5
	NW	M5 x 0.8	8.5	70	50	3.3	60	60	M 4×12	3.6	M6 x 60	5.2	9	12
	NV	M4 x 0.7	8	63	40	3.3	63	60	$\mathrm{M} 4 \times 12$	3.6	M6 x 60	5.2	9	5
	NU	M5 x 0.8	8.5	70	50	3.3	60	60	M4 $\times 12$	3.6	M6 x 60	5.2	11	12
	NT	M5 x 0.8	8.5	70	50	3.3	60	60	M3 $\times 12$	1.5	M6 x 60	5.2	12	18
	NM2	M4 x 0.7	8	50	36	3.3	60	60	M 4×12	3.6	M6 x 60	5.2	10	12

Dimensions：Motor Flange Option

Motor mounting position：In－line［Size：63］

Component Parts

Motor flange details

No．	Description	Quantity
$\mathbf{1}$	Motor flange	1
$\mathbf{2}$	Motor hub	1
$\mathbf{3}$	Hexagon socket head cap screw（to secure the hub）	1
$\mathbf{4}$	Hexagon socket head cap screw（to mount the motor adapter）	4
$\mathbf{5}$	O－ring（Wire diameter $\varnothing 1.5)$	1
$\mathbf{6}$	O－ring（Wire diameter $\varnothing \mathbf{2 . 0})$	1

Dimensions

Size	Motor type	FA	FB	FC	FD	FE	FF	FG	M1	T1	M2	T2	PD	PP
63	NZ	M5 x 0.8	10	70	50	3.5	22.5	78	M3 $\times 12$	1.5	M5 x 22	3	14	17.7
	NY	M 4×0.7	8	70	50	3.5	22.5	78	M 3×12	1.5	M5 x 22	3	14	17.7
	NX	M5 x 0.8	10	63	40	3.5	27.5	78	M 4×12	3.6	M5 x 22	3	9	6.7
	NW	M5 x 0.8	10	70	50	3.5	22.5	78	M 4×12	3.6	M5 x 22	3	9	11.7
	NV	M4 x 0.7	8	63	40	3.5	27.5	78	M 4×12	3.6	M5 x 22	3	9	6.7
	NU	M5 x 0.8	10	70	50	3.5	22.5	78	M 4×12	3.6	M5 x 22	3	11	11.7
	NT	M5 x 0.8	10	70	50	3.5	22.5	78	M $\times 12$	1.5	M5 x 22	3	12	17.7

LEY/LEYG Series

LEY100 Auto Switch Mounting Bracket Part No./Mounting

A switch spacer is required in order to mount an auto switch.
When mounting an auto switch, first, hold a switch spacer between your fingers and press it into the slot. When doing this, confirm that it is set in the correct mounting orientation, or reattach it if necessary. Next, insert an auto switch into the slot and slide it until it is positioned under the switch spacer.
After establishing the mounting position, use a flat head watchmaker's screwdriver to tighten the included auto switch mounting screw.

Switch Spacer Part No.

Switch spacer	BMY3-016

Tightening Torque for Auto Switch Mounting Screw

Auto switch model	Tightening torque
D-M9 $\square(\mathbf{V})$	0.10 to 0.15
D-M9 $\square \mathbf{W}(\mathbf{V})$	

Solid State Auto Switch Direct Mounting Type D-M9N(V)/D-M9P(V)/D-M9B(V) C €

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square, D-M9 \square V (With indicator light)						
Auto switch model	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10	to 28 VDC$)$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED illuminates when turned ON.					
Standard	CE marking, RoHS					

Oilproof Heavy-duty Lead Wire Specifications

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Sheath	Outside diameter $[\mathrm{mm}]$	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $\left[\mathrm{mm}{ }^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius [mm] (Reference values)		17		

* Refer to page 996 for solid state auto switch common specifications
* Refer to page 996 for lead wire lengths.

Weight

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

D-M9 \square V

Normally Closed Solid State Auto Switch Direct Mounting Type D－M9NE（V）／D－M9PE（V）／D－M9BE（V）

Grommet

－Output signal turns on when no magnetic force is detected．
－Can be used for the actuator adopted by the solid state auto switch D－M9 series（excluding special order products）

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body．The auto switch may be damaged if a screw other than the one supplied is used．

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards．

PLC：Programmable Logic Controller

D－M9 $\square E$ ，D－M9 \square EV（With indicator light）						
Auto switch model	D－M9NE	D－M9NEV	D－M9PE	D－M9PEV	D－M9BE	D－M9BEV
Electrical entry direction	In－line	Perpendicular	In－line	Perpendicular	In－line	Perpendicular
Wiring type	3－wire				2－wire	
Output type	NPN		PNP		－	
Applicable load	IC circuit，Relay，PLC				24 VDC relay，PLC	
Power supply voltage	5，12， 24 VDC （ 4.5 to 28 V ）				－	
Current consumption	10 mA or less				－	
Load voltage	28 VDC or less		－		24 VDC（10 to 28 VDC）	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA （ 2 V or less at 40 mA ）				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED illuminates when turned ON．					
Standard	CE marking，RoHS					

Oilproof Heavy－duty Lead Wire Specifications

Auto switch model		D－M9NE（V）	D－M9PE（V）	D－M9BE（V）
Sheath	Outside diameter［mm］	2.6		
Insulator	Number of cores	3 cores（Brown／Blue／Black）	2 cores（Brown／Blue）	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $[\mathrm{mm} 2]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius $[\mathrm{mm}]$（Reference values）		17		

＊Refer to page 996 for solid state auto switch common specifications．
＊Refer to page 996 for lead wire lengths．

Weight

［g］

Auto switch model			D－M9NE（V）	D－M9PE（V）
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	D－M9BE（V）	
	$1 \mathrm{~m}(\mathbf{M}) * 1$	14	7	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z}) * 1$	68	63	

＊1 The 1 m and 5 m options are produced upon receipt of order．

를

岂

2-Color Indicator Solid State Auto Switch Direct Mounting Type

D-M9NW(V)/D-MMPW(V)/D-M9BW(V) C ϵ

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square W, D-M9 \square WV (With indicator light)						
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC	or less			24 VDC (10	to $28 \mathrm{VDC)}$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range \qquad Red LED illuminates. Proper operating range \qquad Green LED illuminates.					
Standard	CE marking, RoHS					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
Sheath	Outside diameter $[\mathrm{mm}]$	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius $[\mathrm{mm}]$ (Reference values)				

* Refer to page 996 for solid state auto switch common specifications.
* Refer to page 996 for lead wire lengths.

Weight

Auto switch model				D-M9NW(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	D-M9PW(V)	D-M9BW(V)
	$1 \mathrm{~m}(\mathbf{M})$	14		13
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m} \mathrm{(Z)}$	68	63	

Dimensions

D-M9 $\square \mathbf{W}$

D-M9 $\square W V$

Water Resistant 2－Color Indicator Solid State Auto Switch：Direct Mounting Type D－M9NA（V）／D－M9PA（V）／D－M9BA（V）C $\epsilon_{\text {Rorrs }}$

Auto Switch Specifications

Grommet

－Water（coolant）resistant type
－2－wire load current is reduced （ 2.5 to 40 mA ）．
－The proper operating range can be determined by the color of the light．（Red \rightarrow Green \leftarrow Red） Using flexible cable as standard spec．

Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body．The auto switch may be damaged if a screw other than the one supplied is used．
Please consult with SMC if using coolant liquid other than water based solution．

Weight

Auto switch model			D－M9NA（V）
（D－M9PA（V）	D－M9BA（V）		
Lead wire	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	7
	$1 \mathrm{~m}(\mathbf{M})$	14	13
	$3 \mathrm{~m}(\mathbf{L})$	41	38
	$5 \mathrm{~m}(\mathbf{Z})$	68	63

PLC：Programmable Logic Controller						
D－M9 \square A，D－M9 \square AV（With indicator light）						
Auto switch model	D－M9NA	D－M9NAV	D－M9PA	D－M9PAV	D－M9BA	D－M9BAV
Electrical entry direction	In－line	Perpendicular	In－line	Perpendicular	In－line	Perpendicular
Wiring type	3－wire				2－wire	
Output type	NPN		PNP		－	
Applicable load	IC circuit，Relay，PLC				24 VDC relay，PLC	
Power supply voltage	5，12， 24 VDC （ 4.5 to 28 V ）				－	
Current consumption	10 mA or less				－	
Load voltage	28 VDC	or less			24 VDC（10	to $28 \mathrm{VDC)}$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA （ 2 V or less at 40 mA ）				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range ．．．．．．．．．．Red LED illuminates．Proper operating range ．．．．．．．．．．Green LED illuminates．					
Standard	CE marking（EMC directive／RoHS directive）					

Oilproof Flexible Heavy－duty Lead Wire Specifications

＊Refer to page 996 for solid state auto switch common specifications．
＊Refer to page 996 for lead wire lengths．

岂

Dimensions

D－M9 \square A

D－M9 \square AV

LEY/LEYG Series Specific Product Precautions 1

\triangle
Be sure to read this before handling the products. Refer to page 984 for safety instructions, pages 985 to 990 for electric actuator precautions, and pages 991 to 1000 for auto switch precautions.

Design / Selection

\triangle Warning

1. Do not apply a load in excess of the specification limits.

Select a suitable actuator by work load and allowable lateral load on the rod end. If a load in excess of the specification limits is applied to the piston rod, the generation of play in the piston rod sliding parts, reduced accuracy, etc., may occur and adversely affect the operation and service life of the product.
2. Do not use the product in applications where excessive external force or impact force is applied to it.
This can cause a malfunction.
3. When used as a stopper, select the LEYG series "Sliding bearing" for strokes of 30 mm or less.
4. When used as a stopper, fix the main body with a guide attachment ("Top mounting" or "Bottom mounting").
If the end of the actuator is used to fix the main body (end mounting), the excessive load acts on the actuator, which may adversely affect the operation and service life of the product.

Handling

\triangle Caution

1. To conduct a pushing operation, be sure to set the product to force/speed control, and use the product within the specified pushing speed range for each series.
Do not allow the piston rod to hit the workpiece and end of the stroke in the position control. The lead screw, bearing and internal stopper may be damaged and lead to malfunction.
2. For pushing operations, the maximum torque value of the motor to be used should be set to $\mathbf{9 0 \%}$ or less of the rated torque of the reference motor. For the LEY63, 150\% or less.

Failure to do so may result in damage or malfunction.
3. The maximum speed of this actuator is affected by the product stroke.

Check the model selection section of the catalog.
4. Do not apply a load, impact, or resistance in addition to the transferred load during return to origin.
Additional force will cause the displacement of the origin position.
5. Do not scratch or dent the sliding parts of the piston rod by bumping them or placing objects on them.
The piston rod and guide rod are manufactured to precise tolerances, so even a slight deformation may result in a malfunction.
6. When an external guide is used, connect it in such a way that no impact or load is applied to it.
Use a freely moving connector (such as a floating joint).
7. Do not operate by fixing the piston rod and moving the actuator body.

Excessive load will be applied to the piston rod, resulting in damage to the actuator and a reduced service life of the product.

Handling

\triangle Caution

8. When an actuator is operated with one end fixed and the other free (ends tapped or flange), a bending moment may act on the actuator due to vibration generated at the stroke end, which can damage the actuator. In such cases, install a mounting bracket to suppress the vibration of the actuator body or reduce the speed so that the actuator does not vibrate at the stroke end.

Also, use a mounting bracket when moving the actuator body or when a long stroke actuator is mounted horizontally and fixed at one end
9. Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod. Failure to do so may result in the deformation of the non-rotating guide, abnormal auto switch responses play in the internal guide, or an increase in the sliding resistance.
Refer to the table below for the approximate values of the allowable range of rotational torque.

Allowable rotational torque $[\mathrm{N} \cdot \mathrm{m}]$ or less	LEY25 \square	LEY32	LEY63

When screwing a bracket or nut into the piston rod end, hold the flats of the end of the "socket" with a wrench (the piston rod should be fully retracted). Do not apply tightening torque to the non-rotating mechanism.

10. When using auto switches with the guide rod type LEYG series, the following limits apply. Please consider the following before selecting the product.

- Auto switches must be inserted from the front side with the rod (plate) sticking out.
- Auto switches with perpendicular electrical entries cannot be used.
- Auto switches cannot be fixed with the parts hidden behind the guide attachment (the side of the rod that sticks out).
- Please consult with SMC when using auto switches on the side of the rod that sticks out.

Enclosure

- First Digit: Degree of protection against solid foreign objects

$\mathbf{0}$	Not protected
$\mathbf{1}$	Protected against solid foreign objects of $50 \mathrm{mmø}$ and larger
$\mathbf{2}$	Protected against solid foreign objects of 12 mm and larger
$\mathbf{3}$	Protected against solid foreign objects of 2.5 mm and larger
$\mathbf{4}$	Protected against solid foreign objects of 1.0 mm and larger
$\mathbf{5}$	Dust protected
$\mathbf{6}$	Dust-tight

LEY/LEYG Series Specific Product Precautions 2

\triangle
Be sure to read this before handling the products. Refer to page 984 for safety instructions, pages 985 to 990 for electric actuator precautions, and pages 991 to 1000 for auto switch precautions.

Enclosure

- Second Digit: Degree of protection against water

$\mathbf{0}$	Not protected	-
$\mathbf{1}$	Protected against vertically falling water droplets	Dripproof type 1
$\mathbf{2}$	Protected against vertically falling water droplets when enclosure is tilted up to 15°	Dripproof type 2
$\mathbf{3}$	Protected against rainfall when enclosure tilted up to 60°	Rainproof type
$\mathbf{4}$	Protected against splashing water	Splashproof type
$\mathbf{5}$	Protected against water jets	Water-jet-proof type
$\mathbf{6}$	Protected against powerful water jets	Powerful water-jet- proof type
$\mathbf{7}$	Protected against the effects of temporary immersion in water	Immersible type
$\mathbf{8}$	Protected against the effects of continuous immersion in water	Submersible type

Example) IP65: Dust-tight, Water-jet-proof type
"Water-jet-proof" means that no water enters the equipment that could hinder it from operating normally when water is applied for 3 minutes in the prescribed manner. Take appropriate protective measures as the device is not usable in environments where droplets of water are splashed constantly.

Mounting

\triangle Caution

1. When mounting workpieces or attachments to the piston rod end "socket," hold the flats of the "socket" with a wrench so that the piston rod does not rotate. The bolt should be tightened within the specified torque range.
Failure to do so may cause abnormal auto switch responses, play in the internal guide, or an increase in the sliding resistance.
2. When mounting the product and/or a workpiece, tighten the mounting screws within the specified torque range.
Tightening the screws with a higher torque than recommended may result in a malfunction, while tightening with a lower torque can result in the displacement of the mounting position or, in extreme conditions, the actuator could become detached from its mounting position.

<LEY Series>

Workpiece fixed/Rod end female thread

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in depth $[\mathrm{mm}]$	End socket widh across flats $[\mathrm{mm}]$
LEY25	$\mathrm{M} 8 \times 1.25$	12.5	13	17
LEY32	$\mathrm{M} 8 \times 1.25$	12.5	13	22
LEY63	$\mathrm{M} 16 \times 2$	106	21	36
LEY100	$\mathrm{M} 20 \times 2.5$	204	27	27

Workpiece fixed/Rod end male thread (When "Rod end male thread" is selected.)

Model	Thread size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Efective thread lenghth $[\mathrm{mm}]$	End socketwidh across flats $[\mathrm{mm}]$ LEY25 $\mathrm{M14} \mathrm{\times 1.5}$
65.0	20.5	17		
LEY32	M14 $\times 1.5$	65.0	20.5	22
LEY63	M18 $\times 1.5$	97.0	26	36

صٌ

<LEYG Series>
Workpiece fixed/Plate tapped type

Body fixed/Top mounting

Body fixed/Bottom mounting

Body fixed/Head side tapped type

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in depth $[\mathrm{mm}]$
LEYG25 $_{\mathrm{L}}^{\mathrm{L}}$	$\mathrm{M} 5 \times 0.8$	3.0	8
LEYG32 $_{\mathrm{L}}^{\mathrm{M}}$	$\mathrm{M} 6 \times 1.0$	5.2	10

LEY/LEYG Series Specific Product Precautions 3

Be sure to read this before handling the products. Refer to page 984 for safety instructions, pages 985 to 990 for electric actuator precautions, and pages 991 to 1000 for auto switch precautions.

Mounting

\triangle Caution

3. Keep the flatness of the mounting surface within the following ranges when mounting the actuator body and workpiece.

Mounting the product on an uneven workpiece or base may result in an increase in the sliding resistance.

Maintenance

© Warning

1. Ensure that the power supply is stopped and the workpiece is removed before starting maintenance work or replacing the product.

- Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Belt check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months/ $250 \mathrm{~km} / 5$ million cycles*1	\bigcirc	\bigcirc

*1 Select whichever comes first.

- Items for visual appearance check

1. Loose set screws, Abnormal amount of dirt, etc.
2. Check for visible damage, Check of cable joint
3. Vibration, Noise

- Items for belt check

Stop operation immediately and replace the belt when any of the following occur. In addition, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out

Canvas fiber becomes fuzzy, Rubber is coming off and the fiber has become whitish, Lines of fibers have become unclear
b. Peeling off or wearing of the side of the belt

Belt corner has become rounded and frayed threads sticks out
c. Belt partially cut

Belt is partially cut, Foreign matter caught in the teeth of other parts is causing damage
d. A vertical line on belt teeth is visible

Damage which is made when the belt runs on the flange
e. Rubber back of the belt is softened and sticky
f. Cracks on the back of the belt are visible
2. For IP65 equivalent type, apply grease on the piston rod periodically. Grease should be applied at 1 million cycles or 200 km, whichever comes first.

- Grease pack order number: GR-S-010 (10 g)/GR-S-020 (20 g)

Electric Actuator Rod Type

- Max. force: 12000 N, Work load: 1200 kg, Max. stroke: 1000 mm
- Can be mounted in accordance with ISO 15552
- Modify the force/speed specifications
(Change specifications by changing or removing the reducer)
- Motorless type
- An auto switch can be mounted

Motorless Type
Can be used with your current motor and driver!
Manufacturers of compatible motors: 7 companies

- Mitsubishi Electric Corporation - YASKAWA Electric Corporation
- SANYO DENKI CO., LTD. - NIDEC SANKYO CORPORATION
- KEYENCE CORPORATION • FUJI ELECTRIC CO., LTD.
- Delta Electronics, Inc.

LEY100 Series

P-E21-3

Work load

Max. work load (Horizontal)
LEY100DT9L (Lead 2) 1200 kg (6 times)

Compared with the existing model LEY63 $\square \mathrm{L}$
(Max. horizontal work load 200 kg)

Max. force

LEY100DT9L (Lead 2) 12000 N (3.5 times)
Compared with the existing model LEY63 $\square \mathrm{L}$ (Max. 3343 N)

Max. work load (Vertical)
LEY100DT9L (Lead 2) 200 kg (1.7 times)

Compared with the existing model LEY63 $\square \mathrm{L}$
(Max. vertical work load 115 kg)

Applicable stroke

LEY100D 100 to 1000 mm (1.2 times)
Compared with the existing model LEY63 \square (Stroke 100 to 800 mm)

AC Servo Motor Rod Type Series Variations

Can be mounted in accordance with ISO 15552

Modify the force/speed specifications

The max. force and max. speed settings can be changed by changing the reducer.

An auto switch can be mounted

An auto switch can be mounted from the front of the groove.

Application examples

Servo-driven press machine

Replenishment unit (spring extended piston control)

Motorless Type

Motor flange assembly (Option)
"Standard-compatible motor"

Manufacturer	Series	Type	NN
Mitsubishi Electric Corporation	MELSERVO-J4	HG-KR	\ominus
	MELSERVO-J5	HK-KT	\ominus
YASKAWA Electric Corporation	Σ-V	SGMJV	\ominus
	$\Sigma-7$	SGM7J	\ominus
SANYO DENKI CO., LTD.	SANMOTION R	R2	\ominus
NIDEC SANKYO CORPORATION	S-FLAG	MX	\ominus
KEYENCE CORPORATION	SV	SV-M/SV-B	\ominus
FUJI ELECTRIC CO., LTD.	ALPHA5/7	GYS/GYB/GYG	\ominus
Delta Electronics, Inc.	ASDA-A2	ECMA	\ominus

Speed-Vertical Work Load Graph/Required Conditions for the Regeneration Option

Required conditions for the regeneration option

* The regeneration option is required when using the product above the regeneration line in the graph. (It must be ordered separately.)

Regeneration Option Models

Size	Model	Duty ratio	Note
LEY100 \square	LEC-MR-RB-032	100	A area
	LEC-MR-RB-12		\square area
		90	\square area

Speed-Horizontal Work Load Graph/Required Conditions for the Regeneration Option

Required conditions for the regeneration option

* The regeneration option is required when using the product above the regeneration line in the graph. (It must be ordered separately.)

Regeneration Option Models

Size	Model	Note
LEY100	LEC-MR-RB-032	AI area

Force Conversion Graph (Guide) For the LECSS-T (/LECSB-T)

Graph of Allowable Lateral Load on the Rod End (Guide)

[Stroke] = [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]

LEY100 Series

AC Servo Motor

Load-Acceleration/Deceleration Chart

Max. acceleration/deceleration (Horizontal)

Lead		Work load [kg]											
Symbol	[mm]	100	200	300	400	500	600	700	800	900	1000	1100	1200
B	10	3000	2000*1										
D	3.3	2370	2250	2120	2000	1870	1750	1620	1500	1370	1250	1120	1000
L	2	1900	1800	1700	1600	1500	1420	1350	1280	1210	1140	1070	1000

*1 The max. work load can be set to any weight up to 240 kilograms.
Max. acceleration/deceleration (Vertical)
[$\mathrm{mm} / \mathrm{s}^{2}$]

| Lead | | | Work load [kg] | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | $[\mathrm{mm}]$ | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 | |
| B | 10 | 2500 | 2000 | 1500 | 1000 | | | | | | | |
| D | 3.3 | 2370 | 2200 | 2020 | 1850 | 1680 | 1510 | 1340 | 1170 | $1000^{* 2}$ | - | |
| L | 2 | 1880 | 1770 | 1660 | 1550 | 1450 | 1360 | 1270 | 1180 | 1090 | 1000 | |

*2 The max. work load can be set to any weight up to 185 kilograms.

Force-Stroke Table

	Stroke [mm]										
	0	100	200	300	400	500	600	700	800	900	1000
Force [N]	12000	12000	12000	12000	12000	12000	11000	8900	6900	5600	4600

Electric Actuator/
 Rod Type

LEY100 Series
RoHS

How to Order

Lead [mm]

Symbol	LEY100
B	10
D	$3.33^{* 1}$
L	$2^{* 2}$

*1 Screw lead 10 mm , reducer ratio [1:3]
*2 Screw lead 10 mm , reducer ratio [1:5]
(3) Motor type

Symbol	Type	Output $[W]$	Actuator size	Compatible drivers
T9	AC servo motor (Absolute encoder)	750	100	LECSB2-T9 LECSC2-T9 LECSS2-T9 LECSN2-T9(- $\square)$

5 Stroke $[\mathrm{mm}]$	
$\mathbf{1 0 0}$	100
to	to
$\mathbf{1 0 0 0}$	1000

* For details, refer to the applicable stroke table below.

6 Motor option

Nil	Without option
B	With lock

7 Rod end thread

Nil	Rod end female thread
\mathbf{M}	Rod end male thread (1 rod end nut is included.)

Mounting*3*4

Symbol	Type
$\mathbf{N i l}$	Ends tapped
\mathbf{L}	Foot
\mathbf{F}	Flange

*3 The mounting bracket is shipped together with the product but does not come assembled.
*4 Do not mount using the "flange" or "ends tapped" options for the horizontal type with one end secured.

11 Driver type*8

	Compatible drivers	Power supply votage (V]
Nil	Without driver	
B2	LECSB2-T9/Pulse input (Absolute encoder)	200 to 240
C2	LECSC2-T9/CC-Link (Absolute encoder)	200 to 230
S2	LECSS2-T9/SSCNET/H (Absolute encoder)	200 to 240
$\mathbf{9 2}$	LECSN2-T9-9/EtherNet/IP (Absolute encoder)	200 to 240
E2	LECSN2-T9-E/EtherCAT (Absolute encoder)	200 to 240
P2	LECSN2-T9-P/PROFINET (Absolute encoder)	200 to 240
N2	LECSN2-T9/Without network card (Absolute encoder)	

*8 When a driver type is selected, a cable is included.
Select the cable type and cable length.
Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2: Standard cable (2 m)
Nil: Without cable and driver

9 Cable type*5 *6

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible)

*5 A motor cable and encoder cable are included with the product. (A lock cable is also included if motor option "B: With lock" is selected.)
*6 Standard cable entry direction is "(B) Counter axis side."

12 I/O cable length [m] ${ }^{* 9}$

$\mathbf{N i l}$	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

*9 When "Nil: Without driver" is selected for the driver type, only "Nil: Without cable" can be selected.
Refer to the Web Catalog if an I/O cable is required.

Applicable Stroke Table

Size	Stroke [mm]										
	100	200	300	400	500	600	700	800	900	1000	Manulacurable stroke range
100	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	100 to 1000

* Please contact SMC for non-standard strokes as they are produced as special orders.
(10) Cable length [m] ${ }^{* 7}$

Nil	Without cable
2	2
$\mathbf{5}$	5
\mathbf{A}	10

*7 The length of the encoder, motor, and lock cables are the same.

Specifications

Model				LEY100D \square L	LEY100D \square D	LEY100D \square B
	Stroke [mm]			100, 200, 300, 400, 500, 600, 700, 800, 900, 1000		
	Work load [kg]		Horizonta**1	1200	1200	240
			Vertical	200	185	80
	Rated force [N / Set value*2: 25% *3			5500	3300	1100
	Max. force [N]/Set value*2: $55 \% * 3 * 4$			12000	7200	2600
	Max. speed $[\mathrm{mm} / \mathrm{s}]^{* 5}$	Stroke range	Up to 500	100	167	500
			600	74	123	370
			700	57	95	285
$\stackrel{\rightharpoonup}{\mathbf{O}}$			800	45	75	225
$\stackrel{\rightharpoonup}{\mathrm{v}}$			900	36	60	180
花			1000	30	50	150
잉	Pushing speed [mm/s] ${ }^{* 6}$			20 or less		
$\bar{\infty}$	Max. acceleration/deceleration [mm/s $\left.{ }^{2}\right]^{* 7}$			2000	3000	
$\stackrel{\mathbf{N}}{\underline{\sim}}$	Positioning repeatability [mm]			0.02		
ت	Lost motion [mm]*8			0.10		
	Screw lead [mm]			10		
	Reduction ratio			1/5	1/3	-
	Lead [mm]			2	3.3	10
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{* 9}$			50/20		
	Actuation type			Ball screw		
	Guide type			Sliding bushing (Piston rod)		
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40		
	Operating humidity range [\%RH]			90 or less (No condensation)		
	Motor output [W]/Size [mm]			750/■80		
	Motor type			AC servo motor (200 VAC)		
	Encoder			Absolute 22-bit encoder (Resolution: $4194304 \mathrm{p} / \mathrm{rev}$) Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$) (For LECSC-T \square only)		
	Power*10			Max. power 1100		
	Type*11			Non-magnetizing lock		
	Holding force [N]			5700	3400	1200
	Power consumption [W] at $\mathbf{2 0}{ }^{\circ} \mathrm{C}$ *12			10		
	Rated voltage [V]			$24 \mathrm{VDC}^{-10 \%}$		

*1 This is the max. value of the horizontal work load. An external guide is necessary to support the load. The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
*2 Set values for the driver
*3 The force setting range (set values for the driver) for the force control with the torque control mode. The force and duty ratio change according to the set value. Set it while referencing the "Force Conversion Graph" and "Speed-Work Load Graph" on page 4.
The driver applicable to the pushing operation is "LECSB-T", and "LECSS-T."

- The LECSB-T is only applicable when the control method is positioning. The point table is used to set the pushing operation settings.

To set the pushing operation settings, an additional dedicated file (pushing operation extension file) must be downloaded separately to be used with the setup software (MR Configurator2 ${ }^{\text {TM }}$: LEC-MRC2 \square).
Please download this dedicated file from the SMC website: https://www.smcworld.com/
When selecting the LECSS-T, combine it with a master station (such as the Simple Motion module manufactured by Mitsubishi Electric Corporation) which has a pushing operation function.
*4 The max. force changes according to the stroke. Check the "Force-Stroke Table" on page 5.
*5 The allowable speed changes according to the stroke. Set the number of rotations according to speed.
*6 The allowable collision speed for collision with the workpiece with the torque control mode
*7 The max. acceleration/deceleration changes according to the work load. Check the "Load-Acceleration/Deceleration Chart" on page 5.
*8 A reference value for correcting errors in reciprocal operation
*9 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*10 Indicates the max. power during operation (including the driver) When selecting the power supply capacity, refer to the power supply capacity in the operation manual of each driver.
*11 Only when motor option "With lock" is selected
*12 For an actuator with lock, add the power consumption for the lock.

Construction
In-line motor type: LEY100

When the rod end female thread is selected

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Screw shaft	Alloy steel	
3	Ball screw nut	Alloy steel	
4	Piston	Aluminum alloy	
5	Piston rod	Alloy steel	Hard chrome plating
6	Rod cover	Aluminum alloy	Anodized
7	Bearing holder	Aluminum alloy	
$\mathbf{8}$	Rotation stopper	Synthetic resin	
9	Socket (Male thread)	Alloy steel	Nickel plating
10	Bushing	Bearing alloy	
11	Bearing	-	
12	Magnet	-	
13	Wear ring holder	Aluminum alloy	

No.	Description	Material	Note
$\mathbf{1 4}$	Wear ring	Synthetic resin	
$\mathbf{1 5}$	Lock nut	Alloy steel	
$\mathbf{1 6}$	Motor block	Aluminum alloy	Anodized
$\mathbf{1 7}$	Motor flange	Aluminum alloy	Anodized
$\mathbf{1 8}$	Bumper	Urethane	
19	Coupling	-	
20	Scraper	NBR	
$\mathbf{2 1}$	Sintered element	Stainless steel	
22	Motor adapter	Aluminum alloy	Anodized
23	Nut	Alloy steel	Zinc chromating
24	Reducer	-	
25	Motor	-	
26	Socket (Female thread)	Alloy steel	Nickel plating

Replacement Parts/Grease Pack

Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

LEY100 Series
 AC Servo Motor
 size 100

Dimensions: In-line Motor

LEY100D \square

Rod end female thread: LEY100DT9 $\square-\square \square \square$

With reducer: LEY100DT9(D/L)- $\square \square \square \square$

Rod flange shape: LEY100DT9 $\square-\square \square \square F$
Foot: LEY100DT9 $\square-\square \square \square L$

*1 The dimension in the figure is the first Z-phase detecting position.
*2 The orientation of the width across flats at the end of the rod differs for each product.

Stroke and Product Weight									
[kg]									
Stroke	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$	$\mathbf{3 0 0}$	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$	$\mathbf{6 0 0}$	$\mathbf{7 0 0}$	$\mathbf{8 0 0}$	$\mathbf{9 0 0}$
$\mathbf{1 0 0 0}$									
Product weight	12.7	14.4	16.0	17.7	19.3	21.0	22.6	24.2	25.9

Additional Weight
[kg]

With reducer		2.4
Motor option	With lock	1.0
Rod end thread	Male thread	0.11
	Nut	0.05
Mounting	Foot	1.1
	Flange	0.8

How to Order

Symbol	Type
NN	Motorless*1

*1 A motor adapter and motor flange are not included.
5 Stroke [mm]

$\mathbf{1 0 0}$	100
to	to
1000	1000

(6) Rod end thread

Nil	Rod end female thread
\mathbf{M}	Rod end male thread (1 rod end nut is included.)

* For details, refer to the applicable stroke table below.

Lead [mm]	
Symbol	LEY100
B	10

7 Mounting ${ }^{* 2 * 3}$

Symbol	Type
$\mathbf{N i l}$	Ends tapped
\mathbf{L}	Foot
\mathbf{F}	Flange

*2 The mounting bracket is shipped together with the product but does not come assembled.
*3 Do not mount using the "flange" or "ends tapped" options for the horizontal type with one end secured.

Applicable Stroke Table

Size	Stroke [mm]										
	100	200	300	400	500	600	700	800	900	1000	Manviacturabe stroke range
100	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bullet	\bigcirc	100 to 1000

* Please contact SMC for non-standard strokes as they are produced as special orders.

Compatible Motors

Manufacturer	Series	Type	NN
Mitsubishi Electric Corporation	MELSERVO-J4	HG-KR	\bullet
	MELSERVO-J5	HK-KT	\bullet
SANYO DENKI CO., LTD.	$\Sigma-V$	SGMJV	\bullet
	$\Sigma-7$	SGM7J	\bullet
NIDEC SANKYO CORPORATION	SANMOTION R	R2	\bullet
KEYENCE CORPORATION	S-FLAG	MX	\bullet
FUJI ELECTRIC CO., LTD.	ALPHA5/ALPHA7	GYS/GYB/GYG	\bullet
Delta Electronics, Inc.	ASDA-A2	ECMA	\bullet

Specifications * The values in this specifications table are the allowable values of the actuator body with the standard motor mounted.

*1 This is the max. value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less).
The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
*2 The force setting range for the force control (Speed control mode, Torque control mode)
The force changes according to the set value. The set value is the ratio [\%] in relation to the rated torque of the reference motor.
*3 The max. force changes according to the stroke. Check the "Force-Stroke Table" on page 5.
*4 The allowable speed changes according to the stroke.
*5 The allowable collision speed for collision with the workpiece
*6 A reference value for correcting errors in reciprocal operation
*7 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*8 Each value is only to be used as a guide to select a motor of the appropriate capacity.

Dimensions: In-line Motor

LEY100

* part dimensions indicate the dimensions when a male rod end is selected.

Rod end female thread: LEY100DNNB- $\square \square \square$

Rod flange shape: LEY100DNNB- $\square \square \square$ F

Foot: LEY100DNNB- $\square \square \square$ L

LEY100 Series
 Option

Motor Flange Assembly

1 Motor flange type

Symbol	Motor type	(Note)	A Motor adapter	B Motor flange	C Coupling (O.D. ø40)	C Coupling (O.D. $\varnothing 55)$	D Reducer
NZ	Mounting type Z	Mitsubshi and others	\bullet	\bullet	-	-	-
NZC	Mounting type Z + Coupling included	O.D. ø40	\bullet	\bullet	\bullet	-	-
NG	Mounting type G	For reducers	\bullet	\bullet	-	-	-
NGC	Mounting type G + Coupling included	O.D. ø55	\bullet	\bullet	-	\bullet	-
NGC3	Mounting type G + With reducer*1	Reduction ratio 1/3	\bullet	\bullet	-	\bullet	\bullet
NGC5	Mounting type G + With reducer*1	Reduction ratio 1/5	\bullet	\bullet	-	\bullet	\bullet
N	Without motor flange	Motor adapter only	\bullet	-	-	-	-

Compatible Motors

Manufacturer	Series	Type	NZC/ NGC3/ NGC5
Mitsubishi Electric Corporation	MELSERVO-J4	HG-KR	\bullet
YASKAWA Electric Corporation	MELSERVO-J5	HK-KT	\bullet
SANYO DENKI CO., LTD.	Σ SANMOTION R	SGMJV	\bullet
NIDEC SANKYO CORPORATION	SANMOTION R	R2	\bullet
KEYENCE CORPORATION	SV	SGAG	MX
FUJI ELECTRIC CO., LTD.	ALPHA5/ALPHA7	GYS/GYB/GYG	\bullet
Delta Electronics, Inc.	ASDA-A2	ECMA	\bullet

*1 A coupling (O.D. ø55) is also included.

(A) Motor adapter

OCoupling

Mounting type G: 78.3

B Motor flange (Mounting type Z)

B Motor flange (Mounting type G)

© Reducer (Reduction ratio 1:3/1:5)

Mounting Bracket

1 Mounting bracket	
Symbol	Mounting bracket
L	Foot
F	Flange

L: Foot

F: Flange

LEY100 Series Specific Product Precautions

Be sure to read this before handling the products.

Handling

\triangle Caution

Continuous use at max. force is prohibited.
When using the product at max. force, be sure to use the product within 15 s and with a duty ratio of 20% or less. (With motor)
Example of driving conditions with a duty ratio of $\mathbf{2 0 \%}$

For the motorless type, be sure to check the specifications of the motor and driver to be used in combination before use. The force should be within the rated force when using continuously.

Motor Flange Assembly

Symbol	Motor adapter	Motor flange (Type)	Coupling (ø40)	Coupling (ø55)	Reducer (Reduction ratio)
NZ	\bigcirc	(Z)	-	-	-
NZC	\bigcirc	(Z)	\bigcirc	-	-
NG	\bigcirc	(G)	-	-	-
NGC	\bigcirc	(G)	-	\bigcirc	-
NGC3	\bigcirc	(G)	-	\bigcirc	(1/3)
NGC5	\bigcirc	(G)	-	\bigcirc	$(1 / 5)$
N	\bigcirc	-	-	-	-

Electric Actuator

 Rod Type

Slide Table/High Precision Type

In-line LESYHDD Series

Right/Left side parallel LESYH \square_{L}^{R} Series

Selection Procedure

Positioning Control Selection Procedure

Selection Example

The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.

Check the work load-speed. <Speed-Work load graph> (page 936-4) Select a model based on the workpiece mass and speed while referencing the speed-work load graph.
Selection example) The LESYH16 \square B-50 can be temporarily selected as a possible candidate based on the graph shown on the right side.

* Refer to the selection method of motor manufacturers for regeneration resistance.

Step 2

Check the cycle time.
Calculate the cycle time using the following calculation method.
Cycle time:
T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$

- T1: Acceleration time and T3: Deceleration time can be found by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

- T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

- T4: Settling time varies depending on the conditions such as motor types, load, and in position of the step data. Therefore, calculate the settling time while referencing the following value.
$\mathrm{T} 4=0.15[\mathrm{~s}]$
Calculation example)
T1 to T4 can be calculated as follows.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=200 / 3000=0.07[\mathrm{~s}]$,
$\mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=200 / 3000=0.07[\mathrm{~s}]$
$T 2=\frac{L-0.5 \cdot V \cdot(T 1+T 3)}{V}$
$=\frac{50-0.5 \cdot 200 \cdot(0.07+0.07)}{200}$
$\begin{aligned} &=0.18[\mathrm{~s}] \\ & 4=0.15[\mathrm{~s}]\end{aligned}$
The cycle time can be found as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.07+0.18+0.07+0.15 \\
& =0.47[\mathbf{s}]
\end{aligned}
$$

Operating conditions

- Workpiece mass: 1 [kg] - Workpiece mounting
- Speed: 200 [mm/s] condition:
- Mounting orientation: Vertical
- Stroke: 50 [mm]
- Acceleration/Deceleration: 3000 [$\mathrm{mm} / \mathrm{s}^{2}$]
- Cycle time: 0.5 s

LESYH16 $\square \square /$ AC Servo Motor Vertical

<Speed-Work load graph>

]

L : Stroke $[\mathrm{mm}]$. \qquad (Operating condition) V : Speed [mm/s] (Operating condition)
a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
T1: Acceleration time [s] ... Time until reaching the set speed
T2: Constant speed time [s] ... Time while the actuator is operating at a constant speed
T3: Deceleration time [s] ... Time from the beginning of the constant speed operation to stop
T4: Settling time [s] ... Time until positioning is completed

Step 3 Check the allowable moment. <Static allowable moment> (page 936-4) <Dynamic allowable moment> (pages 936-5, 936-6)
Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

LESYH16/Pitching

Based on the above calculation result, the LESYH16 $\square \mathrm{N} \square \mathrm{B}-50$ should be selected.

<Dynamic allowable moment>

Selection Procedure

Force Control Selection Procedure

Selection Example

The model selection method shown below corresponds to SMC's standard motor.
For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.

Operating conditions

Step 1 Check the required force.
Calculate the approximate required force for a pushing operation.
Selection example) • Pushing force: $210[\mathrm{~N}]$

- Workpiece mass: 1 [kg]

The approximate required force can be found to be $210+10=220[\mathrm{~N}]$.
Table Weight

Model	Stroke $[\mathrm{mm}]$		
	50	100	150
LESYH16	0.4	0.7	-
LESYH25	0.9	1.3	1.7

* If the mounting position is vertical upward, add the table weight.

Select a model based on the approximate required force while referencing the specifications (page 936-9).
Selection example based on the specifications)

- Approximate required force: 220 [N]
- Speed: 100 [mm/s]

The LESYH16 $\square \mathrm{B}$ can be temporarily selected as a possible candidate. Then, calculate the required force for a pushing operation. If the mounting position is vertical upward, add the actuator table weight.
Selection example based on the table weight)

- LESYH16 \square B table weight: 0.7 [kg] The required force can be found to be $220+7=227[\mathrm{~N}]$.

Step 2 Check the pushing force. <Force conversion graph>
Select a model based on the ratio to rated torque and force while referencing the force conversion graph.
Selection example)
Based on the graph shown on the right side,

- Ratio to rated torque: 80 [\%]
- Force: 227 [N]

The LESYH16B can be temporarily selected as a possible candidate.

Step 3 Check the allowable moment.
<Static allowable moment> (page 936-4)
<Dynamic allowable moment> (pages 936-5, 936-6)
Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Based on the above calculation result, the LESYH16B-100 should be selected.

<Force conversion graph>

<Dynamic allowable moment>
LESYH16/Pitching

LESYH Series
 Motorless Type

Speed-Work Load Graph (Guide)

LESYH16

LESYH25

Force Conversion Graph (Guide)

LESYH16 \square (Motor mounting position: Parallel/In-line)

LESYH25 \square (Motor mounting position: Parallel)

LESYH25D \square (Motor mounting position: In-line)

* When using the force control or speed control, set the max. value to be no more than 90% of the rated torque.

Static Allowable Moment

Model	LESYH16		LESYH25		
Stroke [mm]	50	100	50	100	150
Pitching [$\mathrm{N} \cdot \mathrm{m}$]	26	43	77	112	155
Yawing [$\mathrm{N} \cdot \mathrm{m}$]					
Rolling [$\mathrm{N} \cdot \mathrm{m}$]	48		146	177	152

Dynamic Allowable Moment

Model

m : Work load [kg
Me: Allowable moment [$\mathrm{N} \cdot \mathrm{m}$]
L: Overhang to the work load center of gravity [mm]
L. Overhang to the work load center of gravily [mm]

LESYH16

Horizontal/Bottom

$$
\mathbf{Z}
$$

LESYH Series

Motorless Type

Dynamic Allowable Moment

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LESYH
Size: 16
Mountin

Acceleration [mm/s²]: a
Work load [kg]: m
Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph while referencing the model, size, and mounting orientation.
3. Based on the acceleration and work load, find the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.
$\alpha x=X c / L x, \alpha y=Y c / L y, \alpha z=Z c / L z$
5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$, and $\alpha \mathbf{z}$ is 1 or less.
$\alpha x+\alpha y+\alpha z \leq 1$
When 1 is exceeded, consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LESYH
Size: 16
Mounting orientation: Horizontal
Acceleration [mm/s²]: 5000
Work load [kg]: 4.0
Work load center position [mm]: $\mathbf{X c}=\mathbf{8 0}, \mathbf{Y c}=\mathbf{5 0}, \mathbf{Z c}=\mathbf{6 0}$
2. Select three graphs from the top of the first row on page 936-4.

Mounting orientation

Model	LESYH16	LESYH25
B side parallelism to A side $[\mathrm{mm}]$	Refer to Table 1.	
B side traveling parallelism to A side $[\mathrm{mm}]$	Refer to Graph 1.	
C side perpendicularity to A side $[\mathrm{mm}]$	0.05	
M dimension tolerance $[\mathrm{mm}]$	± 0.3	
W dimension tolerance $[\mathrm{mm}]$	± 0.2	
Radial clearance $[\mu \mathrm{m}]$	-10 to 0	-14 to 0

Graph 1 B side traveling parallelism to A side

Table Deflection (Reference Value)

Table displacement due to pitch moment load
Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LESYH16

LESYH25

Table displacement due to yaw moment load
Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LESYH16

LESYH25

Table displacement due to roll moment load
Table displacement of section A when loads are applied to the section F with the slide table retracted.

LESYH16
$\mathbf{L r}=120 \mathrm{~mm}$

LESYH25
$\mathbf{L r}=200 \mathrm{~mm}$

Slide Table/
 High Precision Type

Size	2 Motor mounting position		3 Mounting type	
16	D	In-line	NZ	NU
25	R	Right side parallel	NY	NT
	L	Left side parallel	NX	NM1
			NW	NM2
			NV	NM3

4 Lead [mm]

	Size	
	$\mathbf{1 6}$	$\mathbf{2 5}{ }^{* 1}$
A	12	$16(20)$
B	6	$8(10)$

*1 The values shown in () are the leads for the right/left side parallel types. Except mounting type NM1 (Equivalent leads which include the pulley ratio [1.25:1])

5 Stroke [mm]		
Size		
100		
150		

Compatible Motors and Mounting Types

Applicable motor model		Size/Mounting type														
Manufacturer	Series	16						25								
		NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-	-
YASKAWA Electric Corporation	$\Sigma-\mathrm{V} / 7$	-*3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	\bigcirc	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6		\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
FANUC CORPORATION	β is (-B)	-	-	-	-	-	-	$\underset{(B 1 \text { only })}{\bullet}$	-	-	\bigcirc	-	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	-*3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MinebeaMitsumi Inc.	Hybrid stepping motors	-	-	-	- *1	-	- *2	-	-	-	-	-	-	-	\bigcirc	-
Shinano Kenshi Co., Ltd.	CSB-BZ	-	-	-	- *1	-	- *2	-	-	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	-	-	-	-		-	-	-	-	-	-	-	-	-	\bigcirc
FASTECH Co., Ltd.	Ezi-SERVO	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	-	-	-
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL		-	-	-	-	-	-	-	$\begin{array}{\|c\|} \hline \mathbf{P}^{* 1} \\ \text { (MP/VP } \\ \text { only) } \\ \hline \end{array}$	-	-	-		-	-
Beckhoff Automation GmbH	AM 30/31/80/81	-	-	-	-	-	-	-	-	$\underset{(80 / 81}{* * 1}$ only)	-	$\underset{(30 \text { only })}{* 1}$		-	-	-
Siemens AG	SIMOTICS S-1FK7	-	-	\bigcirc	-	-	-	-	-	-*1	-	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
ANCA Motion	AMD2000	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-

*1 Motor mounting position: In-line only *2 Motor mounting position: Parallel only
*3 For some motors, the connector may protrude from the motor body. Be sure to check for interreference with the mounting surface before selecting a motor.

Slide Table/High Precision Type LESYH Series

Motorless Type

Specifications

Model			LESYH16		LESYH25 (Parallel)		LESYH25 (In-line)	
	Stroke [mm]		50, 100		50, 100, 150			
	Work load [kg]	Horizontal*1	8		12		12	
		Vertical	6	12	10	20	10	20
	Force [N] ${ }^{* 2}$ (Set value: Rated torque 45 to 90%)		65 to 131	127 to 255	79 to 157	154 to 308	98 to 197	192 to 385
	Max. speed [mm/s]		400	200	400	200	400	200
	Pushing speed [mm/s]*3		35 or less		30 or less			
	Max. acceleration/deceleration [mm/s ${ }^{2}$]		5000					
	Positioning repeatability [mm]		± 0.01					
	Lost motion [mm]*4		0.1 or less					
	Ball screw specifications	Thread size [mm]	$\varnothing 10$		$\varnothing 12$			
		Lead [mm] (including pulley ratio)	12	6	$\begin{gathered} \hline 16 \\ (20) \end{gathered}$	$\begin{gathered} \hline 8 \\ (10) \end{gathered}$	16	8
		Shaft length [mm]		3.5		Stro	4.5	
	Impact/Vibration resistance [m/s ${ }^{2}{ }^{* 5}$		50/20					
	Actuation type		Ball screw Ball	(Parallel) -line)	Ball [Pulle	$\begin{aligned} & \text { Belt } \\ & 1.25: 1] \end{aligned}$		
	Guide type		Linear guide (Circulating type)					
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40					
	Operating humidity range [\%RH]		90 or less (No condensation)					
$\stackrel{\circ}{\text { * }}$	Actuation unit weight [kg]	50 st	0.585		1.21			
.		100 st	0.919		1.68			
\%ै		150 st	-		2.19			
$\begin{array}{\|l\|l} \text { 爱 } \\ \text { ion } \end{array}$	Other inertia [kg.cm ${ }^{2}$]		$\begin{gathered} \hline 0.01 \\ 0.015 \end{gathered}$	$\begin{aligned} & \mathrm{YH} 16) \\ & \mathrm{H} 16 \mathrm{D}) \end{aligned}$	$\begin{aligned} & 0.035 \text { (LESYH25) } \\ & 0.061 \text { (LESYH25D) } \end{aligned}$			
¢	Friction coefficient		0.05					
O	Mechanical efficiency		0.8					
	Motor type		AC servo motor					
	Rated output capacity [W]				200			
	Rated torque [$\mathrm{N} \cdot \mathrm{m}$]		0.32		0.64			
	Rated rotation [rpm]		3000					

*1 This is the max. value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
*2 The force setting range for the force control (Speed control mode, Torque control mode)
The force changes according to the set value. Set it with reference to the "Force Conversion Graph (Guide)" on page 936-4.
*3 The allowable collision speed for collision with the workpiece
*4 A reference value for correcting errors in reciprocal operation
*5 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*6 Each value is only to be used as a guide to select a motor of the appropriate capacity.

Weight

[kg]			
Model	Stroke		
	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$
LESYH16	1.48	1.87	-
LESYH25	2.77	3.37	4.77

LESYH Series

Motorless Type

Dimensions

Table operating range*1

Dimensions				
Model	Stroke	C	D	E
LESYH16 $\square \square-50$	50	40	6	116.5
LESYH16 $\square \square-100$	100	44	8	191.5

Motor Mounting Position: In-line/Motor Mounting, Applicable Motor Dimensions [mm]

Size	Mounting type	FA		FB	FC	FD	$\begin{gathered} \text { FE } \\ \text { (Max.) } \end{gathered}$	FF	FG	FJ	FK
		Mounting type	Applicale moior								
LESYH16	NZ	M 4×0.7	$\varnothing 4.5$	7.5	$\varnothing 46$	30	3.7	47	-	8	25 ± 1
	NY	M3 0.5	ø3.4	6	$\varnothing 45$	30	4.2	47	-	8	25 ± 1
	NX	M 4×0.7	$\varnothing 4.5$	7.5	ø46	30	3.7	47	-	8	18 ± 1
	NM1	$\varnothing 3.4$	M3	17	$\square 31$	22	2.5	36	19	5*2	18 to 25
	NM2	$\varnothing 3.4$	M3	28	$\square 31$	22*1	2.5*1	47	30	6*2	20 ± 1

*1 Dimensions after mounting a ring spacer (Refer to page 936-13.) *2 Shaft type: D-cut shaft

*1 Do not allow collisions at either end of the table operating range at a speed exceeding "pushing speed." Additionally when running the positioning operation, do not set within 2 mm of both ends.
*2 If the workpiece retaining screws are too long, they may come in contact with the guide block, resulting in a malfunction. Use screws of a length equal to or shorter than the thread length.
*3 For checking the limit and the intermediate signal. Applicable to the D-M9 $\square, D-M 9 \square E$, and D-M9 \square W (2-color indicator) The auto switches should be ordered separately.

Motor mounting position: Left side parallel | LESYH16LN $\square-\square$
Auto switch

Motor flange dimensions (Motor mounting position: Parallel)
NZ, NY, NX NM1, NM2, NM3

Motor Mounting Position: Parallel/Motor Mounting, Applicable Motor Dimensions [mm]

Size	Mounting type	FA		FB	FC	FD	$\begin{array}{\|c\|} \hline \text { FE } \\ \text { (Max.) } \\ \hline \end{array}$	FF	FG	FJ	FK
		Mounting type	Appicade moior								
LESYH16	NZ	M4 x 0.7	$\varnothing 4.5$	7.5	ø46	30	3.7	11	42	8	25 ± 1
	NY	M3 $\times 0.5$	$\varnothing 3.4$	5.5	ø45	30	5	11	38	8	25 ± 1
	NX	M4 x 0.7	$\varnothing 4.5$	7	ø46	30	3.7	8	42	8	18 ± 1
	NM1	$\varnothing 3.4$	M3	7	$\square 31$	28	3.5	8.5	42	5*1	18 to 25
	NM2	$\varnothing 3.4$	M3	7	$\square 31$	28	3.5	8.5	42	6	20 ± 1
	NM3	$\varnothing 3.4$	M3	7	$\square 31$	28	3.5	5.5	42	5*1	20 ± 1

[^21]Dimensions

*1 Do not allow collisions at either end of the table operating range at a speed exceeding "pushing speed." Additionally, when running the positioning operation, do not set within 2 mm of both ends.
*2 If the workpiece retaining screws are too long, they may come in contact with the guide block, resulting in a malfunction. Use screws of a length equal to or shorter than the thread length.
*3 For checking the limit and the intermediate signal. Applicable to the D-M9 \square, D-M9 \square E, and D-M9 \square W (2-color indicator) The auto switches should be ordered separately. Refer to the Web Catalog for details.

Motor Mounting Position: Paralle//Motor Mounting, Applicable Motor Dimensions [mm]

Size	$\begin{array}{\|c} \hline \text { Mounting } \\ \text { type } \end{array}$	FA		FB	FC	FD	$\begin{gathered} \text { FE } \\ \text { (Max.) } \end{gathered}$	FF	FJ	FK
		Mounting type	Appicale moior							
LESYH25	NZ	M5 x 0.8	$\varnothing 5.8$	8.5	$\varnothing 70$	50	4.6	13	14	30 ± 1
	NY	M4 x 0.7	$\varnothing 4.5$	7	¢70	50	4.6	13	11	30 ± 1
	NW	M5 x 0.8	$\varnothing 5.8$	8.5	$\varnothing 70$	50	4.6	13	9	25 ± 1
	NU	M5 x 0.8	$\varnothing 5.8$	8.5	$\varnothing 70$	50	4.6	13	11	23 ± 1
	NT	M5 x 0.8	$\varnothing 5.8$	8.5	$\varnothing 70$	50	4.6	17	12	30 ± 1
	NM1	M4 x 0.7	$\varnothing 4.5$	(5)	$\square 47.1$	38.1	-	5	6.35*1	20 ± 1
	NM2	M4 x 0.7	$\varnothing 4.5$	8	$\square 50$	38.1	-	11.5	10	24 ± 1

[^22]- The motor and motor mounting screws should be provided by the customer.
- Motor shaft type should be cylindrical for the NZ, NY, NW, NM2 mounting types, and D-cut type for the NM1 and NM3 mounting type.

Motor Mounting: Parallel

- When mounting a pulley, remove all oil content, dust, and dirt adhered to the shaft and the inside of the pulley.
- Take measures to prevent the loosening of the motor mounting screws and hexagon socket head set screws.

LESYH16: NM1, NM2, NM3

[Included parts] (for NM1)
Hexagon socket head set screw/MM1
(Tightening torque: TT1 [$\mathrm{N} \cdot \mathrm{m}$])

* Mount to D-cut surface of the motor shaft. $\xrightarrow{\text { Provided by the customer] }} \xrightarrow{\mathrm{PP}(\text { Mounting distance })}$ Motor [Included parts] (for NM1) Motor pulley

Refer to the figure on the
right for the motor pulley of NM2.

Motor flange details

LESYH16: NZ, NY, NX
LESYH25: NZ, NY, NW, NU, NT

[Included parts] (for NM2) Hexagon socket head cap screw/MM1 (Tightening torque: TT1 [$\mathrm{N} \cdot \mathrm{m} \mathrm{m}$)

LESYH25: NM1
[Included parts]
Hexagon socket head set screw/MM1

[Included parts]
Motor flange

* Refer to the "Motor flange details."
(for NM2) Motor pulley

LESYH16: NM1, NM2, NM3

LESYH25: NM1, NM2

Dimensions

Size	Mounting type	MM1	TT1	MM2	TT2	MM3	TT3	PD	PP	BT	FA	FB	FC	FD	FE	FF	FG
16	NZ	M2.5 $\times 10$	1.0	M3 $\times 8$	0.63	$\mathrm{M} 4 \times 10$	1.5	8	7.5	19	M 4×0.7	7.5	ه46	30	3.7	11	42
	NY	M 2.5×10	1.0	M3 $\times 8$	0.63	$\mathrm{M} 4 \times 10$	1.5	8	7.5	19	M3 $\times 0.5$	5.5	$\varnothing 45$	30	5	11	38
	NX	M2.5 $\times 10$	1.0	M3 $\times 8$	0.63	$\mathrm{M} 4 \times 10$	1.5	8	4.5	19	M4 $\times 0.7$	7	$\varnothing 46$	30	3.7	8	42
	NM1	M3 $\times 5$	0.63	M3 $\times 8$	0.63	M4 $\times 10$	1.5	5	11.8	19	$\varnothing 3.4$	7	$\square 31$	28	3.5	8.5	42
	NM2	M 2.5×10	1.0	M3 $\times 8$	0.63	$\mathrm{M} 4 \times 10$	1.5	6	4.8	19	$\varnothing 3.4$	7	$\square 31$	28	3.5	8.5	42
	NM3	M3 $\times 5$	0.63	M3 $\times 8$	0.63	M4 $\times 10$	1.5	5	8.8	19	$\varnothing 3.4$	7	$\square 31$	28	3.5	5.5	42
25	NZ	M3 $\times 12$	1.5	$\mathrm{M} 4 \times 12$	1.5	M6 x 14	5.2	14	4.5	30	M5 x 0.8	8.5	$\varnothing 70$	50	4.6	13	60
	NY	M3 $\times 12$	1.5	$\mathrm{M} 4 \times 12$	1.5	M6x 14	5.2	11	4.5	30	M 4×0.7	7	$\varnothing 70$	50	4.6	13	60
	NW	M4 x 12	3.6	M4 $\times 12$	1.5	M6 $\times 14$	5.2	9	4.5	30	M5 x 0.8	8.5	ø70	50	4.6	13	60
	NU	M3 $\times 12$	1.5	$\mathrm{M} 4 \times 12$	1.5	M6x 14	5.2	11	4.5	30	M5 x 0.8	8.5	ø70	50	4.6	13	60
	NT	M3 $\times 12$	1.5	$\mathrm{M} 4 \times 12$	1.5	M6x 14	5.2	12	8.5	30	M5 x 0.8	8.5	ø70	50	4.6	17	60
	NM1	M3 $\times 5$	0.63	$\mathrm{M} 4 \times 12$	1.5	M6 $\times 14$	5.2	6.35	8	30	M4 $\times 0.7$	(5)	$\square 47.1$	38.2	-	5	56.4
	NM2	M3 x 12	1.5	M4 $\times 12$	1.5	M6 $\times 14$	5.2	10	3	30	M4 $\times 0.7$	8	$\square 50$	38.2	-	11.5	60

Motor Mounting Diagram

Mounting procedure

1) Secure the motor pulley to the motor (provided by the customer) with the MM1 hexagon socket head cap screw or hexagon socket head set screw.
2) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).
3) Put the timing belt on the motor pulley and body side pulley, and then secure it temporarily with the MM2 hexagon socket head cap screws. (Refer to the mounting diagram.)
4) Apply the belt tension and tighten the timing belt with the MM2 hexagon socket head cap screws. (The reference level is the elimination of the belt deflection.)
5) Secure the return plate with the MM3 hexagon socket head cap screws.

Included Parts List

Size: 16, 25

Description	Quantity	
	Mounting type	
	NZ/NY/NW/NT/NM2	NM1/NM3
Motor flange	1	1
Motor pulley	1	1
Return plate	1	1
Timing belt	1	1
Hexagon socket head cap screw (to mount the return plate)	4	4
Hexagon socket head cap screw (to mount the motor flange)	2	2
Hexagon socket head cap screw (to secure the pulley)	1	-
Hexagon socket head set screw (to secure the pulley)	-	1

Slide Table/High Precision Type LESYH Series

Motorless Type

- The motor and motor mounting screws should be provided by the customer.
- Motor shaft type should be cylindrical for the NZ, NY, NX, NW, NM2 mounting types, and D-cut type for the NM1 mounting type.
Motor Mounting: In-line
- When mounting a hub, remove all oil content, dust, and dirt adhered to the shaft and the inside of the hub.
- Take measures to prevent the loosening of the motor mounting screws and hexagon socket head set screws.

Mounting procedure

1) Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head cap screw.
2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
3) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).

LESYH16D: NM1

[Included parts]
Hexagon socket head set screw/MM
Provided by the customer] (Tightening torque: TT [N.m])
Motor mounting screw (M3) * Mount to D-cut surface of the motor shatt. [Provided by the customer] Screw head height 5 or less, O.D. ø6.5 or less

[ncluded parts] Hexagon socket head set screw/2 x M4 x 5 (Tightening torque: 1.5 [N.m])

Mounting procedure

1) Secure the motor hub to the motor (provided by the customer) with the M3 x 4 hexagon socket head set screw
2) Secure the motor to the motor flange with the motor mounting screws (provided by the customer)
3) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
4) Secure the motor flange with the M4 x 5 hexagon socket head set screws.

LESYH25D: NM1

Included parts]
Hexagon socket head set screw/MM
(Tightening torque: TT [N•m]

Mounting procedure

1) Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head set screw.
2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
3) Secure the motor to the motor block with the motor mounting screws (provided by the customer)

LESYH16D: NM2

Mounting procedure

1) Insert the ring spacer into the motor (provided by the customer)
2) Secure the motor hub to the motor (provided by the customer) with the M2.5 x 10 hexagon socket head cap screw.
3) Secure the motor to the motor flange with the motor mounting screws (provided by the customer)
4) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
5) Secure the motor flange with the M4 $x 5$ hexagon socket head set screws.

Dimensions					[mm]
Size	Mounting type	MM	TT	PD	PP
16	NZ	M2.5 x 10	1.0	8	12.5
	NY	M 2.5×10	1.0	8	12.5
	NX	M 2.5×10	1.0	8	7
	NM1	M3 $\times 5$	0.63	5	10.5
	NM2	M 2.5×10	1.0	6	12.4
25	NZ	M 3×12	1.5	14	18
	NY	M4 x 12	3.6	11	18
	NX	M 4×12	3.6	9	5
	NW	M 4×12	3.6	9	12
	NV	M 4×12	3.6	9	5
	NU	M 4×12	3.6	11	12
	NT	M 3×12	1.5	12	18
	NM1	M 4×5	1.5	6.35	2.1
	NM2	M4 x 12	3.6	10	12

Included Parts List

Size: 16

Description	Quantity		
	Mounting type		
	NZNY/NX	NM1	NM2
Motor hub	1	1	1
Hexaon socket head cap screw (to secure the hub)	1	-	1
Motor flange	-	1	1
Hexagon socket head set screw (to secure the hub)		1	-
Hexagon socket head set screw (to secure the motor flange)	-	2	2
Ring spacer	-	-	1

Size: 25

	Quantity	
Description	Mounting type NZ/NY/NXX NW/NV/NU// NT/NM2	NM1
Motor hub	1	1
Hexagon socket head cap screw (to secure the hub)	1	-
Hexagon socket head set screw (to secure the hub)	-	1

LESYH Series

Motor Mounting Parts

Motor Flange Option

A motor can be added to the motorless specification after purchase. The applicable mounting types are shown below. (Excludes options "NM1" and "NM3")
Use the following part numbers to select a compatible motor flange option and place an order.

How to Order

$\mathbf{1}$ Size
$\mathbf{2 5}$
$\mathbf{3 2}$
$\mathbf{F o r}$ the LESYH16

* Please note that the size in the model number is different from the actuator size.

2	Motor mounting position
P	Parallel
D	In-line

3 3
Mounting type
NZ NV NY NU NX NT NW NM2

Compatible Motors and Mounting Types

Applicable motor model		Actuator/Mounting type														
Manufacturer	Series	16						25								
		NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
YASKAWA Electric Corporation	г-V/7	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	\bullet	-	-	-	-	-	-	\bullet	-	-	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6	\bullet	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-
FANUC CORPORATION	Bis (-B)	\bullet	-	-	-	-	-	(81 only)	-	-	\bullet	-	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	\bullet	-	-	-	-	-	-	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
MinebeaMitsumi Inc.	Hybrid stepping motors	-	-	-	\bullet	-	\bullet	-	-	-	-	-	-	-	\bullet	-
Shinano Kenshi Co., Ltd.	CSB-BZ	-	-	-	\bullet	-	\bullet	-	-	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	-	-	-	-	\bullet	-	-	-	-	-	-	-	-	-	\bullet
FASTECH Co., Ltd.	Ezi-SERVO	-	-	-	\bullet	-	-	-	-	-	-	-	-	-	\bullet	-
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	\bullet	-	-	-	-	-	-	-	$\begin{array}{\|c\|} \hline \mathbf{Q}^{* 1} \\ \text { (MPNP } \\ \text { only) } \end{array}$	-	-	-	\bullet	-	-
Beckhoff Automation GmbH	AM 30/31/80/81	\bullet	-	-	-	-	-	-	-	$\begin{gathered} 0^{* 1} \\ (80 / 81 \\ \text { only) } \end{gathered}$	-	-*1	\bullet	-	-	-
Siemens AG	SIMOTICS S-1FK7	-	-	\bullet	-	-	-	-	-	$\bullet * 1$	-	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
ANCA Motion	AMD2000	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-

* When the LESYH ${ }_{25}^{16} \square$ NM3 $\square-\square$ is purchased, it is not possible to change to other mounting types.
*1 Motor mounting position: In-line only

Dimensions: Motor Flange Option

Motor mounting position: Parallel

Motor flange details
Size: 25, 32

Size 25: NM2

2×FA
depth of counterbore FB

FF

Size 32: NM2

Dimensions

Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	M1	T1	M2	T2	PD	PP
$\begin{gathered} 25 \\ \text { (LESYH16) } \end{gathered}$	NZ	M4 x 0.7	7.5	ø46	30	3.7	11	42	M 2.5×10	1.0	M3 x 8	0.63	8	7.5
	NY	M3 x 0.5	5.5	ø45	30	5	11	42	M 2.5×10	1.0	M3 $\times 8$	0.63	8	7.5
	NX	M4 x 0.7	7	ø46	30	3.7	8	42	M 2.5×10	1.0	M3 $\times 8$	0.63	8	4.5
	NM2	$\varnothing 3.4$	7	$\square 31$	30	3.7	8.5	42	M 2.5×10	1.0	M3 $\times 8$	0.63	6	4.8
$\begin{gathered} 32 \\ \text { (LESYH25) } \end{gathered}$	NZ	M5 x 0.8	8.5	$\varnothing 70$	50	4.6	13	60	M3 x 12	1.5	M 4×12	1.5	14	4.5
	NY	M4 x 0.7	7	$\varnothing 70$	50	4.6	13	60	M3 x 12	1.5	$\mathrm{M} 4 \times 12$	1.5	11	4.5
	NW	M5 $\times 0.8$	8.5	$\varnothing 70$	50	4.6	13	60	M 4×12	3.6	$\mathrm{M} 4 \times 12$	1.5	9	4.5
	NU	M5 $\times 0.8$	8.5	$\varnothing 70$	50	4.6	13	60	M 3×12	1.5	$\mathrm{M} 4 \times 12$	1.5	11	4.5
	NT	M5 $\times 0.8$	8.5	$\varnothing 70$	50	4.6	17	60	M3 $\times 12$	1.5	$\mathrm{M} 4 \times 12$	1.5	12	8.5
	NM2	M 4×0.7	8	$\square 50$	38.2	-	11.5	60	M3 x 12	1.5	M 4×12	1.5	10	3

LESYH Series

Dimensions: Motor Flange Option

Motor mounting position: In-line

Size: 25, Mounting type: NM2

Motor flange B details

Component Parts

No.	Description	Quantity
$\mathbf{1}$	Motor flange A	1
$\mathbf{2}$	Motor flange B	1
$\mathbf{3}$	Motor hub	1
$\mathbf{4}$	Ring spacer	1
$\mathbf{5}$	Hexagon socket head cap screw (to secure the hub)	1
$\mathbf{6}$	Hexagon socket head cap screw (to mount the motor flange A)	2
$\mathbf{7}$	Hexagon socket head set screw (to secure the motor flange B)	2

Dimensions

Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	M1	T1	M2	T2	PD	PP
$\begin{gathered} 25 \\ \text { (LESYH16) } \end{gathered}$	NZ	M4 x 0.7	7.5	ø46	30	3.7	47	45	M2.5 $\times 10$	1.0	M4 $\times 40$	1.5	8	12.5
	NY	M3 x 0.5	6	$\varnothing 45$	30	4.2	47	45	M2.5 $\times 10$	1.0	M4 $\times 40$	1.5	8	12.5
	NX	M4 x 0.7	7.5	ø46	30	3.7	47	45	M2.5 $\times 10$	1.0	M4 $\times 40$	1.5	8	7
	NM2	$\varnothing 3.4$	28	$\square 31$	22	2.5	30	45	M2.5 $\times 10$	1.0	M4 $\times 40$	1.5	6	12.4
$\begin{gathered} 32 \\ \text { (LESYH25) } \end{gathered}$	NZ	M5 x 0.8	8.5	ø70	50	3.3	60	60	M3 $\times 12$	1.5	M6 x 60	5.2	14	18
	NY	M4 x 0.7	8	$\varnothing 70$	50	3.3	60	60	M4 $\times 12$	3.6	M6 $\times 60$	5.2	11	18
	NX	M5 x 0.8	8.5	ø63	40	3.5	63	60	$\mathrm{M} 4 \times 12$	3.6	M6 x 60	5.2	9	5
	NW	M5 x 0.8	8.5	$\varnothing 70$	50	3.3	60	60	$\mathrm{M} 4 \times 12$	3.6	M6 x 60	5.2	9	12
	NV	M4 x 0.7	8	ø63	40	3.3	63	60	$\mathrm{M} 4 \times 12$	3.6	M6 $\times 60$	5.2	9	5
	NU	M5 x 0.8	8.5	$\varnothing 70$	50	3.3	60	60	M 4×12	3.6	M6 x 60	5.2	11	12
	NT	M5 x 0.8	8.5	¢70	50	3.3	60	60	M3 $\times 12$	1.5	M6 x 60	5.2	12	18
	NM2	M4 x 0.7	8	$\square 50$	36	3.3	60	60	M4 x 12	3.6	M6 x 60	5.2	10	12

AC Servo Motor Motorless Type

Electric Actuator/High Rigidity Slider Type Ball Screw Drive

- Supports 750 w (Motor output)

AC Servo Motor Absolute Type

Pulse input type/Positioning type LECSB-T Series

- Positioning by up to 255 point tables
- Input type: Pulse input (Sink (NPN) type interface/Source (PNP) type interface)
- Control encoder: Absolute 22-bit encoder (Resolution: $4194304 \mathrm{p} / \mathrm{rev}$)
- STO (Safe Torque Off) safety function available
- Parallel input: 10 inputs
output: 6 outputs
Motorless Type Compatible Motors by Manufacturer

Trademark: DeviceNet ${ }^{\text {TM }}$ is a trademark of ODVA.

System Construction

Model Selection

Acceleration/Deceleration —— $1000 \mathrm{~mm} / \mathrm{s}^{2} \quad---3000 \mathrm{~mm} / \mathrm{s}^{2} \quad$ —— $5000 \mathrm{~mm} / \mathrm{s}^{2} \quad \cdots \cdots \cdot 10000 \mathrm{~mm} / \mathrm{s}^{2}$

Electric Actuator/ligh Rigidity Slider Type Ball Screw Drive

 LEJS100-X400

How to Order

1 Lead [mm]	
H	50
A	25
B	10

2 Stroke [mm]
$\mathbf{5 0 0}$ 500 $\mathbf{1 0 0 0}$ 1000 $\mathbf{1 5 0 0}$ 1500

(3) Motor option*1

Nil	Without option
\mathbf{B}	With lock

(4) Cable type*1

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable

(5) Cable length [m] ${ }^{* 1}$
Nil
$\mathbf{2}$

Driver type*1

	Compatible driver Model	Power supply voltage [V]	Applicable network
Nil	Without driver	-	-
B2	LECSB2-T9	200 to 240	Pulse input/Point table

*1 When a driver type is selected, a cable is included.
Select the cable type and cable length.
Example)
S2B2: Standard cable (2 m) + Driver (LECSB2)
S2 : Standard cable (2 m)
Nil :Without cable and driver

Compatible Driver

	Pulse input type
Driver type	
Series	LECSB-T
Number of point tables	Up to 255
Pulse input	-
Applicable network	Absolute 22-bit encoder
Control encoder	USB communication, RS422 communication
Communication function	
Power supply voltage [V]	200 to 240 VAC (50/60 Hz)

7 I/O cable length [m] ${ }^{* 2}$

Nil	Without cable
\mathbf{H}	Connector only
$\mathbf{1}$	1.5

*2 When "Without driver" is selected for driver type, only "Nil: Without cable" can be selected.

Specifications

Stroke [mm]			500, 1000, 1500		
Lead [mm]			50	25	10
Horizontal work load [kg]	3000 [mm/s ${ }^{2}$]		60	150	400
	5000 [mm/s ${ }^{2}$]		43	93	150
	9800 [mm/s ${ }^{2}$]		22	36	-
Vertical work load [kg]	3000 [mm/s ${ }^{2}$]		14	29	80
	5000 [$\mathrm{mm} / \mathrm{s}^{2}$]		12	29	30
	9800 [mm/s ${ }^{2}$]		8	9	-
Max. speed [mm/s]	Stroke range	500	2300	1250	500
		1000	1600	800	320
		1500	900	450	180
Max. acceleration/deceleration [mm/s ${ }^{2}$]			9800		
Positioning repeatability [mm]			± 0.01		
Lost motion [mm]			0.05 or les		
Impact/Vibration resistance [m/s ${ }^{2}$]			50/20		
Motor capacity			750 W		
Actuation type			Ball screw		
Guide type			Linear guide (Double axis)		
Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40		
Operating humidity range [\%RH]			90 or less (No condensation)		

* Do not allow collisions at either end of the table traveling distance. Additionally, when running the positioning operation, do not set within 7 mm of both ends.

LEJS100-X400

AC Servo Motor

Dimensions: Ball Screw Drive

*1 Use a pin when mounting the actuator using the body mounting reference plane. Set the height of the pin to be 5 mm or more because of round chamfering. (Recommended height 6 mm)

* Please consult with SMC for adjusting the Z-phase detecting position at the stroke end of the end side.

Dimensions and Weight

Stroke	L		A	n	D	E	G	Weight [kg]	
	Without lock	With lock						Without lock	With lock
500	957.5	997.8	514	8	3	540	505	26.7	27.7
1000	1457.5	1497.8	1014	14	6	1080	1045	37.1	38.1
1500	1957.5	1997.8	1514	20	9	1620	1585	47.6	48.6

AC Servo Motor Driver Absolute Type

How to Order

* If an I/O connector is required, order the part number "LE-CSNB" separately.
* If an I/O cable is required, order the part number "LEC-CSNB-1" separately.
(Since the electric actuator will not operate without forced stop (EM2) wiring when using the LECSB-T in any mode other than positioning mode, an I/O connector or an I/O cable is required.)
- Compatible motor type

Symbol	Type	Capacity	Encoder
T9	AC servo motor $\left(\mathrm{T}^{* 1}\right)$	750 W	Absolute

*1 The symbol shows the motor type (actuator).

Dimensions

Connector name	Description
CN1	I/O signal connector
CN2	Encoder connector
CN3	RS-422 communication connector
CN4	Battery connector
CN5	USB communication connector
CN6	Analog monitor connector
CN8	STO input signal connector
CNP1	Main circuit power supply connector
CNP2	Control circuit power supply connector
CNP3	Servo motor power connector

LECSB-T

Specifications

Model	LECSB2-T9
Compatible motor capacity [W]	750
Compatible encoder	Absolute 22-bit encoder (Resolution: $4194304 \mathrm{p} / \mathrm{rev}$)
Main \quad Power voltage [V]	Three phase 200 to 240 VAC (50/60 Hz), Single phase 200 to 240 VAC ($50 / 60 \mathrm{~Hz}$)
power Allowable voltage fluctuation [V]	Three phase 170 to 264 VAC (50/60 Hz), Single phase 170 to 264 VAC ($50 / 60 \mathrm{~Hz}$)
supply ${ }^{\text {a }}$ (${ }^{\text {R }}$ Rated current [A]	3.8
Control ${ }^{\text {Con }}$ Control power supply voltage [V]	Single phase 200 to 240 VAC (50/60 Hz)
power Allowable voltage fluctuation [V]	Single phase 170 to 264 VAC
	0.2
Parallel input	10 inputs
Parallel output	6 outputs
Max. input pulse frequency [pps]	4 M (for differential receiver), 200 k (for open collector)
In-position range setting [pulse]	0 to ± 65535 (Command pulse unit)
Error excessive	± 3 rotations
Function Torque limit	Parameter setting or external analog input setting (0 to 10 VDC)
Function ${ }^{\text {a }}$	USB communication, RS422 communication*1
Point table	Up to 255 points
Pushing operation	Point table no. input method, Up to 127 points
Operating temperature range [${ }^{\circ} \mathrm{C}$]	0 to 55 (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-20 to 65 (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [M $/$]	Between the housing and SG: 10 (500 VDC)
Weight [g]	1400

*1 USB communication and RS422 communication cannot be performed at the same time.

Electric Actuator/High Rigidity Slider Type Ball Screw Drive

 LEJS100-X400How to Order

Lead [mm]

\mathbf{H}	50
\mathbf{A}	25
\mathbf{B}	10

(2) Stroke [mm]

500	500
1000	1000
1500	1500

Specifications

	Stroke [mm]			500, 1000, 1500		
	Lead [mm]			50	25	10
	Horizontal work load [kg]	3000 [mm/s ${ }^{2}$]		60	150	400
		5000 [mm/s ${ }^{2}$]		43	93	150
		9800 [mm/s ${ }^{2}$]		22	36	-
	Vertical work load [kg]	3000 [mm/s ${ }^{2}$]		14	29	80
		5000 [mm/s ${ }^{2}$]		12	29	30
		9800 [mm/s ${ }^{2}$]		8	9	-
	Max. speed [mm/s]	Stroke range	500	2300	1250	500
			1000	1600	800	320
			1500	900	450	180
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			9800		
	Positioning repeatability [mm]			± 0.01		
	Lost motion [mm]			0.05 or less		
	Ball screw specifications		Thread size [mm]	ø25		
			Shaft length [mm]	Stroke + 284.5		
	Impact/Vibration resistance [m/s ${ }^{2}$]			50/20		
	Motor capacity			750 W		
	Actuation type			Ball screw		
	Guide type			Linear guide (Double axis)		
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40		
	Operating humidity range [\%RH]			90 or less (No condensation)		
	Actuation unit weight [kg]			4.58		
	Friction coefficient			0.05		
	Mechanical efficiency			0.8		
¢ ¢	Motor shape			$\square 80$		
은	Motor type			AC servo motor (200 V)		
응	Rated output capacity [W]			750		
\%	Rated torque [$\mathrm{N} \cdot \mathrm{m}$]			2.4		
-	Rated rotation [rpm]			3000		

* Values in this specifications table are the allowable values of the actuator body with the standard motor mounted. Do not use the actuator so that it exceeds these values.
* Before mounting the coupling, remove any dust, oil, etc., adhered to the shaft and the inner surface of the coupling
* This product does not come with a motor, motor mounting screw, or couplings. They should be prepared separately by the customer
* Take measures to prevent the loosening of the motor mounting screws.
* Do not allow collisions at either end of the table traveling distance. Additionally, when running the positioning operation, do not set within 7 mm of both ends.

LEJS100-X400

Motorless Type

Dimensions

*1 Use a pin when mounting the actuator using the body mounting reference plane or the side supports. Set the height of the pin to be 5 mm or more because of round chamfering. (Recommended height 6 mm)

Side Supports

Side supports: MY-S50A

* The side supports consist of a set of right and left brackets.

Usage Guide for Side Supports

When mounting with the side supports, be sure to use the number of side supports (N) and the support spacing (L1 and L2) shown in the figure and table below as a guide.

Stroke	$\begin{gathered} \mathbf{N} \\ (\text { Qty. }) \end{gathered}$	$\begin{gathered} \mathrm{L} 1 \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{L} 2 \\ {[\mathrm{~mm}]} \end{gathered}$	Screw size	Max. tightening torque [$\mathrm{N} \cdot \mathrm{m}$]
500 st	6	15	165	M8 x 1.25	12.5
1000 st	10		175		
1500 st	14		180		

- When mounting with the side supports, use in combination with the pin on the bottom of the body.
- For vertical or bottom mounting, please refrain from using only the side supports.

Auto Switch Mounting

When mounting an auto switch, first, hold a switch spacer between your fingers and press it into the auto switch mounting groove. When doing this, confirm that it is set in the correct mounting orientation, or reattach it if necessary.
Next, insert an auto switch into the auto switch mounting groove and slide it until it is positioned under the switch spacer.
After establishing the mounting position, use a flathead watchmaker's screwdriver to tighten the included auto switch mounting screw.

Auto Switch Mounting Screw Tightening Torque

Auto switch model	Tightening torque
D-M9 $\square(\mathbf{V})$	0.10 to 0.15
D-M9 $\square \mathbf{W}(\mathbf{V})$	

[^0]: © 817-20

[^1]: *1 Dimensions after mounting a ring spacer

[^2]: ＊1 Dimensions after mounting a ring spacer

[^3]: *1 For screw sizes, refer to the hub mounting dimensions.

[^4]: ＊When the LEF $\square 25 \mathrm{NM} 1 \square-\square$ is purchased，it is not possible to change to other mounting types．

[^5]: Imensions after mounting a ring spacer

[^6]: Selection example)
 Select the LEJS63 \square B-300 from the graph on the right side.
 Confirm that the external force is within the allowable external force ($20[\mathrm{~N}]$).
 (The external force is the resistance due to cable duct, flexible trunking or air tubing.)

[^7]: * This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table. (Table clearance is included.)

[^8]: *1 For some motors, the connector may protrude from the motor body. Be sure to check for interreference with the mounting surface before selecting a motor.

[^9]: $* 1$ For some motors，the connector may protrude from the motor body．Be sure to check for interreference with the mounting surface before selecting a motor．

[^10]: ＊When tightening the auto switch mounting screw（included with auto switch）， use a watchmaker＇s screwdriver with a handle diameter of about 5 to 6 mm ．

[^11]: * Each value is the value when a reducer is built into the product.

[^12]: ＊1 Equivalent lead which includes the screw lead 5 and the pulley ratio $4: 7 * 2$ Value when a reducer（reduction ratio $1 / 3$ ）is built into the product＊3 Value when a reducer（reduction ratio $1 / 5$ ）is built into the product

[^13]: 1 Motor mounting position: In-line only *2 Motor mounting position: Parallel only

[^14]: * When the motor is mounted on the left or right side in parallel, the groove for auto switch on the side to which the motor is mounted is hidden.

[^15]: * The limit of vertical load mass varies depending on "lead" and "speed." Check the "Speed-Vertical Work Load Graph" on page 919.

[^16]: \triangle Caution

 ## Handling Precautions

 * When used as a stopper, select a model with a stroke of 30 mm or less.
 * LEYG \square (ball bushing bearing) cannot be used as a stopper.
 * Workpiece collision in series with guide rod cannot be permitted (Fig. a)
 * The body should not be mounted on the end. It must be mounted on the top or bottom (Fig. b).

[^17]: ＊When using the force control or speed control，set the maximum value to be no more than 90% of the rated torque．

[^18]: * The ED measurement is when the unit is at the retracted stroke end position.

[^19]: ＊The motor mounting and applicable motor dimensions are the same as those of the LEY series． Refer to page 913.

[^20]: ＊The ED measurement is when the unit is at the retracted stroke end position．

[^21]: *1 Shaft type: D-cut shaft

[^22]: *1 Shaft type: D-cut shaft

