Electric Actuator/Slider Type Motor Parallel Type

Size	Length reduction (mm)	Motor mounting position (mm)	
		Parallel	In-line
$\mathbf{1 6}$	80.5	416.5	497
$\mathbf{2 5}$	75	460.5	535.5
$\mathbf{3 2}$	87	495	582
$\mathbf{4 0}$	102.6	553.4	656

*Step motor, Stroke: 300 mm

Top surface of table and motor are level.

Reduced in height

Motor mounting position can be selected from two directions.

Ball Screw Drive Series LEFS

Size: 16, 25, 32, 40
Step Motor (Servo/24 VDC) Type
Servo Motor (24 VDC) Type
Max. work load: $132.3 \mathrm{lb}(60 \mathrm{~kg})$
Positioning repeatability: $\pm 0.02 \mathrm{~mm}$

Size: 25, 32, 40

AC Servo Motor Type

* Not applicable to UL.

Improved high speed transfer ability Max. speed: $\mathbf{1 , 0 0 0} \mathbf{m m} / \mathrm{s}$ High acceleration/deceleration: $\mathbf{2 0 , 0 0 0} \mathrm{mm} / \mathrm{s}^{2}$

- Pulse input type (For LECSAB)
- With internal absolute encoder (For LECSB/C/S)
\bullet Compatible with CC-Link and SSCNET III.

Selection Example

Step 1
Check the work load-speed. <Speed-Work load graph>
(Pages 2 and 3)
Select the target model based on the workpiece mass and speed with reference to the <Speed-Work load graph>.
Selection example) The LEFS25RA-200 is temporarily selected based on the graph shown on the right side.

<Speed-Work load graph> (LEFS25/Step motor)

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method.
Cycle time :
T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

- T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

- T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

- T4: Settling time varies depending on the conditions such as motor types, load and in positioning of the step data. Therefore, please calculate the settling time with reference to the following value.

$$
\mathrm{T} 4=0.2[\mathrm{~s}]
$$

Step 3 Check the guide moment.

Based on the above calculation result, the LEFS25RA-200 is selected.

Calculation example)
T 1 to T 4 can be calculated as follows.

$$
\begin{aligned}
& \mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}], \\
& \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}] \\
& \mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}
\end{aligned}
$$

$$
=\frac{200-0.5 \cdot 300 \cdot(0.1+0.1)}{300}
$$

$$
=0.57[\mathrm{~s}]
$$

$$
\mathrm{T} 4=0.2[\mathrm{~s}]
$$

Therefore, the cycle time can be obtained as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.1+0.57+0.1+0.2 \\
& =0.97[\mathrm{~s}]
\end{aligned}
$$

L : Stroke [mm] (Operating condition)
V : Speed [mm/s] (Operating condition)
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
a2: Deceleration [mm/s²] \cdots (Operating condition)
T1: Acceleration time [s] Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating at a constant speed

T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until in position is completed

* If the step motor and servo motors do not meet your specifications, please also consider the AC servo specifications (Page 16).

LEFS16/Ball Screw Drive

Horizontal

Vertical

LEFS25/Ball Screw Drive

Vertical

LEFS32/Ball Screw Drive

Vertical

LEFS40/Ball Screw Drive

Vertical

LEFS16A/Ball Screw Drive

Horizontal

Vertical

LEFS25A/Ball Screw Drive

Vertical
 refer to the Electric Actuator Selection Software for confirmation. http://www.smcworld.com

Series LEFS

Table Accuracy

Model	Traveling parallelism [mm] (Every (300 mm)	
	(1) C side traveling parallelism to A	(2) D side traveling parallelism to B
LEFS16	0.05	0.03
LEFS25	0.05	0.03
LEFS32	0.05	0.03
LEFS40	0.05	0.03

Note) Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)

Note 1) This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table.
Note 2) Please confirm the clearance and play of the guide separately.

How to Order

1 Size
16
25
32
40

(2) Motor mounting position

\mathbf{R}	Right side parallel
\mathbf{L}	Left side parallel

Stroke [mm]

100	100
to	to
1000	1000

* Refer to the applicable stroke table.
3 Motor type

Symbol	Type	Applicable size				Compatible controllers/ driver
		LEFS25	LEFS32	LEFS40		LECP6 NECP1 LECPA
A	Step motor (Servo/24 VDC)	-	\bullet	\bullet	\bullet	Servo motor (24 VDC)
	-	\bullet	-	-	LECA6	

\triangle Caution

[CE-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEF series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the servo motor (24 VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA).
Refer to the catalog CAT.ES100-87 for the noise filter set. Refer to the LECA Operation Manual for installation.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

Applicable stroke table
- Stroke Model (mm) $\mathbf{1 0 0}$ $\mathbf{2 0 0}$ $\mathbf{3 0 0}$ $\mathbf{4 0 0}$ $\mathbf{5 0 0}$ $\mathbf{6 0 0}$ $\mathbf{7 0 0}$ $\mathbf{8 0 0}$ $\mathbf{9 0 0}$ $\mathbf{1 0 0 0}$Manufacturable stroke range $[\mathrm{mm}]$
LEFS16

* Strokes are manufacturable in 1 mm increments. Refer to the manufacturable stroke range.

However, strokes other than those shown above are produced as special orders. Consult with SMC for lead times and prices.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

6 Motor option

$\mathbf{N i l}$	Without option
\mathbf{B}	With lock

(10 I/O cable length [m] ${ }^{* 1}$

$\mathbf{N i l}$	Without cable
1	1.5
3	$3^{* 2}$
5	$5^{* 2}$

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. When the I/O cable is required, order it separately.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.

7 Actuator cable type

Nil	Without cable
\mathbf{S}	Standard cable*2
\mathbf{R}	Robotic cable (Flexible cable)

*1 The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.
*2 Only available for the motor type "Step motor."

9 Controller/Driver type* ${ }^{*}$

Nil	Without controller/driver	
6N	LECP6/LECA	NPN
6P	(Step data input type)	PNP
1N	LECP1*2 (Programless type)	NPN
1P		PNP
AN	LECPA*2 (Pulse input type)	NPN
AP		PNP

* 1 For details about controllers/driver and compatible motors, refer to the compatible controllers/driver below.
* 2 Only available for the motor type "Step motor."

8 Actuator cable length [m]

$\mathbf{N i l}$	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	8^{*}
\mathbf{A}	10^{*}
\mathbf{B}	15^{*}
\mathbf{C}	20^{*}

* Produced upon receipt of order (Robotic cable only)

Refer to the specifications Note 2) on pages 9 and 10.

11 Controller/Driver mounting

Nil	Screw mounting
\mathbf{D}	DIN rail mounting*

* DIN rail is not included. Order it separately.

Compatible Controllers/Driver

Type	Step data input type	Step data input type	Programless type	Pulse input type
Series	LECP6	LECA6	LECP1	LECPA
Features	Value (Step data) input Standard controller		Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Servo motor (24 VDC)	Step motor (Servo/24 VDC)	
Max. number of step data	64 points		14 points	-
Power supply voltage	24 VDC			

Series LEFS

Specifications
($1 \mathrm{~kg}=2.2 \mathrm{lbs}$)

Step Motor (Servo/24 VDC)

Model			LEFS16		LEFS25		LEFS32		LEFS40	
	Stroke [mm] Note 1)		100, 200, 300, 400		$\begin{aligned} & 100,200,300 \\ & 400,500,600 \end{aligned}$		$\begin{aligned} & 100,200,300,400 \\ & 500,600,700,800 \end{aligned}$		$\begin{gathered} 200,300,400,500,600 \\ 700,800,900,1000 \end{gathered}$	
	Work load [kg] Note 2)	Horizontal	9	10	20	20	40	45	50	60
		Vertical	2	4	7.5	15	10	20	-	23
	Speed [mm/s] Note 2)		10 to 500	5 to 250	12 to 500	6 to 250	16 to 500	8 to 250	20 to 500	10 to 250
	Max. acceleration/deceleration [mm/s ${ }^{2}$]		3,000							
	Positioning repeatability [mm]		± 0.02							
	Lead [mm]		10	5	12	6	16	8	20	10
	Impact/Vibration resistance [m/s²] ${ }^{\text {Note } 3)}$		50/20							
	Actuation type		Ball screw							
	Guide type		Linear guide							
	Operating temperature range		41 to $104^{\circ} \mathrm{F}$ (5 to $40^{\circ} \mathrm{C}$)							
	Operating humidity range [\%RH]		90 or less (No condensation)							
$\begin{aligned} & \text { U } \\ & \text { " } \\ & \text { © } \\ & \hline \ddot{W} \end{aligned}$	Motor size		$\square 28$		$\square 42$		$\square 56.4$			
	Motor type		Step motor (Servo/24 VDC)							
	Encoder		Incremental A/B phase (800 pulse/rotation)							
	Rated voltage [V]		24 VDC $\pm 10 \%$							
	Power consumption [W] ${ }^{\text {Note 4) }}$		22		38		50		100	
	Standby power consumption Note 5) when operating [W]		18		16		44		43	
	Max. instantaneous Note 6) power consumption [W]		51		57		123		141	
	Type Note 7)		Non-magnetizing lock							
	Holding force lbf [N]		4.5 [20]	8.8 [39]	17.5 [78]	35.3 [157]	24.3 [108]	48.6 [216]	25.4 [113]	50.6 [225]
	Power consumption [W] ${ }^{\text {Note 8) }}$		2.9		5		5		5	
	Rated voltage [V]		24 VDC $\pm 10 \%$							

Note 1) Consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) Speed changes according to the work load. Check "Speed-Work Load Graph (Guide)" on page 2.
Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m .
Note 3) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 4) The power consumption (including the controller) is for when the actuator is operating.
Note 5) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation.
Note 6) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 7) With lock only
Note 8) For an actuator with lock, add the power consumption for the lock.

Specifications

Servo Motor (24 VDC)

Model			LEFS16A		LEFS25A	
	Stroke [mm] Note 1)		100, 200, 300, 400		$\begin{aligned} & 100,200,300 \\ & 400,500,600 \end{aligned}$	
	Work load [kg] ${ }^{\text {Note 2) }}$	Horizontal	7	10	11	18
		Vertical	2	4	2.5	5
	Speed [mm/s] Note 2)		10 to 500	5 to 250	12 to 500	6 to 250
	Max. acceleration/deceleration [mm/s ${ }^{2}$]		3,000			
	Positioning repeatability [mm]		± 0.02			
	Lead [mm]		10	5	12	6
	Impact/Vibration resistance [m/s ${ }^{\mathbf{2}}{ }^{\text {] }}$ Note 3)		50/20			
	Actuation type		Ball screw			
	Guide type		Linear guide			
	Operating temperature range		41 to $104^{\circ} \mathrm{F}$ (5 to $40^{\circ} \mathrm{C}$)			
	Operating humidity range [\%RH]		90 or less (No condensation)			
	Motor size		$\square 28$		$\square 42$	
	Motor output [W]		30		36	
	Motor type		Servo motor (24 VDC)			
	Encoder		Incremental A/B (800 pulse/rotation)/Z phase			
	Rated voltage [V]		24 VDC $\pm 10 \%$			
	Power consumption [W] ${ }^{\text {Note 4) }}$		63		102	
	Standby power consumption when operating [W] ${ }^{\text {Note 5) }}$		Horizontal 4/Vertical 9		Horizontal 4/Vertical 9	
	Max. instantaneous power consumption [W] ${ }^{\text {Note 6) }}$		70		113	
	Type Note 7)		Non-magnetizing lock			
	Holding force lbf [N]		4.5 [20]	8.8 [39]	17.5 [78]	35.3 [157]
	Power consumption [W] ${ }^{\text {Note } 8)}$		2.9		5	
	Rated voltage [V]		24 VDC $\pm 10 \%$			

Note 1) Consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) For details, check "Speed-Work Load Graph (Guide)" on page 3.
Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m .
Note 3) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 4) The power consumption (including the controller) is for when the actuator is operating.
Note 5) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation.
Note 6) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 7) With lock only
Note 8) For an actuator with lock, add the power consumption for the lock.

Weight

Model	LEFS16					
Stroke [mm]	100	200	300	400		
Product weight [kg]	0.85	1.00	1.15	1.30		
Additional weight with lock [kg]	0.09					
Model	LEFS25					
Stroke [mm]	100	200	300	400	500	600
Product weight [kg]	1.79	2.07	2.35	2.63	2.91	3.19
Additional weight with lock [kg]	0.22					

Model	LEFS32								
Stroke [mm]	100	200	300	400	500	600	700	800	
Product weight [kg]	3.23	3.63	4.03	4.43	4.83	5.23	5.63	6.03	
Additional weight with lock [kg]	0.46								

Model	LEFS40								
Stroke [mm]	200	300	400	500	600	700	800	900	1000
Product weight [kg]	5.50	6.06	6.62	7.18	7.74	8.30	8.86	9.42	9.98
Additional weight with lock [kg]					0.47				

Construction

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
2	Rail guide	-	
3	Ball screw shaft	-	
4	Ball screw nut	-	
5	Table	Aluminum alloy	Anodized
6	Blanking plate	Aluminum alloy	Anodized
7	Seal band stopper	Synthetic resin	
8	Housing A	Aluminum die-casted	Coating
9	Housing B	Aluminum die-casted	Coating
10	Bearing stopper	Aluminum alloy	
11	Return plate	Aluminum alloy	Coating
12	Pulley	Aluminum alloy	
13	Pulley	Aluminum alloy	

No.	Description	Material	Note
$\mathbf{1 5}$	Cover plate	Aluminum alloy	Coating
$\mathbf{1 6}$	Table spacer	Aluminum alloy	Coating
$\mathbf{1 7}$	Motor	-	
$\mathbf{1 8}$	Motor cover	Synthetic resin	
$\mathbf{1 9}$	Motor cover with lock	Aluminum alloy	Anodized
$\mathbf{2 0}$	Band stopper	Stainless steel	
$\mathbf{2 1}$	Dust seal band	Stainless steel	
$\mathbf{2 2}$	Bearing	-	
$\mathbf{2 3}$	Bearing	-	

Dimensions: Ball Screw Drive

LEFS16

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 2 mm or more. (Recommended height 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table. Note 3) Position after return to origin.
Note 4) The number in brackets indicates when the direction of return to origin has changed.

Model		L	A	B	n	D	E
LEFS16 $\square \square-100 \square-\square \square \square \square \square$	216.5	106	180	4	-	-	
LEFS16 $\square \square-200 \square-\square \square \square \square \square$	316.5	206	280	6	2	200	
LEFS16 $\square \square-300 \square-\square \square \square \square \square$	406.5	306	380	8	3	300	
LEFS16 $\square \square-400 \square-\square \square \square \square \square$	516.4	406	480	10	4	400	

Motor right side parallel type: LEFS25R

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 3) Position after return to origin.
Note 4) The number in brackets indicates when the direction of return to origin has changed.

Model	L	A	B	n	D	E
	260.5	106	210	4	-	-
LEFS25 $\square \square-200 \square-\square \square \square \square \square ~$	360.5	206	310	6	2	240
LEFS25 $\square \square-300 \square-\square \square \square \square \square$	460.5	306	410	8	3	360
	560.5	406	510	8	3	360
LEFS25 \square-500 - - $\square \square \square \square$	660.5	506	610	10	4	480
LEFS25 $\square \square-600 \square-\square \square \square \square$	760.5	606	710	12	5	600

Dimensions: Ball Screw Drive

Motor right side parallel type: LEFS32R

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 3) Position after return to origin.
Note 4) The number in brackets indicates when the direction of return to origin has changed.

Model	(mm)					
	L	A	B	n	D	E
LEFS32 $\square \square$-100 \square - $\square \square \square \square \square$	295	106	230	4	-	-
LEFS32 $\square \square$-200 $\square-\square \square \square \square \square$	395	206	330	6	2	300
LEFS32 $\square \square$-300 $\square-\square \square \square \square \square$	495	306	430	6	2	300
LEFS32 $\square \square$-400 $\square-\square \square \square \square \square$	595	406	530	8	3	450
LEFS32 $\square \square$-500 $\square-\square \square \square \square \square$	695	506	630	10	4	600
LEFS32 $\square \square$-600 $\square-\square \square \square \square \square$	795	606	730	10	4	600
LEFS32 $\square \square$-700 $\square-\square \square \square \square \square$	895	706	830	12	5	750
LEFS32 $\square \square$-800 $\square-\square \square \square \square \square$	995	806	930	14	6	900

Series LEFS

Dimensions: Ball Screw Drive
Motor right side parallel type: LEFS40R

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 3) Position after return to origin.
Note 4) The number in brackets indicates when the direction of return to origin has changed.

Model	L	A	B	n	D	E
LEFS40 $\square \square$-200- $\square \square \square \square \square$	453.4	206	378	6	2	300
LEFS40 $\square \square$-300- $\square \square \square \square \square$	553.4	306	478	6	2	300
LEFS40 $\square \square$-400- $\square \square \square \square \square$	653.4	406	578	8	3	450
LEFS40 $\square \square-500-\square \square \square \square \square$	753.4	506	678	10	4	600
LEFS40 $\square \square-600-\square \square \square \square \square$	853.4	606	778	10	4	600
LEFS40 $\square \square$-700- $\square \square \square \square \square$	953.4	706	876	12	5	750
LEFS40 $\square \square$-800- $\square \square \square \square \square$	1053.4	806	976	14	6	900
LEFS40 $\square \square$-900- $\square \square \square \square \square$	1153.4	906	1078	14	6	900
LEFS40 $\square \square$-1000- $\square \square \square \square \square$	1253.4	1006	1178	16	7	1050

Selection Procedure

Selection Example

Operating conditions

- Workpiece mass: $45[\mathrm{~kg}]$
- Speed: $300[\mathrm{~mm} / \mathrm{s}]$
- Acceleration/Deceleration: $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$
- Stroke: 200 [mm]
- Mounting orientation: Horizontal upward

Check the work load-speed. <Speed-Work load graph> (Page 17)
Select the target model based on the workpiece mass and speed with reference to the <Speed-Work load graph>.
Selection example) LEFS40RS4B-200 is temporarily selected based on the graph shown on the right side.

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method.

Cycle time:

T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

- T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

- T2: Constant speed time can be found from the following equation.
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{s}]$
- T4: Settling time varies depending on the conditions such as motor types, load and in positioning of the step data. Therefore, please calculate the settling time with reference to the following value.

$$
\mathrm{T} 4=0.05[\mathrm{~s}]
$$

Step 3 Check the guide moment.

Based on the above calculation result, the LEFS40RS4B-200 is selected.

Calculation example)
T1 to T4 can be calculated as follows.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}]$,
$\mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}$
$=\frac{200-0.5 \cdot 300 \cdot(0.1+0.1)}{300}$
$=0.57[\mathrm{~s}]$
$\mathrm{T} 4=0.05[\mathrm{~s}]$

Therefore, the cycle time can be obtained as follows.
$T=T 1+T 2+T 3+T 4$
$=0.1+0.57+0.1+0.05$
$=0.82$ [s$]$

<Speed-Work load graph>
(LEFS40)

L : Stroke [mm] $\cdots \cdots \cdots \cdots \cdots$......... (Operating condition)
V : Speed $[\mathrm{mm} / \mathrm{s}] \cdots \cdots \cdots \cdots$ (Operating condition)
a1: Acceleration [mm/s ${ }^{2}$] \cdots (Operating condition)
a 2 : Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is
operating at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop

T4: Settling time [s]
Time until in position is completed

Series LEFS

Speed-Work Load Graph (Guide)
LEFS25/Ball Screw Drive
$(1 \mathrm{~kg}=2.2 \mathrm{lb})$

Horizontal

Vertical

LEFS32/Ball Screw Drive

Vertical

LEFS40/Ball Screw Drive

Horizontal

Required conditions for "Regeneration option"

* Regeneration option required when using product above "Regeneration" line in graph. (Order separately)
[How to read the graph]
Required conditions change depending on the operating conditions.
Regeneration (50%): Duty ratio 50% or more
Regeneration (100\%): Duty ratio 100\%

Vertical

"Regeneration Option" Models

Size	Model
LEFS25 \square	LEC-MR-RB-032
LEFS32 \square	LEC-MR-RB-032
LEFS40 \square	LEC-MR-RB-032

Allowable Stroke Speed

Model	AC servo	Lead		Stroke [mm]									
		Symbol	[mm]	Up to 100	Up to 200	Up to 300	Up to 400	Up to 500	Up to 600	Up to 700	Up to 800	Up to 900	Up to 1000
LEFS25	$100 \mathrm{~W} / \square 40$	A	12	900				720	540	-	-	-	-
		B	6	450				360	270	-	-	-	-
		(Motor rotation speed)		(4500 rpm)				(3650 rpm)	(2700 rpm)	-	-	-	-
LEFS32	200 W / $\square 60$	A	16	1000	1000	1000	1000	1000	800	620	500	-	-
		B	8	500	500	500	500	500	400	310	250	-	-
		(Motor rotation speed)		(3750 rpm)					(3000 rpm)	(2325 prm)	(1875 rpm)	-	-
LEFS40	$400 \mathrm{~W} / \square 60$	A	20	-			1000			940	760	620	520
		B	10	-	500					470	380	310	260
		(Motor rotation speed)		-	(3000 rpm)					(2820 rpm)	(2280 rpm)	(1860 rpm)	(1560rpm)

LEFS25S \square A

LEFS25S $\square B$

LEFS25/Ball Screw Drive: Vertical

LEFS25S \square A

LEFS25S \square B

LEFS32/Ball Screw Drive: Horizontal

LEFS32S \square A

LEFS32S \square B

LEFS32/Ball Screw Drive: Vertical

LEFS32S \square A

LEFS32S $\square B$

Series LEFS

Work Load-Acceleration/Deceleration Graph (Guide)

LEFS40/Ball Screw Drive: Horizontal

LEFS40S $\square A$

LEFS40S \square B

LEFS40/Ball Screw Drive: Vertical

LEFS40S \square A

LEFS40S $\square B$

Series LEFS

Table Accuracy

Model	Traveling parallelism [mm] (Every 300 mm)	
	(1) C side traveling parallelism to A	(2) D side traveling parallelism to B
LEFS25	0.05	0.03
LEFS32	0.05	0.03
LEFS40	0.05	0.03

Note) Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)

Note 1) This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table. Note 2) Please confirm the clearance and play of the guide separately.

Electric Actuator/Slider Type Motor Parallel Type Ac Sevo Moor

Series LEFS

LEFS25, 32, 40
How to Order

1 Size
25
32
40

Motor type

Symbol	Type	Output (W)	Actuator size	Compatible drivers
S2*	AC servo motor (Incremental encoder)	100	25	LECSAD-S1
S3		200	32	LECSAD-S3
S4		400	40	LECSA2-S4
S6*	AC servo motor (Absolute encoder)	100	25	LECSBD-S5 LECSCD-S5 LECSSD-S5
S7		200	32	$\begin{aligned} & \text { LECSBD-S7 } \\ & \text { LECSCD-S7 } \\ & \text { LECSS■-S7 } \end{aligned}$
S8		400	40	LECSB2-S8 LECSC2-S8 LECSS2-S8

* For motor type S2 and S6, the compatible driver part number suffixes are S1 and S5 respectively.

(9) Driver type

	Compatible drivers	Power supply voltage (V)	Size		
			25	32	40
Nil	Without driver	-	-	-	-
A1	LECSA1-S \square	100 to 120	-	\bigcirc	
A2	LECSA2-S \square	200 to 230	-	-	
B1	LECSB1-S \square	100 to 120	\bigcirc	-	
B2	LECSB2-S \square	200 to 230	\bigcirc	-	-
C1	LECSC1-S \square	100 to 120	\bigcirc	-	
C2	LECSC2-S \square	200 to 230	-	-	-
S1	LECSS1-S \square	100 to 120	-	-	
S2	LECSS2-S \square	200 to 230	-	-	-

* When the driver type is selected, the cable is included. Select cable type and cable length.
Example) S2S2: Standard cable (2 m) + Driver (LECSS2)
S2: Standard cable (2 m)
Nil : Without cable and driver

10 I/O connector

Nil	Without connector
\mathbf{H}	With connector

4 Lead [mm]
Symbol LEFS25 LEFS32 LEFS40

Symbol	LEFS25	LEFS32	LEFS40
A	12	16	20
B	6	8	10

5 Stroke [mm]

100	100
to	to
1000	1000
	Refer to the applicable stroke tab
7 Cable type Note 1) Note 2)	
Nil	Without cable
S	Standard cable
R	Robotic cable (Flexible cable)

Note 1) The motor and encoder cables are included. (The lock cable is also included when the motor with lock option is selected.)
Note 2) Standard cable entry direction is "(B) Counter axis side".

* Strokes are manufacturable in 1 mm increments. Refer to the manufacturable stroke range. However, strokes other than those shown above are produced as special orders. Consult with SMC for lead times and prices.

Compatible Drivers

	Pulse input type/ Positioning type	Pulse input type	CC-Link direct input type	SSCNETIII type
Driver type				

Specifications

LEFS25，32， 40 AC Servo Motor

Model				LEFS25S ${ }_{6}^{2}$		LEFS32S ${ }_{7}$		LEFS40S ${ }_{8}^{4}$	
	Stroke［mm］${ }^{\text {Note 1）}}$			$\begin{gathered} 100,200,300,400 \\ 500,600 \end{gathered}$		$\begin{aligned} & 100,200,300,400 \\ & 500,600,700,800 \end{aligned}$		$200,300,400,500$$600,700,800,900$1000	
	Work load［kg］${ }^{\text {Note 2）}}$		Horizontal	20	20	40	45	50	60
			Vertical	8	15	10	20	15	30
	Max．speed ${ }^{\text {Note 3）}}$ ［mm／s］	Stroke range	Up to 400	900	450	1000	500	1000	500
			401 to 500	720	360	1000	500	1000	500
$\stackrel{0}{0}$			501 to 600	540	270	800	400	1000	500
			601 to 700	－	－	620	310	940	470
若			701 to 800	－	－	500	250	760	380
曾			801 to 900	－	－	－	－	620	310
"̀			901 to 1000	－	－	－	－	520	260
$\begin{aligned} & \text { 苞 } \end{aligned}$	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］			20，000（Refer to page 17 for limit according to work load and duty ratio．）					
$\stackrel{\rightharpoonup}{4}$	Positioning repeatability［mm］			± 0.02					

4	repeatability［mm］		± 0.02					
	Lead［mm］		12	6	16	8	20	10
	Impact／Vibration resistance［m／s ${ }^{2}$ ］${ }^{\text {Note 4）}}$		50／20					
	Actuation type		Ball screw					
	Guide type		Linear guide					
	Operating temperature range		41 to $104^{\circ} \mathrm{F}$（ 5 to $40^{\circ} \mathrm{C}$ ）					
	Operating humidity range［\％RH］		90 or less（No condensation）					
	Motor output／Size		$100 \mathrm{~W} / \square 40$		200 W／$\square 60$		400 W／$\square 60$	
0	Motor type		AC servo motor（100／200 VAC）					
으응	Encoder		Motor type S2，S3，S4：Incremental 17－bit encoder（Resolution： 131072 p／rev） Motor type S6，S7，S8：Absolute 18－bit encoder（Resolution： $262144 \mathrm{p} / \mathrm{rev}$ ）					
	$\text { Power consumption [W] }{ }^{\text {Note 5) }}$	Horizontal	45		65		210	
$\frac{\square}{0}$		Vertical	145		175		230	
足	Standby power consumption when operating［W］${ }^{\text {Note 6）}}$	Horizontal	2		2		2	
$\frac{\mathbf{0}}{\mathbf{\omega}}$		Vertical	8		8		18	
	Max．instantaneous power consumption［W］${ }^{\text {Note 7）}}$		445		725		1275	
	Type ${ }^{\text {Note 8）}}$		Non－magnetizing lock					
	Holding force Ibf［N］		29.4 ［131］	57.3 ［255］	44.3 ［197］	86.8 ［385］	74.2 ［330］	148 ［660］
	Power consumption［W］at $68^{\circ} \mathrm{F}\left(\mathbf{2 0}{ }^{\circ} \mathrm{C}\right)$ Note 9）		6.3		7.9		7.9	
	Rated voltage［V］		24 VDC ${ }_{-10 \%}^{0}$					

Note 1）Consult with SMC for non－standard strokes as they are produced as special orders
Note 2）For details，refer to＂Speed－Work Load Graph（Guide）＂on page 17.
Note 3）The allowable speed changes according to the stroke．
Note 4）Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and aperpendicular direction to the lead screw．
（Test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 5）The power consumption（including the driver）is for when the actuator is operating．
Note 6）The standby power consumption when operating（including the driver）is for when the actuator is stopped in the set position during the operation．
Note 7）The maximum instantaneous power consumption（including the driver）is for when the actuator is operating．
Note 8）Only when motor option＂With lock＂is selected．
Note 9）For an actuator with lock，add the power consumption for the lock．
Weight

Model	LEFS25						
Stroke［mm］	100	200	300	400	500	600	
Product weight［kg］	1.79	2.07	2.35	2.63	2.91	3.19	
Additional weight with lock［kg］	0.29						

Model	LEFS32							
Stroke［mm］	100	200	300	400	500	600	700	800
Product weight $[k g]$	3.25	3.65	4.05	4.45	4.85	5.25	5.65	6.05
Additional weight with lock［kg］	0.64							

Model	LEFS40								
Stroke［mm］	200	300	400	500	600	700	800	900	1000
Product weight［kg］	5.15	5.71	6.27	6.83	7.39	7.95	8.51	9.07	9.63
Additional weight with lock［kg］	0.61								

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum all oy	Anodized
2	Rail guide	-	
3	Ball scr ew shaft	-	
4	Ball scr ew nut	-	
5	Table	Aluminum all oy	Anodized
6	Blanking plate	Aluminum all oy	Anodized
7	Seal band stopper	Synthetic resin	
8	Housing A	Aluminum die-casted	Coating
9	Housing B	Aluminum die-casted	Coating
10	Bearing stopper	Aluminum all oy	
11	Return plate	Aluminum all oy	Coating
12	Pulley	Aluminum alloy	
13	Pulley	Aluminum all oy	
14	Timing belt	-	
15	Cover plate	Aluminum all oy	Coating

No.	Description	Material	Note
$\mathbf{1 7}$	Motor (Absolute encoder)		
	Motor (Incremental encoder)		
	Motor adapter	Aluminum all oy	Anodized
$\mathbf{1 9}$	Band stopper	Stainless steel	
$\mathbf{2 0}$	Dust seal band	Stainless steel	
$\mathbf{2 1}$	Bearing	-	
22	Bearing	-	

Series LEFS

Dimensions: Ball Screw Drive
Motor right side parallel type: LEFS25R

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more.
(Recommended height 5 mm)
Note 2) The Z phase first detecting position from the stroke end of the motor side. Consult with SMC for adjusting the Z phase detecting position at the stroke end of the end side.

Dimensions: Ball Screw Drive

Motor right side parallel type: LEFS32R

Model	L	A	B	n	D	E
LEFS32 \square S $\square \square$-100 $\square-\square \square \square \square$	295	106	230	4	-	-
LEFS32 \square S $\square \square$-200 $\square-\square \square \square \square$	395	206	330	6	2	300
LEFS32 \square S $\square \square$-300 $\square-\square \square \square \square$	495	306	430	6	2	300
LEFS32 \square S $\square \square$-400 $\square-\square \square \square \square$	595	406	530	8	3	450
LEFS32 \square S $\square \square$-500 $\square-\square \square \square \square$	695	506	630	10	4	600
LEFS32 \square S $\square \square$-600 $\square-\square \square \square \square$	795	606	730	10	4	600
LEFS32 \square S $\square \square$-700 $\square-\square \square \square \square$	895	706	830	12	5	750
LEFS32 \square S $\square \square$-800 $\square-\square \square \square \square$	995	806	930	14	6	900

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more.
(Recommended height 5 mm)
Note 2) The Z phase first detecting position from the stroke end of the motor side. Consult with SMC for adjusting the Z phase detecting position at the stroke end of the end side.

Dimensions: Ball Screw Drive

Motor right side parallel type: LEFS40R

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)
Note 2) The Z phase first detecting position from the stroke end of the motor side. Consult with SMC for adjusting the Z phase detecting position at the stroke end of the end side.

Model	L	A	B	n	D	E
LEFS40 \square S $\square \square$-200- $\square \square \square \square \square$	453.4	206	378	6	2	300
LEFS40 \square S $\square \square$-300- $\square \square \square \square \square$	553.4	306	478	6	2	300
LEFS40 \square S $\square \square$-400- $\square \square \square \square \square$	653.4	406	578	8	3	450
LEFS40 \square S $\square \square$-500- $\square \square \square \square \square$	753.4	506	678	10	4	600
LEFS40 \square S $\square \square$-600- $\square \square \square \square \square$	853.4	606	778	10	4	600
LEFS40 \square S $\square \square$-700- $\square \square \square \square \square$	953.4	706	878	12	5	750
LEFS40 \square S $\square \square-800-\square \square \square \square \square$	1053.4	806	978	14	6	900
LEFS40 \square S $\square \square$-900- $\square \square \square \square \square$	1153.4	906	1078	14	6	900
LEFS40 \square S $\square \square$-1000- $\square \square \square \square \square$	1253.4	1006	1178	16	7	1050

10100 SMC Blvd., Noblesville, IN 46060

AC Servo Motor Driver

- Applicable Fieldbus protocol:

(High-speed optical communication, max. bidirectional communication speed: 150 Mbps)
- Bidirectional communication speed: 3 times

- SSCNET III/H and SSCNET III products are compatible.

SSCNET\#/H compatible products can be added to existing SSCNET\# systems for system expansion.
Reassembly of the system (new installation of master PLC) is not required.

* Note that the communication speed is that of SSCNET\# (50 Mbps).

■Communication speed: 50 Mbps
SSCNET\#/H compatible controllers SSCNET\# compatible controllers

Existing model
LECSS-S

- Improved noise resistance - STO (Safe Torque Off) safety function available - Control encoder: Absolute 22-bit encoder (Resolution: 4194304 p prev)

Compatible Actuators

Slider Type		
Ball screw drive Series LEFS		
Clean room compatible		
Secondary battery compatible		
Series LEFS		
Size	Max. work load (kg)	$\begin{aligned} & \text { Stroke } \\ & (\mathrm{mm}) \end{aligned}$
25	20	Up to 600
32	45	Up to 800
40	60	Up to 1000

High Rigidity Slider Type

Rod Type
Basic type Series LEY
Secondary battery compatible DustDrip proof (IP65) specification Series LEY Size Pushing force Ibf (N) $\mathbf{2 5}$ Stroke (mm) $\mathbf{3 2}$ $132(585)$ $\mathbf{6 3}$ $752(334)$ Up to 400

In-line motor type Series LEY \square D			Guide rod type Series LEYG		
Secondary battery compatible					
DustDrip proof (IP65) specification					
			Series LEYG		
Size	Pushing force	Stroke			
25	Ibf (N)	(mp to 400	Size	Pushing force lbf (N)	Stroke (mm)
32	165 (736)	Up to 500	25	109 (485)	
63	429 (1910)	Up to 800	32	132 (588)	Up to 300

Guide rod type/ In-line motor type Series LEYG \square D

System Construction

There are changes in the How to Order. Refer to the WEB catalog or the Electric Actuators catalog (CAT.E102) for other details.

How to Order

2 Motor mounting position

Nil	In-line
\mathbf{R}	Right side parallel
\mathbf{L}	Left side parallel

(3) Motor type *1

Symbol	Type	Output [W]	Actuator size	Compatible driver
T6	AC servo motor (Absolute encoder)	100	25	LECSS2-T5
T7		200	32	LECSS2-T7
T8		400	40	LECSS2-T8

(4) Lead [mm]

Symbol	LEFS25	LEFS32	LEFS40
H	20	24	30
A	12	16	20
B	6	8	10

9	Driver type $* 6$	
	Compatible driver	Power supply voltage $[\mathrm{V}]$
$\mathbf{N i I}$	Without driver	-
$\mathbf{S 2}$	LECSS2-TD	200 to 240

*6 When the driver type is selected,
the cable is included. Select cable type and cable length.
Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
Nil : Without cable and driver

6 Motor option

Nil	Without option
B	With lock

(10) I/O connector

Nil	Without connector
\mathbf{H}	With connector

8 Cable length [m] $* 5, * 6$

Nil	Without cable
$\mathbf{2}$	2
$\mathbf{5}$	5
\mathbf{A}	10

*5 The length of the encoder, motor and lock cables are the same.
*1 For motor type T6, the compatible driver part number suffix is T5.
5 Stroke $[\mathrm{mm}]^{* 2}$

$\mathbf{5 0}$	50
to	to
$\mathbf{1 0 0 0}$	1000

*2 Refer to the applicable stroke table.
7 Cable type $* 4, * 6$

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

*4 The motor and encoder cables are included. (The lock cable is also included when the motor with lock option is selected.)

Applicable Stroke Table *3
Standard

	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	Manufacturable stroke range [mm]
LEFS25	\bigcirc	\bigcirc	-	\bigcirc	-	-	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	50 to 600
LEFS32	\bigcirc	-	-	-	-	50 to 800															
LEFS40	-	-	\bigcirc	150 to 1000																	

*3 Please consult with SMC for non-standard strokes as they are produced as special orders.
Compatible Driver

Driver type	SSCNETII/H type
Series	LECSS-T
Applicable network	SSCNET\#/H
Control encoder	Absolute 22-bit encoder
Communication function	USB communication
Power supply voltage (V)	200 to 240 VAC (50/60 Hz)
Reference page	Page 21

Electric Actuator/Slider Type Belt Drive

There are changes in the How to Order. Refer to the WEB catalog or the Electric Actuators catalog (CAT.E102) for other details.

How to Order

(1) Size	
25	
32	
40	
2 Motor mounting position	
Nil	Top mounting
U	Bottom mounting

* For motor type T 6 , the compatible driver part number suffix is T 5 .

* Refer to the applicable stroke table.

Cable type *1, *2

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

*1 The motor and encoder
cables are included. (The lock cable is also included when the motor with lock option is selected.)
*2 Standard cable entry direction is "(A) Axis side". (Refer to page 24 for details.)
8 Cable length [m]

NiI	Without cable
$\mathbf{2}$	2
$\mathbf{5}$	5
\mathbf{A}	10

* The length of the encoder, motor and lock cables are the same.

(9) Driver type *

	Compatible driver	Power supply voltage [V]
Nil	Without driver	-
S2	LECSS2-T \square	200 to 240

10 I/O connector

NiI	Without connector
\mathbf{H}	With connector

* When the driver type is selected, the cable is included. Select cable type and cable length.
Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
Nil : Without cable and driver

Applicable Stroke Table *

$\begin{array}{r} \text { Stroke } \\ \text { Model } \end{array}$	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500	3000
LEFB25	-	-	-	-	-	-	-	-	O	-	\bigcirc	\bigcirc	-	\bigcirc	O	\bigcirc	O	-	-	-
LEFB32	\bullet	\bigcirc	-	\bigcirc	\bigcirc	\bullet	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bullet	\bullet	-							
LEFB40	-	\bullet	\bullet	\bullet	\bullet	\bullet	-	\bullet	\bigcirc	\bullet	\bigcirc	\bigcirc	\bullet	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bullet	\bullet	\bullet

* Please consult with SMC for strokes other than those shown above as they are produced as special orders.

Compatible Driver

Driver type	
	LECSS-T
Series	SSCNET\#/H
Applicable network	Absolute
Control encoder	22-bit encoder
Communication function	USB communication
Power supply voltage (V)	200 to 240 VAC (50/60 Hz)
Reference page	Page 21

There are changes in the How to Order. Refer to the WEB catalog or the Electric Actuators catalog (CAT.E102) for other details.

How to Order

Motor type *1

Symbol	Type	Output [W]	Actuator size	Compatible driver
T6	AC servo motor (Absolute encoder)	100	40	LECSS2-T5
T7	200	63	LECSS2-T7	

3) Lead [mm]

Symbol	LEJS40	LEJS63
H	24	30
A	16	20
B	8	10

*1 For motor type T6, the compatible driver part number suffix is T5.
Stroke [mm] *2

200	*2 Refer to the applicable
to	
1500	

6 Cable type $* 4, * 6$
Nil
S
W
Robothout cable cable (Flexible cable)

*4 The motor and encoder cables are included. (The lock cable is also included when the motor with lock option is selected.)
7 Cable length $[\mathrm{m}]{ }^{* 5, * 6}$

Nil	Without cable
$\mathbf{2}$	2
$\mathbf{5}$	5
\mathbf{A}	10

* 5 The length of the encoder, motor and lock cables are the same.

8 Driver type $* 6$		
Nil	Compatible driver	Power supply voltage $[\mathrm{V}]$
N2	Without driver	-
$\mathbf{S 2}$	LECSS2-T	200 to 240

*6 When the driver type is selected, the cable is included. Select cable type and cable length.
Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
Nil : Without cable and driver

Applicable Stroke Table *3
9 I/O connector

Nil	Without connector
H	With connector

Model (mm)	200	300	400	500	600	700	800	900	1000	1200	1500
LEJS40	\bullet	-									
LEJS63	-	\bullet									

*3 Please consult with SMC for non-standard strokes as they are produced as special orders.

Compatible Driver

Driver type	SSCNETIIIH type
Series	LECSS-T
Applicable network	SSCNET\#/H
Control encoder	Absolute 22-bit encoder
Communication function	USB communication
Power supply voltage (V)	200 to 240 VAC ($50 / 60 \mathrm{~Hz}$)
Reference page	Page 21

Electric Actuator/High Rigidity Slider Type

 Belt Drive AC Servo Motor
Series LEJB
 LEJB40, 63

Compatible Driver

Driver type	SSCNETM/H type
Series	LECSS-T
Applicable network	SSCNET\#/H
Control encoder	Absolute 22-bit encoder
Communication function	USB communication
Power supply voltage (V)	200 to 240 VAC ($50 / 60 \mathrm{~Hz}$)
Reference page	Page 21

How to Order

There are changes in the How to Order, force conversion graph, specifications, weight and dimensions. Refer to the WEB catalog or the Electric Actuators catalog (CAT.E102) for other details.

Secondary battery compatible Dust/Dip proof (IP65) speciication

Consult with SMC for details.

Motor mounting position

Nil	
R	Right mounting parallel
L	Left side parallel
D	In-line

(3) Motor type *

Symbol	Type	Output [W]	Actuator size	Compatible driver
T6	AC servo motor	100	25	LECSS2-T5
T7	Absolute encoder)	200	32	LECSS2-T7
T8		400	63	LECSS2-T8

* For motor type T6, the compatible driver part number suffix is T5.

Lead [mm]

Symbol	LEY25	LEY32 *1	LEY63
A	12	$16(20)$	20
B	6	$8(10)$	10
C	3	$4(5)$	5
L	-	-	$2.86 * 2$

*1 The values shown in () are the lead for top mounting, right/left side parallel types. (Equivalent lead which includes the pulley ratio [1.25:1])
*2 Only available for top mounting and right/left side parallel types. (Equivalent lead which includes the pulley ratio [4:7])

Motor option

Nil	Without option
B	With lock

* When "With lock" is selected for the top mounting and right/left side parallel types, the motor body will stick out of the end of the body for size 25 with strokes 30 or less. Check for interference with workpieces before selecting a model.

Rod end thread

Nil	Rod end female thread
\mathbf{M}	Rod end male thread (1 rod end nut is included.)

(5 Stroke [mm]

$\mathbf{3 0}$	30
to	to
800	800

* Refer to the applicable stroke table.

6 Dust/Drip proof (Only available for LEY63)
Symbol
LEY25/32

* When using the dust/drip proof (IP65), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water.
* The fitting and tubing should be provided separately by the customer.
Select [Applicable tubing O.D.: ø4 or more, Connection thread: Rc1/8].

Mounting *1

Symbol	Type	Motor mounting position	
		Top/Parallel	In-line
$\mathbf{N i l}$	Ends tapped (Standard) *2		-
\mathbf{U}	Body bottom tapped		-
\mathbf{L}	Foot		-
\mathbf{F}	Rod flange $* 2$	$* 4$	-
\mathbf{G}	Head flange *2	$* 5$	-
\mathbf{D}	Double clevis $* 3$	\bullet	-

*1 Mounting bracket is shipped together, (but not assembled).
*2 For horizontal cantilever mounting with the rod flange, head flange and ends tapped, use the actuator within the following stroke range. - LEY25: 200 or less • LEY32: 100 or less • LEY63: 400 or less
*3 For mounting with the double clevis, use the actuator within the following stroke range.

- LEY25: 200 or less • LEY32: 200 or less • LEY63: 300 or less
*4 Rod flange is not available for the LEY25 with strokes 30 and motor option "With lock".
*5 Head flange is not available for the LEY32/63.

Applicable Stroke Table

$\mathrm{Model}^{$ Stroke $(\mathrm{mm})$$}$	30	50	100	150	200	250	300	350	400	450	500	600	700	800	Manufacturable stroke range
LEY25	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-	-	-	15 to 400
LEY32	\bigcirc	-	\bigcirc	,	-	-	-	20 to 500							
LEY63	-	-	\bigcirc	-	-	\bigcirc	50 to 800								

[^0]

Motor mounting position: Top/Parallel

Motor mounting position: In-line

10 Cable type
Nil S Without cable
R

11 Cable length [m]

Nil	Without cable
2	2
5	5
\mathbf{A}	10

12 Driver type

Nil	Compatible driver	Power supply voltage (V)
S2	LECSSO2-T \square	-

13 I/O connector

Nil	Without connector
H	With connector

* When the driver type is selected, the cable is included. Select cable type and cable length. Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
Nil : Without cable and driver

Compatible Driver

Driver type	
Series	LECSS-T
Applicable network	SSCNET\#/H
Control encoder	Absolute
Communication function	USB communication
Power supply voltage (V)	200 to 240 VAC $(50 / 60 \mathrm{~Hz})$
Reference page	Page 21

Series LEY

Force Conversion Graph (Guide)

LEY25 \square T6 (Motor mounting position: Top/Parallel, In-line)

Torque limit/Command value [\%] Duty ratio [\%] Continuous pushing time [minute]

20 or less	100	-
24	$100(60)$	$-(1.5)$

* The values in () are for a closely-mounted driver.

LEY32 \square T7 (Motor mounting position: Top/Parallel)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
20 or less	100	-
24	$100(60)$	$-(1.5)$

* The values in () are for a closely-mounted driver.

LEY63 \square T8 (Motor mounting position: Top/Parallel, In-line)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
20 or less	100	-
24	$100(60)$	$-(1.5)$
32	$50(30)$	$1.5(0.5)$
40	$30(20)$	$0.5(0.16)$

[^1]
LEY32DT7 (Motor mounting position: In-line)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
20 or less	100	-
24	$100(60)$	$-(1.5)$

[^2]Specifications

Model				LEY25（Top／Parallel）／LEY25D（In－line）			LEY32（Top／Parallel）			LEY32D（In－line）		
Actuator specifications	Stroke［mm］${ }^{\text {Note 1）}}$			$\begin{gathered} 30,50,100,150,200,250, \\ 300,350,400 \end{gathered}$			$\begin{gathered} 30,50,100,150,200,250 \\ 300,350,400,450,500 \end{gathered}$			$\begin{gathered} 30,50,100,150,200,250, \\ 300,350,400,450,500 \\ \hline \end{gathered}$		
	Work load［kg］		Horizontal ${ }^{\text {Note 2）}}$	18	50	50	30	60	60	30	60	60
			Vertical	8	16	30	9	19	37	12	24	46
	Pushing force lbf［N］Note 3） （Set value： 12 to 24\％）			$\begin{gathered} 15 \text { to } 29 \\ {[65 \text { to } 131]} \end{gathered}$	$\left[\begin{array}{c} 28 \text { to } 57 \\ {[127 \text { to } 255]} \end{array}\right]$	$\begin{gathered} 54 \text { to } 109 \\ {[242 \text { to } 485]} \end{gathered}$	$\begin{gathered} 18 \text { to } 35 \\ {[79 \text { to } 157]} \end{gathered}$	$\begin{gathered} 35 \text { to } 69 \\ {[154 \text { to } 308]} \end{gathered}$	$\begin{gathered} 67 \text { to } 132 \\ {[294 \text { to } 588]} \end{gathered}$	$\begin{gathered} 22 \text { to } 44 \\ {[98 \text { to } 197]} \end{gathered}$	$\begin{gathered} 43 \text { to } 87 \\ {[192 \text { to } 385]} \end{gathered}$	$\begin{gathered} 83 \text { to } 165 \\ {[368 \text { to } 736]} \end{gathered}$
	Max．${ }^{\text {Note 4）}}$		Up to 300	900	450	225	1200	600	300	1000	500	250
	speed		305 to 400	600	300	150						
	［mm／s］		405 to 500		－		800	400	200	640	320	160
	Pushing speed［mm／s］${ }^{\text {Note 5）}}$			35 or less			30 or less			30 or less		
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］			5000			5000					
	Positioning repeatability［mm］			± 0.02			± 0.02					
	Lost motion［mm］Note 6）			0.1 or less								
	Lead［mm］（including pulley ratio）			12	6	3	20	10	5	16	8	4
	Impact／Vibration resistance［m／s²］${ }^{\text {Note } 7 \text { ）}}$			50／20			50／20					
	Actuation type			Ball screw＋Belt（LEY $]$／Ball screw（LEY $\square \mathrm{D}$ ）			Ball screw＋Belt［1．25：1］			Ball screw		
	Guide type			Sliding bushing（Piston rod）			Sliding bushing（Piston rod）					
	Operating temperature range			41 to $104^{\circ} \mathrm{F}$［ 5 to $40^{\circ} \mathrm{C}$ ］			41 to $104^{\circ} \mathrm{F}$［ 5 to $40^{\circ} \mathrm{C}$ ］					
	Operating humidity range［\％RH］			90 or less（No condensation）			90 or less（No condensation）					
	Required conditions for Note 8） ＂Regeneration option＂［kg］		Horizontal	8 or more	31 or more	Not required	15 or more	Not required	Not required	23 or more	Not required	Not required
			Vertical	3 or more	2 or more	2 or more	6 or more	7 or more	11 or more	6 or more	7 or more	12 or more
	Motor output／Size			$100 \mathrm{~W} / \square 40$			$200 \mathrm{~W} / \square 60$					
	Motor type			AC servo motor（200 VAC）			AC servo motor（200 VAC）					
$\underset{\sim}{\mathbb{E}}$	Encoder			Motor type T6，T7：Absolute 22－bit encoder（Resolution： $4194304 \mathrm{p} / \mathrm{rev}$ ）								
皆	Power consumption［W］Note 9）		Horizontal	45			析 65			65		
$\frac{0}{\infty}$			Vertical	145			175			175		
을	Standby power consumption when operating［W］Note 10）		Horizontal	2			2			2		
忘			Vertical	8			8			8		
	Max．instantaneous power consumption［W］${ }^{\text {Note 11）}}$			445			724			724		
	Type Note 12）			Non－magnetizing lock								
	Holding force Ibf［N］			29 ［131］	57 ［255］	109 ［485］	35 ［157］	69 ［308］	132 ［588］	44 ［197］	87 ［385］	165 ［736］
	Power consumption［W］at $68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$ Note 13）Rated voltage［V］			6.3			7.9			7.9		
							24 VDC ${ }_{-10 \%}^{0}$					
Note 1）Please consult with SMC for non－standard strokes as they are produced as special orders．							（Test was performed with the actuator in the initial state．） Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000					
	support the load．The actual work load changes according to the condition of the external guide．Please confirm using actual device．						Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．） Note 8）The work load conditions which require＂Regeneration option＂when operating at the					
	3）The force torque co on page	setting range（se trol mode，etc．Set	et values for the Set it with refer	driver）for the ence to＂Force C	pushing operatio Conversion Grap	on with the ph（Guide）＂	Note 8）The work load conditions which requir maximum speed（Duty ratio：100\％）． details and order numbers，refer to the Regeneration Option＂of Series LEY in			Order the regene WEB catalog o in the Electric Ac	ration option se or＂Required Con tuators catalog	parately．For nditions for （CAT．E102）．
Note 4）The allowable speed changes according to the stroke．							Note 9）The power consumption（including the driver）is for when the actuator is operating．					
Note 5）The allowable collision speed for the pushing operation with the torque control mode，etc．							Note 10）The standby power consumption when operating（including the driver）is for when the actuator is stopped in the set position during the operation．					
Note 6）A reference value for correcting an error in reciprocal operation． Note 7）Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．							Note 11）The maximum instantaneous power consumption（including the driver）is for when the actuator is operating． Note 12）Only when motor option＂With lock＂is selected．					
Weight							Note 13）For an actuator with lock，add the power consumption for the lock．					

Product Weight

SeriesStroke $[\mathrm{mm}]$		LEY25 \square（Motor mounting position：Top／Parallel）									LEY32 \square（Motor mounting position：Top／Parallel）										
		30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
	Absolute encoder	1.4	1.5	1.6	1.9	2.0	2.2	2.4	2.6	2.7	2.3	2.4	2.7	3.2	3.5	3.8	4.1	4.3	4.6	4.9	5.2
	Series	LEY25D \square（Motor mounting position：In－line）									LEY32D \square（Motor mounting position：In－line）										
	Stroke［mm］	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
흔	Absolute encoder	1.4	1.5	1.6	1.9	2.1	2.2	2.4	2.6	2.8	2.4	2.5	2.8	3.2	3.5	3.8	4.1	4.4	4.6	4.9	5.2

Additional Weight

Size		$\mathbf{2 5}$	$\mathbf{3 2}$
Lock	Absolute encoder	0.3	0.4
Rod end male thread	Male thread	0.03	0.03
	Nut	0.02	0.02
Foot（2 sets including mounting bolt）	0.08	0.14	
Rod flange（including mounting bolt）	0.17	0.20	
Head flange（including mounting bolt）			
Double clevis（including pin，retaining ring and mounting bolt）	0.16	0.22	

Specifications

Model				LEY63 \square（Top／Parallel）				LEY63D \square（ In－line）		
000000000000\vdots0000	Stroke［mm］${ }^{\text {Note 1）}}$			100，200，300，400，500，600，700， 800						
	Work load［kg］		tal Note 2）	40	70	80	200	40	70	80
			tical	19	38	72	115	19	38	72
				$\begin{gathered} 35 \text { to } 117 \\ {[156 \text { to } 521]} \end{gathered}$	$\begin{gathered} 68 \text { to } 228 \\ {[304 \text { to 1012] }} \end{gathered}$	$\begin{gathered} 129 \text { to } 429 \\ {[573 \text { to 1910] }} \end{gathered}$	$\begin{gathered} 225 \text { to } 752 \\ {[1003 \text { to } 3343]} \end{gathered}$	$\begin{gathered} 35 \text { to } 117 \\ {[156 \text { to } 521]} \end{gathered}$	$\begin{gathered} 68 \text { to } 228 \\ {[304 \text { to 1012] }} \end{gathered}$	$\begin{gathered} 129 \text { to } 429 \\ {[573 \text { to } 1910]} \end{gathered}$
	Note 4） Max．speed ［mm／s］	Stroke range	－ 500	1000	500	250	70	1000	500	250
			o 600	800	400	200		800	400	200
			o 700	600	300	150		600	300	150
			to 800	500	250	125		500	250	125
	Pushing speed［mm／s］${ }^{\text {Note 5）}}$			30 or less						
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］			5000			3000	5000		
	Positioning repeatability［mm］			± 0.02						
	Lost motion［mm］${ }^{\text {Note 6）}}$			0.1 or less						
	Screw lead［mm］（including pulley ratio）			20	10	5	5 （2．86）	20	10	5
	Impact／Vibration resistance［m／s ${ }^{\mathbf{2}}$ ］${ }^{\text {Note 7）}}$			50／20						
	Actuation type			Ball screw＋Belt			Ball screw＋Belt ［Pulley ratio 4：7］	Ball screw		
	Guide type			Sliding bushing（Piston rod）						
	Operating temperature range			41 to $104^{\circ} \mathrm{F}$（5 to $40^{\circ} \mathrm{C}$ ）						
	Operating humidity range［\％RH］			90 or less（No condensation）						
	Required conditions for Note 8） ＂Regeneration option＂［kg］		Horizontal	Not required						
			Vertical	2 or more	5 or more	12 or more	46 or more	2 or more	5 or more	12 or more
	Motor output／Size			$400 \mathrm{~W} / \square 60$						
$\stackrel{\overline{0}}{+1}$	Motor type			AC servo motor（200 VAC）						
İ른	Encoder			Motor type T8：Absolute 22－bit encoder（Resolution： $4194304 \mathrm{p} / \mathrm{rev}$ ）						
苍	Power consumption［W］Note 9）		Horizontal	210						
$\stackrel{0}{n}$			Vertical	230						
을	Standby power consumption when operating［W］Note 10）		Horizontal	2						
Z			Vertical	18						
	Max．instantaneous power consumption［W］${ }^{\text {Note 11）}}$			1275						
	Type Note 12）			Non－magnetizing lock						
	Holding force lbf［N］			70 ［313］	136 ［607］	258 ［1146］	451 ［2006］	70 ［313］	136 ［607］	258 ［1146］
	Power consumption［W］at $68^{\circ} \mathrm{F}\left(\mathbf{2 0}^{\circ} \mathrm{C}\right)^{\text {Note } 13)}$			7.9						
	Rated voltage［V］			$24 \mathrm{VDC}_{-10 \%}^{0}$						

Note 1）Please consult with SMC for non－standard strokes as they are produced as special orders．
Note 2）The maximum value of the horizontal work load．An external guide is necessary to support the load．The actual work load changes according to the condition of the external guide．Please confirm using actual device．
Note 3）The force setting range（set values for the driver）for the pushing operation with the torque control mode，etc．The pushing force and duty ratio change according to the set value．Set it with reference to＂Force Conversion Graph（Guide）＂on page 9.
Note 4）The allowable speed changes according to the stroke．
Note 5）The allowable collision speed for the pushing operation with the torque control mode，etc．
Note 6）A reference value for correcting an error in reciprocal operation．
Note 7）Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 8）The work load conditions which require＂Regeneration option＂when operating at the maximum speed（Duty ratio：100\％）． Order the regeneration option separately．For details and order numbers，refer to the WEB catalog or＂Required Conditions for Regeneration Option＂of Series LEY in the Electric Actuators catalog（CAT．E102）．
Note 9）The power consumption（including the driver）is for when the actuator is operating．
Note 10）The standby power consumption when operating（including the driver）is for when the actuator is stopped in the set position during the operation．
Note 11）The maximum instantaneous power consumption（including the driver）is for when the actuator is operating．
Note 12）Only when motor option＂With lock＂is selected．
Note 13）For an actuator with lock，add the power consumption for the lock．

Weight

Product Weight									
	Series	LEY63 \square（Motor mounting position：Top／Parallel）							
Stroke［mm］		100	200	300	400	500	600	700	800
$\begin{array}{\|l\|} \hline ⿳ 亠 丷 冖 ⿱ 丶 万 力 \end{array}$	Absolute encoder	5.4	6.6	8.3	9.4	10.5	12.2	13.4	14.5
Series		LEY63D $\square \square$（Motor mounting position：In－line）							
Stroke［mm］		100	200	300	400	500	600	700	800
	Absolute encoder	5.6	6.7	8.4	9.6	10.7	12.4	13.5	14.7

Additional Weight

Size		$[\mathrm{kg}]$
Lock	Absolute encoder	03
Rod end male thread	Male thread	0.4
	Nut	0.12
Foot（2 sets including mounting bolt）	0.26	
Rod flange（including mounting bolt）	0.51	
Double clevis（including pin， retaining ring and mounting bolt）	0.58	

Dimensions: Motor Top/Parallel

Note 1) Range within which the rod can move. Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod.
Note 2) The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.

Size	Stroke range (mm)	A	B	C	D	EH	EV	F	G	H	J	K	L	M	O_{1}
25	15 to 100	130.5	116	13	20	44	45.5	2	4	M8 x 1.25	24	17	14.5	34	M5 x 0.8
	105 to 400	155.5	141												
32	20 to 100	148.5	130	13	25	51	56.5	2	4	M8 x 1.25	31	22	18.5	40	M6 x 1.0
	105 to 500	178.5	160												
63	Up to 200	192.6	155.2	21	40	76	82	4	8	M16 x 2	44	36	37.4	60	M8 $\times 1.25$
	205 to 500	227.6	190.2												
	505 to 800	262.6	225.2												

Size	Stroke range (mm)	R	S	T	U	Y	V	Without lock			With lock		
								W	X	Z	W	X	Z
25	15 to 100	8	46	92	1	26.5	40	82.4	115.4	14.1	123	156	15.8
	105 to 400												
32	20 to 100	10	60	118	1	34	60	76.6	116.6	17.1	113.4	153.4	17.1
	105 to 500												
63	Up to 200	16	80	146	4	32.2	60	98.3	138.3	$\begin{gathered} 15.6 \\ (16.6) \end{gathered}$	135.1	175.1	$\begin{gathered} 15.6 \\ (16.6) \end{gathered}$
	205 to 500												
	505 to 800												

Motor left side parallel type: LEY32 L 63

25
 Motor right side parallel type: LEY32R
 63

Size	\mathbf{S}_{1}	\mathbf{T}_{2}	\mathbf{U}
$\mathbf{2 5}$	47	91	1
$\mathbf{3 2}$	61	117	1
$\mathbf{6 3}$	84	142	4

Note) When the motor is mounted on the left or right side in parallel, the groove for auto switch on the side to which the motor is mounted is hidden.

Series LEY

Size	Stroke range (mm)	C	D	EH	EV	F	G	H	J	K	L	M	O1	R	S
25	15 to 100	13	20	44	45.5	2	4	M8 $\times 1.25$	24	17	14.5	34	M5 x 0.8	8	45
	105 to 400														
32	20 to 100	13	25	51	56.5	2	4	M8 $\times 1.25$	31	22	18.5	40	M6 x 1.0	10	60
	105 to 500														
63	Up to 200	21	40	76	82	4	8	M16 x 2	44	36	37.4	60	M8 $\times 1.25$	16	78
	205 to 500														
	505 to 800														

Size	Stroke range (mm)	T	\mathbf{U}	B	V	Without lock			With lock		
						A	W	Z	A	W	Z
25	15 to 100	46.5	1.5	136.5	40	233.4	82.4	14.6	274	123	16.3
	105 to 400			161.5		258.4			299		
32	20 to 100	61	1	156	60	251.1	76.6	17.1	287.9	113.4	17.1
	105 to 500			186		281.1			317.9		
63	Up to 200	83	5	190.7	60	326.4	98.3	8.1	363.2	135.1	8.1
	205 to 500			225.7		361.4			398.2		
	505 to 800			260.7		396.4			433.2		

End male thread: LEY | 25 |
| :---: |
| 63 |

* Refer to the WEB catalog for details about the rod end nut and mounting bracket.
Note) Refer to the "Mounting" precautions on the WEB catalog when mounting end brackets such as knuckle joint or workpieces.

Size	B_{1}	C_{1}	H_{1}	$L_{1}{ }^{*}$	L2	MM
25	22	20.5	8	38	23.5	M14 $\times 1.5$
32	22	20.5	8	42.0	23.5	M14 $\times 1.5$
63	27	26	11	76.4	39	M18 $\times 1.5$

[^3]
Electric Actuator/Guide Rod Type

Series LEYG
LEYG25, 32

There are changes in the How to Order, force conversion graph, specifications, weight and dimensions. Refer to the WEB catalog or the Electric Actuators catalog (CAT.E102) for other details.

How to Order

Motor type *

Symbol	Type	Output $[W]$	Actuator size	Compatible driver
T6	AC servo motor (Absolute encoder)	100	25	LECSS2-T5
T7	200	32	LECSS2-T7	

* For motor type T6, the compatible driver part number suffix is T5.
(5) Lead [mm]

Symbol	LEYG25	LEYG32*
A	12	$16(20)$
B	6	$8(10)$
C	3	$4(5)$

* The values shown in () are the lead for top mounting type. (Equivalent lead which includes the pulley ratio [1.25:1])

Guide option

Nil	Without option
F	With grease retaining function

* Only available for sliding bearing.

(9) Cable type

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

7 Motor option

Nil	Without option
\mathbf{B}	With lock

* When "With lock" is selected for the top mounting type, the motor body will stick out of the end of the body for size 25 with strokes 30 or less. Check for interference with workpieces before selecting a model.

10 Cable length [m]

$\mathbf{N i l}$	Without cable
$\mathbf{2}$	2
$\mathbf{5}$	5
\mathbf{A}	10

Applicable Stroke Table
6 Stroke [mm]

$\mathbf{3 0}$	30
to	to
$\mathbf{3 0 0}$	300

* Refer to the applicable stroke table.
$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \text { Model } & \begin{array}{c}\text { Stroke } \\ (\mathrm{mm})\end{array} & 30 & 50 & 100 & 150 & 200 & 250 & 300 \\ \hline \text { LEYG25 } & \bullet & \bullet & \bullet & \bullet & \bullet & { }^{\text {Manufacturable }} \\ \text { stroke range }\end{array}\right]$

[^4]

(11) Driver type

	Compatible driver	Power supply voltage (V)
Nil	Without driver	-
S2	LECSS2-T \square	200 to 240

(12) I/O connector

Nil	Without connector
\mathbf{H}	With connector

* When the driver type is selected, the cable is included.

Select cable type and cable length.
Example)
S2S2 : Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
Nil : Without cable and driver

Use of auto switches for the guide rod type LEYG series
Insert the auto switch from the front side with rod (plate) sticking out.
For the parts hidden behind the guide attachment (Rod stick out side), the auto switch cannot be fixed. Consult with SMC when using auto switch on the rod stick out side.

Compatible Driver

Driver type	SSCNETIIIH type
Series	LECSS-T
Applicable network	SSCNET\#/H
Control encoder	Absolute 22-bit encoder
Communication function	USB communication
Power supply voltage (V)	200 to 240 VAC ($50 / 60 \mathrm{~Hz}$)
Reference page	Page 21

LEYG25 T6 (Motor mounting position: Top mounting, In-line)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
20 or less	100	-
24	$100(60)$	$-(1.5)$

* The values in () are for a closely-mounted driver.

LEYG32 \square T7 (Motor mounting position: Top mounting)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
20 or less	100	-
24	$100(60)$	$-(1.5)$

* The values in () are for a closely-mounted driver.

LEYG32DT7 (Motor mounting position: In-line)

* The values in () are for a closely-mounted driver.

Electric Actuator／Guide Rod Type Series LEYG

Specifications

Model			LEYG25는（Top mounting） LEYG25쓴（In－line）			LEYG32 ${ }^{\text {M }}$（Top mounting）			LEYG32 ${ }_{\text {L }} \mathrm{D}$（（n－line）			
Stroke［mm］${ }^{\text {Note 1）}}$			$\begin{gathered} 30,50,100,150 \\ 200,250,300 \end{gathered}$			$\begin{gathered} 30,50,100,150, \\ 200,250,300 \end{gathered}$			$\begin{gathered} 30,50,100,150 \\ 200,250,300 \end{gathered}$			
		Horizontal ${ }^{\text {Note } 21}$	18	50	50	30	60	60	30	60	60	
	Work load［kg］	Vertical	7	15	29	7	17	35	10	22	44	
	Pushing force lbf［ N$]^{\text {Note } 3)}$ （Set value： 12 to 24\％）		$\begin{gathered} 15 \text { to } 29 \\ {[65 \text { to } 131]} \end{gathered}$	$\left\lvert\, \begin{gathered} 28 \text { to } 57 \\ {[127 \text { to } 255]} \end{gathered}\right.$	$\left\|\begin{array}{c} 54 \text { to } 109 \\ {[242 \text { to } 485]} \end{array}\right\|$	$\begin{gathered} 18 \text { to } 35 \\ {[79 \text { to } 157]} \\ \hline \end{gathered}$	$\left\|\begin{array}{c} 35 \text { to } 69 \\ {[154 \text { to } 308]} \end{array}\right\|$	$] \begin{gathered} 66 \text { to } 132 \\ {[294 \text { to } 588]} \end{gathered}$	$\begin{gathered} 22 \text { to } 44 \\ {[98 \text { to } 197]} \end{gathered}$	$\left\|\begin{array}{c} 43 \text { to } 87 \\ {[192 \text { to } 385]} \end{array}\right\|$	$\begin{gathered} 83 \text { to } 165 \\ {[368 \text { to } 736]} \end{gathered}$	
$\stackrel{1}{+}$	Max．speed［mm／s］		900	450	225	1200	600	300	1000	500	250	
\％	Pushing speed［mm／s］${ }^{\text {Note 4）}}$		35 or less			30 or less			30 or less			
\％	Max．acceleration／deceleration［mm／s²］		5000			5000						
\％	Positioning repeatability［mm］			± 0.02		± 0.02						
	Lost motion［mm］${ }^{\text {Note } 5)}$		0.1 or less									
\％	Lead［mm］（including pulley ratio）		12	6	3	20	10	5	16	8	4	
$\stackrel{3}{3}$	Impact／Vibration resistance［ $\left.\mathrm{m} / \mathrm{s}^{2}\right]^{\text {Note } 6)}$		50／20			50／20						
8	Actuation type		Ball screw＋Belt［1：1］／Ball screw			Ball screw＋Belt［1：1．25］			Ball screw			
	Guide type		Sliding bearing（LEYGपM），Ball bushing bearing（LEYGロL）									
	Operating temperature range		41 to $104^{\circ} \mathrm{F}$（ 5 to $40^{\circ} \mathrm{C}$ ）			（ 41 to $104^{\circ} \mathrm{F}$（ 5 to $40^{\circ} \mathrm{C}$ ）						
	Operating humidity range［\％RH］		90 or less（No condensation）			90 or less（No condensation）						
	Required conditions for ${ }^{\text {Notei } 71}$	Horizontal	8 or more	31 or more	Not required	15 or more	Not required	Not required	23 or more	Not required	Not required	
	＂Regeneration option＂［kg］	Vertical	2 or more	1 or more	1 or more	4 or more	5 or more	9 or more	4 or more	5 or more	9 or more	
$\stackrel{n}{\sim}$	Motor output／Size		$100 \mathrm{~W} / \square 40$			200 W／$\square 60$						
윤	Motor type		AC servo motor（200 VAC）			AC servo motor（200 VAC）						
$\stackrel{\text { ¢ }}{0}$	Encoder		Motor type T6，T7：Absolute 22－bit encoder（Resolution： $4194304 \mathrm{p} / \mathrm{rev}$ ）									
－	Power consumption［W］${ }^{\text {Note } 8)}$	Horizontal	45			65			65			
\％		Vertical	145			175			175			
\bigcirc	Standby power consumption when operating［W］Note 9）	Horizontal	2			2			2			
\％		Vertical	8			8			8			
	Max．instantaneous power consumption（W］${ }^{\text {Noid }}$（0）		445			724			724			
			Non－magnetizing lock			Non－magnetizing lock						
			29 ［131］	57 ［255］	109 ［485］	35 ［157］	69 ［308］	132 ［588］	44 ［197］	87 ［385］	165 ［736］	
			6.3			7.9			7.9			
${ }_{0}^{0}$ Rated voltage［V］						$24 \mathrm{VDC}_{-10 \%}^{0}$						
Note 1）Please consult with SMC for non－standard strokes as they are produced as special orders． Note 2）The maximum value of the horizontal work load．An external guide is necessary to support the load．The actual work load changes according to the condition of the external guide． Please confirm using actual device．						was performed in both an axial direction and a perpendicular direction to the lead screw． （Test was performed with the actuator in the initial state．） Note 7）The work load conditions which require＂Regeneration option＂when operating at the maximum speed（Duty ratio： 100% ）．Order the regeneration option separately．For details and order numbers，refer to the WEB catalog or＂Required Conditions for Regeneration Option＂of Series LEYG in the Electric Actuators catalog（CAT．E102）．						
	te 3）The force setting range（set values for the driver）for the pushing operation with the torque control mode，etc．Set it with reference to＂Force Conversion Graph＂on page 17.											
	4）The allowable collision speed for the pushing operation with the torque control mode，etc．					Note 8）The power consumption（including the driver）is for when the actuator is operating． Note 9）The standby power consumption when operating（including the driver）is for when the						
	te）A reference value for correcting an error in reciprocal operation． 6）Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．） Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test											
						actuator is stopped in the set position during the operation． Note 10）The maximum instantaneous power consumption（including the driver）is for when the actuator is operating． Note 11）Only when motor option＂With lock＂is selected						
Weight		Note 12）For an actuator with lock，add the power consumption for the lock．										

Weight：Top Mounting Type

	Series	LEYG25M							LEYG32M						
	Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{0} \frac{0}{2} \\ \stackrel{\circ}{2} \\ \hline \end{array}$	Absolute encoder	1.8	2.0	2.4	2.8	3.1	3.5	3.7	3.2	3.4	4.0	4.7	5.3	5.7	6.2
	Series	LEYG25L							LEYG32L						
	Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
흘	Absolute encoder	1.9	2.1	2.3	2.7	3.0	3.3	3.6	3.2	3.4	3.8	4.6	5.0	5.5	5.9

Weight：In－line Motor Type

	Series	LEYG25MD							LEYG32MD						
	Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{\circ} \mathrm{O} \\ \text { io 롤 } \\ \hline \end{array}$	Absolute encoder	1.9	2.1	2.4	2.8	3.1	3.5	3.7	3.2	3.4	4.0	4.7	5.3	5.8	6.2
	Series	LEYG25LD							LEYG32LD						
	Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
	Absolute encoder	1.9	2.1	2.3	2.8	3.0	3.3	3.6	3.2	3.4	3.8	4.6	5.0	5.5	5.9

Additional Weight	［kg］		
	Size	$\mathbf{2 5}$	$\mathbf{3 2}$
Lock	Absolute encoder	0.3	0.7

Series LEYG

LEYG \square M, LEYG \square L Common

LEYG \square M, LEYG \square L Common

Size	Stroke range (mm)	B	C	DA		EB	EH	EV	FA	FB	FC	G	GA	H	J	K			NC											
25	15 to 35	136.5	50	20	85		103	52.3	11	14.5	12.5	5.4	40.3	53.3	30.8	29	M5 x 0.8		6.5											
	40 to 100		67.5																											
	105 to 120	161.5																												
	125 to 200		84.5																											
	205 to 300		102																											
32	20 to 35	156	55	25	101		123	63.8	12	18.5	16.5	5.4	50.3	68.3	38.3	30	M6 x 1.0		8.5											
	40 to 100		68																											
	105 to 120	186																												
	125 to 200		85																											
	205 to 300		102																											
Size	Stroke range (mm)	OA		OB	P		Q	S	T	U	V	WA	WB	WC	X	XA	XB	YD	Z											
25	15 to 35	M6 x 1.0		12	80		18	30	95	6.8	40	35	26	70	54	4	5	47	8.5											
	40 to 100						33.5																							
	105 to 120			50			95																							
	125 to 200			70			43.5																							
	205 to 300			85			51																							
32	20 to 35	M6 x 1.0			12				28	40	117	7.3	60	40	28.5	75	64	5	6	60	8.5									
	40 to 100			50										33.5																
	105 to 120						105																							
	125 to 200							70						43.5																
	205 to 300							85						51																
	Stroke range	Without lock				With lock																								
Size	(mm)	A	VB			C		A	VB	VC																				
	15 to 100	244.4	82.4	14.6		28		123	16.3																					
25	105 to 300	269.4				31																								
32	15 to 100	263.1	76.6	17.1			9.9	113.4	17.1	-																				
	105 to 300	293.1					9.9																							

Dimensions
LECSS2-T \square

Connector name	Description
CN1A	Front axis connector for SSCNET IIIH
CN1B	Rear axis connector for SSCNET IIIH
CN2	Encoder connector
CN3	I/O signal connector
CN4	Battery connector
CN5	USB communication connector
CN8	STO input signal connector
CNP1	Main circuit power supply connector
CNP2	Control circuit power supply connector
CNP3	Servo motor power connector

Dimensions (mm)				
Model	W	L	D	M
LECSS2-T5		135	4	
LECSS2-T7	40	135	4	6
LECSS2-T8		170	5	

ac Servo Motor Driver Series $\angle E C S S=7$

Specifications

Model	LECSS2-T5	LECSS2-T7	LECSS2-T8
Compatible motor capacity [W]	100	200	400
Compatible encoder	Absolute 22-bit encoder (Resolution: $4194304 \mathrm{p} / \mathrm{rev}$)		
Main \quad Power voltage [V]	Three phase 200 to 240 VAC ($50 / 60 \mathrm{~Hz}$), Single phase 200 to 240 VAC ($50 / 60 \mathrm{~Hz}$)		
power Allowable voltage fluctuation [V]	Three phase 170 to 264 VAC (50/60 Hz), Single phase 170 to 264 VAC ($50 / 60 \mathrm{~Hz}$)		
supply ${ }^{\text {a }}$ R Rated current [A]	0.9	1.5	2.6
Control ${ }^{\text {Control power supply voltage [V] }}$	Single phase 200 to 240 VAC (50/60 Hz)		
power ${ }^{\text {a }}$ Allowable voltage fluctuation [V]	Single phase 170 to 264 VAC		
supply ${ }^{\text {a }}$ Rated current [A]	0.2		
Applicable Fieldbus protocol	SSCNET\#/H (High-speed optical communication)		
Communication function	USB communication		
Operating temperature range	32 to $131^{\circ} \mathrm{F}\left(0\right.$ to $\left.55^{\circ} \mathrm{C}\right)$ (No freezing)		
Operating humidity range [\%RH]	90 or less (No condensation)		
Storage temperature range	-4 to $149^{\circ} \mathrm{F}$ (-20 to $65^{\circ} \mathrm{C}$) (No freezing)		
Storage humidity range [\%RH]	90 or less (No condensation)		
Insulation resistance [M ${ }^{\text {] }}$	Between the housing and SG: 10 (500 VDC)		
Weight [g]	800		1000

Power Supply Wiring Example: LECSS2-T \square

For single phase 200 VAC

For three phase 200 VAC

Note) For single phase 200 to 240 VAC, power supply should be connected to L1 and L3 terminals, with nothing connected to L2.

Main Circuit Power Supply Connector: CNP1			Accessory
Terminalame	Function		

Control Circuit Power Supply Connector: CNP2 *Accessory

Terminal name	Function	Details
$\mathrm{P}(+)$	Regeneration option	Connect between $\mathrm{P}(+)$ and D . (Connected at time of shipping.) * If regeneration option is required for "Model Selection", connect to this terminal.
C		
D		
L11	Control circuit power supply	Connect the control circuit power supply. LECSS2: Single phase 200 to 240 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L11, L21 Three phase 200 to 240 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L11, L21
L21		

Motor Connector: CNP3 * Accessory

Terminal name	Function	
U	Servo motor power (U)	Details
V	Servo motor power (V)	
W	Servo motor power (W)	

LECSS2-T \square Front view example

Series LECSS-T

Control Signal Wiring Example: LECSS2-T

For sink I/O interface

SSCNET III optical cable Note 5) (Option)

Note 1) For preventing electric shock, be sure to connect the driver,s protective earth (PE) terminal (marked Θ) to the control panel,s protective earth (PE).
Note 2) For interface use, supply $24 \mathrm{VDC} \pm 10 \%$ using an external source.
Note 3) The failure (ALM) is ON during normal conditions. When it is OFF (alarm occurs), stop the master PLC signal using the master PLC program.
Note 4) The same name signals are connected inside the driver.
Note 5) Use the following SSCNET III optical cables. Refer to "SSCNET III optical cable" on page 24 for cable models.

Cable	Cable model	Cable length
SSCNET\# optical cable	LE-CSS- \square	0.15 m to 3 m

Note 6) Connections from Axis 2 onward are omitted
Note 7) Up to 64 axes can be set for the axis selection rotary switch (SW1) and auxiliary axis number setting switches (SW2-3, SW2-4) in combination. Note that the number of connection axes depends on the specifications of the master PLC.
Note 8) Be sure to place a cap on unused CN1A/CN1B.
Note 9) When not using the STO function, use the driver with the short-circuit connector (provided as an accessory) inserted.
Note 10) Configure a circuit to turn off EM2 when the main circuit power is turned off to prevent an unexpected restart of the driver.

Options
Motor cable, Lock cable, Encoder cable (LECS \square common)

SSCNET III optical cable (LECSS \square-S \square, LECSS2-T \square)

Regeneration option (LECS \square common) LEC-MR-RB- 12 LE-CSB-S $\square \square$ is MR-BKS1CBL \square M-A \square-L manufactured by Mitsubishi Electric Corporation. LE-CSE-S $\square \square$ is MR-J3ENCBL \square M-A \square-L manufactured by Mitsubishi Electric Corporation. LE-CSM-R $\square \square$ is MR-PWS1CBL \square M-A \square-H manufactured by Mitsubishi Electric Corporation. LE-CSB-R $\square \square$ is MR-BKS1CBL $\square \mathrm{M}-A \square-\mathrm{H}$ manufactured by Mitsubishi Electric Corporation. LE-CSE-R $\square \square$ is MR-J3ENCBL $\square \mathrm{M}-\mathrm{A} \square-\mathrm{H}$ manufactured by Mitsubishi Electric Corporation.

I/O connector

LE-CSN \mathbf{A}	
	Driver typed
A	LECSAD, LECSC \square
B	LECSB \square
S	LECSS \square-S \square, LECSS2-T

LE-CSNB
LE-CSNS

* LE-CSNA: 10126-3000PE (connector)/10326-52F0-008 (shell kit) manufactured by Sumitomo 3M Limited or equivalent item. LE-CSNB: 10150-3000PE (connector)/10350-52F0-008 (shell kit) manufactured by Sumitomo 3M Limited or equivalent item. LE-CSNS: 10120-3000PE (connector)/10320-52F0-008 (shell kit) manufactured by Sumitomo 3M Limited or equivalent item.
* Conductor size: AWG24 to 30

Dimensions [mm]

Model	LA	LB	LC	LD
LEC-MR-RB-032	30	119	99	1.6
LEC-MR-RB-12	40	169	149	2

* MR-RB \square manufactured by Mitsubishi Electric Corporation.

Series LECSS-T

Options

Setup software (MR Configurator2 ${ }^{\text {TM }}$) (LECSA, LECSB, LECSC, LECSS common)

LEC-MRC2

* SW1DNC-MRC2- \square manufactured by Mitsubishi Electric Corporation. Refer to Mitsubishi Electric Corporation's website for operating environment and version upgrade information.
MR Configurator2 ${ }^{\text {TM }}$ is a registered trademark or trademark of Mitsubishi Electric Corporation.

Adjustment, waveform display, diagnostics, parameter read/write, and test operation can be performed upon a PC. Compatible PC
When using setup software (MR Configurator2 ${ }^{\text {TM }}$), use an IBM PC/AT compatible PC that meets the following operating conditions.

Hardware Requirements

Equipment		Setup software (MR Configurator2 ${ }^{\text {TM }}$) LEC-MRC2 \square
$\begin{aligned} & \text { Note 1) 2) } \\ & 3) \\ & \text { 4) 5) 6) 7) } \\ & \text { PC } \end{aligned}$	OS	Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 8$ Enterprise Operating System Microsoff ${ }^{\circledR}$ Windows ${ }^{\circledR}$ 8 Pro Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 8$ Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Enterprise Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Ultimate Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Professional Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Home Premium Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Starter Operating System Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Enterprise Operating System Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Ultimate Operating System Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Business Operating System Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Home Premium Operating System Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Home Basic Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ XP Professional Operating System, Service Pack 2 or later Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ XP Home Edition Operating System, Service Pack 2 or later Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR 2000}$ Professional Operating System, Service Pack 4 or later
	Available HD space	1 GB or more
	Communication interface	Use USB port.
Display		Resolution 1024×768 or more Must be capable of high color (16-bit) display. The connectable with the above PC
Keyboard		The connectable with the above PC
Mouse		The connectable with the above PC
Printer		The connectable with the above PC
USB cable ${ }^{\text {Note 8) }}$		LEC-MR-J3USB

Note 1) Before using a PC for setting LECSA point table method/program method, upgrade to version 1.18U (Japanese version)/version 1.19V (English version). Refer to Mitsubishi Electric Corporation's website for version upgrade information.
Note 2) Windows and Windows Vista are registered trademarks of Microsoft Corporation in the United States and other countries.
Note 3) On some PCs, MR Configurator2 may not run properly.
Note 4) When Windows ${ }^{\circledR}$ XP or later is used, the following functions cannot be used.

- Windows Program Compatibility mode
- Fast User Switching
- Remote Desktop
- Large Fonts Mode (Display property)
- DPI settings other than 96 DPI (Display property) For 64-bit operating system, this software is compatible with Windows ${ }^{\circledR} 7$ and Windows ${ }^{\circledR} 8$.
Note 5) When Windows ${ }^{\circledR 7}$ is used, the following functions cannot be used.
- Windows XP Mode
- Windows Touch

Note 6) When using this software with Windows Vista ${ }^{\circledR}$ or later, log in as a user having USER authority or higher.
Note 7) When Windows ${ }^{\circledR} 8$ is used, the following functions cannot be used.

- Hyper-V
- Modern UI style

Note 8) Order USB cable separately.

Setup Software Compatible Driver

Compatible driver	Setup software	
	MR Configurator	MR Configurator2 ${ }^{\text {TM }}$
	LEC-MR-SETUP221ם	LEC-MRC2 \square
LECSA	\bigcirc	\bigcirc
LECSB	\bigcirc	\bigcirc
LECSC	\bigcirc	\bigcirc
LECSS \square-S \square	\bigcirc	\bigcirc
LECSS2-T \square	-	\bigcirc

Options

Battery（only for LECSS2－T \square ）

LEC－MR－BAT6V1SET

＊MR－BAT6V1SET manufactured by Mitsubishi Electric Corporation．
Battery for replacement．
Absolute position data is maintained by installing the battery to the driver．

USB cable（3 m）

LEC－MR－J3USB
＊MR－J3USB manufactured by Mitsubishi Electric Corporation．
Cable for connecting PC and driver when using the setup software（MR Configurator2 ${ }^{\text {TM }}$ ）．
Do not use any cable other than this cable．

STO cable（ 3 m ）
LEC－MR－D05UDL3M
＊MR－D05UDL3M manufactured by Mitsubishi Electric Corporation．
Cable for connecting the driver and device，when using the safety function．
Do not use any cable other than this cable．

Note）The LEC－MR－BAT6V1SET is an assembled battery that uses lithium metal battery 2CR17335A．This battery is not applicable to UN regulation Dangerous Goods（Class 9）．When transporting lithium metal batteries and devices with built－in lithium metal batteries by a method subject to UN regulations，it is necessary to apply measures according to the regulations stipulated in the United Nations Recommendations on the Transport of Dangerous Goods，the Technical Instructions（ICAO－TI）of the International Civil Aviation Organization（ICAO），and the International Maritime Dangerous Goods Code（IMDG CODE）of the International Maritime Organization（IMO）．If a customer is transporting products such as shown above，it is necessary to confirm the latest regulations，or the laws and regulations of the country of transport on your own，in order to apply the proper measures．Please contact SMC sales representative for details．

Global Manufacturing, Distribution and Service Network

Worldwide Subsidiaries

EUROPE

AUSTRIA
SMC Pneumatik GmbH (Austria)
BELGIUM
SMC Pneumatics N.V./S.A.
BULGARIA
SMC Industrial Automation Bulgaria EOOD
CROATIA
SMC Industrijska Automatika d.o.o.
CZECH
SMC Industrial Automation CZ s.r.o.
DENMARK
SMC Pneumatik A/S
ESTONIA
SMC Pneumatics Estonia
FINLAND
SMC Pneumatics Finland OY
FRANCE
SMC Pneumatique S.A.
GERMANY
SMC Pneumatik GmbH
GREECE
SMC Hellas EPE
HUNGARY
SMC Hungary Ipari Automatizálási Kft.
IRELAND
SMC Pneumatics (Ireland) Ltd.
ITALY
SMC Italia S.p.A.

LATVIA
SMC Pneumatics Latvia SIA LITHUANIA
SMC Pneumatics Lietuva, UAB
NETHERLANDS
SMC Pneumatics BV
NORWAY
SMC Pneumatics Norway A/S
POLAND
SMC Industrial Automation Polska Sp.z.o.o.

ROMANIA

SMC Romania S.r.I.
RUSSIA
SMC Pneumatik LLC.
SLOVAKIA
SMC Priemyselná Automatizáciá, s.r.o.
SLOVENIA
SMC Industrijska Avtomatika d.o.o.
SPAIN / PORTUGAL
SMC España, S.A.
SWEDEN
SMC Pneumatics Sweden AB
SWITZERLAND
SMC Pneumatik AG
UK
SMC Pneumatics (U.K.) Ltd.

ASIA
CHINA
SMC (China) Co., Ltd
HONG KONG
SMC Pneumatics (Hong kong) Ltd. INDIA
SMC Pneumatics (India) Pvt. Ltd.
JAPAN
SMC Corporation
MALAYSIA
SMC Pneumatics (S.E.A.) Sdn. Bhd. PHILIPPINES
SMC Pneumatics (Philippines), Inc. SINGAPORE
SMC Pneumatics (S.E.A.) Pte. Ltd.
SOUTH KOREA
SMC Pneumatics Korea Co., Ltd.

TAIWAN

SMC Pneumatics (Taiwan) Co., Ltd.
THAILAND
SMC Thailand Ltd.

NORTH AMERICA
CANADA
SMC Pneumatics (Canada) Ltd.
MEXICO
SMC Corporation (Mexico) S.A. DE C.V.
USA
SMC Corporation of America
SOUTH AMERICA
ARGENTINA
SMC Argentina S.A.
BOLIVIA
SMC Pneumatics Bolivia S.R.L.
BRAZIL
SMC Pneumaticos do Brazil Ltda.
CHILE
SMC Pneumatics (Chile) S.A.
PERU
SMC Corporation Peru S.A.C.
VENEZUELA
SMC Neumatica Venezuela S.A
OCEANIA
AUSTRALIA
SMC Pneumatics (Australia) Pty. Ltd.
NEW ZEALAND
SMC Pneumatics (N.Z.) Ltd.

U.S. \& Canadian Sales Offices

EAST
Atlanta
Birmingham
Boston
Charlotte
Nashville
New Jersey
Rochester
Tampa
CANADA
Vancouver
Toronto
Windsor
Montreal

SMC Corporation of America 10100 SMC Blvd., Noblesville, IN 46060 www.smcusa.com

SMC Pneumatics (Canada) Ltd. www.smcpneumatics.ca
(800) SMC.SMC1 (762-7621)
e-mail: sales @smcusa.com
International inquiries: www.smcworld.com

IA MECHATROLINK Compatible

Power supply voltage (V) 200 to 230 VAC

Motor capacity (W) 100/200/400

- Position control, speed control and torque control can be used.
- Control encoder: Absolute 20-bit encoder (Resolution: $1048576 \mathrm{p} / \mathrm{rev}$)

CMECHATROLINK-ITType

- Applicable Fieldbus protocol: MMECHATROLNK-III
- Number of connectable drivers: 62 units (Transmission distance: Max. 75 m between stations)

Compatible Actuators

Slider Type

Serine motor typ
Secondary batter compatible Dusisioip procicampatible

Size	Pushing force Ibf (N)	Stroke (mm)
$\mathbf{2 5}$	$109(485)$	Up to 400
$\mathbf{3 2}$	$165(736)$	Up to 500
$\mathbf{6 3}$	$429(1910)$	Up to 800

Series LECYU

High Rigidity Slider Type
Ball screw drive Series LEJS

Size	Max. work load (kg)	Stroke (mm)
$\mathbf{4 0}$	55	Up to 1200
$\mathbf{6 3}$	85	Up to 1500

Belt drive Series LEJB

Size	Max. work load (kg)	Stroke (mm)
$\mathbf{4 0}$	20	Up to 2000
$\mathbf{6 3}$	30	Up to 3000

$\underset{\substack{\text { Absolute encoder compatible Series } \\ \text { (} \\ \text { MNECCARROUNK- Itype) }}}{ }$ (MMECHATROLNK-II type)

Provided by customer
 Power supply
 Single phase 200 to 230 VAC $(50 / 60 \mathrm{~Hz})$ Three phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)

Provided by customer

External regenerative resistor Page 106

* If the external regenerative resistor is required, it should be provided by the customer.
For selection of the external regenerative resistor, refer to the compatible actuator catalog.
Motor cable Page 109

Standard cable	Robotic cable
LE-CYM-S $\square \square-\square$	LE-CYM-R $\square \square-\square$
Motor cable for lock option Page 109	
Standard cable	Robotic cable
LE-CYB-S $\square \square-\square$	LE-CYB-R $\square \square-\square$

Electric actuator Pages 4, 40, 66

Encoder cable Page 109

Standard cable	Robotic cable
LE-CYE-S $\square \square$	LE-CYE-R $\square \square$

Driver

PLC (Positioning unit/Motion controller)
Power supply for I/O signal 24 VDC

Setup software Page 111
(SigmaWin $+^{\text {TM }}$)
Please download it via our website.

Cable for safety function
device (3 m) Page 111
Part no.: LEC-JZ-CVSAF

* Order USB cable (Part no.: LEC-JZ-CVUSB) separately to use this software.

Absolute encoder compatible Series LECYU
(${ }^{\mathbf{N}}$ MECCAATROLNK-II type)

Provided by customer

Power supply

Single phase 200 to 230 VAC $(50 / 60 \mathrm{~Hz})$
Three phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)
Provided by customer

* If the external regenerative resistor is required, it should be provided by the customer.
For selection of the external regenerative resis-
tor, refer to the compatible actuator catalog.

Electric actuator Pages 4, 40, 66

Standard cable	Robotic cable
LE-CYE-SDI	LE-CYE-R $\square \square$

Driver

* Order USB cable (Part no.: LEC-
JZ-CVUSB) separately to use this software.

Electric Actuator/
 Slider Type, Ball Screw Drive Series LEFS

Model Selection Page 5
How to Order Page 13
Specifications Page 14
Construction Page 15
Dimensions Page 16

Electric Actuator/ Slider Type, Belt Drive Series LEFB

Model Selection Page 23
How to Order Page 27
Specifications Page 28
Construction Page 29
Dimensions Page 31

Electric Actuator/
High Rigidity Slider Type, Ball Screw Drive Series LEJS

Electric Actuator/ High Rigidity Slider Type, Belt Drive Series LEJB

Model Selection Page 41
How to Order
Specifications
Page 51
Construction
Page 52
Dimensions
Page 53
Page 54

Model Selection Page 41
How to Order Page 56
Specifications Page 57
Construction Page 58
Dimensions Page 59

Auto Switch
 Specific Product Precautions
 Electric Actuator/Rod Type Series LEY

Model Selection
Page 67
How to Order
Specifications
Construction
Dimensions \qquad
age 75
Page 78

Electric Actuator/Guide Rod Type Series LEYG

How to Order
Page 102
AC Servo Motor Driver Series LECYM/LECYU
Page 103
Dimensions
Page 103
Specifications ... Page 104
Power Supply Wiring Example ... Page 106
Control Signal Wiring Example .. Page 107
Options ... Page 109
Specific Product Precautions ... Page 112

Selection Procedure

Step 2 Check the cycle time.

Step 3 Check the allowable moment.

Selection Example

Operating conditions
-Workpiece mounting condition:

- Speed: 300 [mm/s]
- Acceleration/Deceleration: 3000 [$\left.\mathrm{mm} / \mathrm{s}^{2}\right]$
- Stroke: 200 [mm]
- Mounting position: Horizontal upward

Step 1 Check the work load-speed. <Speed-Work load graph> (Page 6) Select the target model based on the workpiece mass and speed with reference to the <Speed-Work load graph>.
Selection example) The LEFS40V8B-200 is temporarily selected based on the graph shown on the right side.

Calculation example)
T1 to T4 can be calculated as follows.

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}], \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{200-0.5 \cdot 300 \cdot(0.1+0.1)}{300} \\
& =0.57[\mathrm{~s}] \\
\mathrm{T} 4 & =0.05[\mathrm{~s}]
\end{aligned}
$$

Therefore, the cycle time can be obtained as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.1+0.57+0.1+0.05 \\
& =0.82[\mathbf{s}]
\end{aligned}
$$

Step 3 Check the guide moment.

Based on the above calculation result, the LEFS40V8B-200 is selected.

LEFS25/Ball Screw Drive

Horizontal

LEFS32/Ball Screw Drive

Horizontal

Vertical

LEFS40/Ball Screw Drive

Horizontal

"Regenerative resistor" area

* When using the actuator in the "Regenerative resistor" area, download the "AC servo capacity selection program/SigmaJunmaSize+" from the SMC website. Then, calculate the necessary regenerative resistor capacity to prepare an appropriate external regenerative resistor.
* Regenerative resistor should be provided by the customer.

Vertical

Vertical

Applicable Motor/Driver

Model	Applicable model	
	Motor	Servopack (SMC driver)
LEFS25 \square	SGMJV-01A3A	SGDV-R90A11 \square (LECYM2-V5) SGDV-R90A21 \square (LECYU2-V5)
LEFS32 \square	SGMJV-02A3A	SGDV-1R6A11 \square (LECYM2-V7) SGDV-1R6A21 \square (LECYU2-V7)
LEFS40 \square	SGMJV-04A3A	SGDV-2R8A11 \square (LECYM2-V8) SGDV-2R8A21 \square (LECYU2-V8)

Allowable Stroke Speed

[mm/s]													
Model	AC servo motor	Lead		Stroke [mm]									
		Symbol	[mm]	Up to 100	Up to 200	Up to 300	Up to 400	Up to 500	Up to 600	Up to 700	Up to 800	Up to 900	Up to 1000
LEFS25	$\begin{gathered} 100 \mathrm{~W} \\ \mathrm{I} \\ \square 40 \end{gathered}$	H	20	1500				1100	860	-	-	-	-
		A	12		90			720	540	-	-	-	-
		B	6		45			360	270	-	-	-	-
		(Motor rotation speed)			(4500	rpm)		(3650 rpm)	(2700 rpm)	-	-	-	-
LEFS32	$\begin{gathered} 200 \mathrm{~W} \\ / \square 60 \end{gathered}$	H	24	1500					1200	930	750	-	-
		A	16	1000					800	620	500	-	-
		B	8	500					400	310	250	-	-
		(Motor rotation speed)		(3750 rpm)					(3000 rpm)	(2325 rpm)	(1875 rpm)	-	-
LEFS40	$\begin{gathered} 400 \mathrm{~W} \\ \mathrm{I} \\ \square 60 \end{gathered}$	H	30	-	1500					1410	1140	930	780
		A	20	-	1000					940	760	620	520
		B	10	-	500					470	380	310	260
		(Motor rotation speed)		-	(3000 rpm)					(2820 rpm)	(2280 rpm)	(1860 rpm)	(1560 rpm)

Series LEFS

Work Load-Acceleration/Deceleration Graph (Guide)

LEFS25 \square V6H/Ball Screw Drive

Horizontal

LEFS25 \square V6A/Ball Screw Drive
Horizontal

LEFS25 \square V6B/Ball Screw Drive

Horizontal

LEFS25 \square V6H/Ball Screw Drive

Vertical

LEFS25 \square V6A/Ball Screw Drive

Vertical

LEFS25 \square V6B/Ball Screw Drive

Vertical

Model Selection Series LEFS

Work Load-Acceleration/Deceleration Graph (Guide)

LEFS32 \square V7A/Ball Screw Drive
Horizontal

LEFS32 \square V7B/Ball Screw Drive
Horizontal

LEFS32 \square V7H/Ball Screw Drive

Vertical

LEFS32 \square V7A/Ball Screw Drive

Vertical

LEFS32 \square V7B/Ball Screw Drive

Vertical

Series LEFS

Work Load-Acceleration/Deceleration Graph (Guide)

LEFS40 \square V8H/Ball Screw Drive
Horizontal

LEFS40 \square V8A/Ball Screw Drive
Horizontal

LEFS40■V8B/Ball Screw Drive
Horizontal

LEFS40 \square V8H/Ball Screw Drive
Vertical

LEFS40 \square V8A/Ball Screw Drive
Vertical

LEFS40 \square V8B/Ball Screw Drive
Vertical

Series LEFS

Table Accuracy

Model	Traveling parallelism [mm] (Every 300 mm)	
	(1) C side traveling parallelism to A side	(2) D side traveling parallelism to B side
LEFS25	0.05	0.03
LEFS32	0.05	0.03
LEFS40	0.05	0.03

Note) Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)

Note 1) This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table.
Note 2) Check the clearance and play of the guide separately.

Electric Actuator/Slider Type Ball Screw Drive

Series LEFS
 LEFS25, 32, 40

AC Servo Motor

How to Order

1 Size
25
32
40

Nil	In-line
\mathbf{R}	Right side parallel
\mathbf{L}	Left side parallel

3 Motor type

Symbol	Type	Output [W]	Size	Compatible driver
V6	AC servo motor	100	25	LECYM2-V5/LECYU2-V5
		200	32	LECYM2-V7/LECYU2-V7
	(Absolute encoder)		400	40
V8		LECYM2-V8/LECYU2-V8		

4 Lead [mm]

Symbol	LEFS25	LEFS32	LEFS40
H	20	24	30
A	12	16	20
B	6	8	10

5 Stroke [mm]

$\mathbf{5 0}$	50
to	to
$\mathbf{1 0 0 0}$	1000

6 Motor option

Nil	Without option
B	With lock

7 Cable type

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

8 Actuator cable length [m]

$\mathbf{N i l}$	Without cable
$\mathbf{3}$	3
$\mathbf{5}$	5
\mathbf{A}	10
\mathbf{C}	20

(9) Driver type

	Compatible driver	Power supply voltage [V]
Nil	Without driver	-
M2	LECYM2-V	200 to 230
U2	LECYU2-V \square	200 to 230

10 I/O connector

NiI	Without connector
\mathbf{H}	With connector

Applicable Stroke Table
-: Standard

Model	Stroke (mm)	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$	$\mathbf{3 5 0}$	$\mathbf{4 0 0}$	$\mathbf{4 5 0}$	$\mathbf{5 0 0}$	$\mathbf{5 5 0}$	$\mathbf{6 0 0}$	$\mathbf{6 5 0}$	$\mathbf{7 0 0}$	$\mathbf{7 5 0}$	$\mathbf{8 0 0}$	$\mathbf{8 5 0}$	$\mathbf{9 0 0}$	$\mathbf{9 5 0}$	$\mathbf{1 0 0 0}$
LEFS25	\bullet	-	-	-	-	-	-	-	-	50 to 600											
strokufacturable																					
LEFS32	\bullet	-	-	-	-	50 to 800															
LEFS40	-	-	\bullet	150 to 1000																	

* Please consult with SMC for non-standard strokes as they are produced as special orders.

Compatible Drivers

Driver type	MMECHATROLINK-II type	M MECHATROLINK-III type
Series	LECYM	LECYU
Applicable network	MECHATROLINK-II	MECHATROLINK-III
Control encoder	Absolute 20-bit encoder	
Communication device	USB communication, RS-422 communication	
Power supply voltage (V)	200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)	
Reference page	Page 103	

Specifications

LEFS25, 32, 40 AC Servo Motor

Model				LEFS25■V6			LEFS32■V7			LEFS40■V8		
	Stroke [mm] Note 1)			50 to 600			50 to 800			150 to 1000		
	Work load [kg] ${ }^{\text {Note 2) }}$		Horizontal	10	20	20	30	40	45	30	50	60
			Vertical	4	8	15	5	10	20	7	15	30
	Max. speed [mm/s]	Stroke range	Up to 400	1500	900	450	1500	1000	500	1500	1000	500
			401 to 500	1200	720	360	1500	1000	500	1500	1000	500
			501 to 600	900	540	270	1200	800	400	1500	1000	500
			601 to 700	-	-	-	930	620	310	1410	940	470
			701 to 800	-	-	-	750	500	250	1140	760	380
			801 to 900	-	-	-	-	-	-	930	620	310
			901 to 1000	-	-	-	-	-	-	780	520	260
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			20000 (Refer to pages 7 to 9 for limit according to work load and duty ratio.)								
	Positioning repeatability [mm]			± 0.02								
	Lost motion [mm] ${ }^{\text {Note 4) }}$			0.1 or less								
	Lead [mm]			20	12	6	24	16	8	30	20	10
	Impact/Vibration resistance [m/s²] Note 5)			50/20								
	Actuation type			Ball screw (LEFSD), Ball screw + Belt (LEFS \square h)								
	Guide type			Linear guide								
	Operating temperature range			41 to $104^{\circ} \mathrm{F}$ [5 to $40^{\circ} \mathrm{C}$]								
	Operating humidity range [\%RH]			90 or less (No condensation)								
	Motor output/Size			$100 \mathrm{~W} / \square 40$			200 W/口60			$400 \mathrm{~W} / \square 60$		
	Motor type			AC servo motor (200 VAC)								
	Encoder			Absolute 20-bit encoder (Resolution: $1048576 \mathrm{p} / \mathrm{rev}$)								
	Power consumption [W] Note 6)		Horizontal	45			65			210		
			Vertical	145			175			230		
	Standby power consumption when operating [W] Note 7)		Horizontal	2			2			2		
			Vertical	8			8			18		
	Max. instantaneous power consumption [W] ${ }^{\text {Note 8) }}$			445			725			1275		
$\begin{aligned} & \bar{\leftrightharpoons} \\ & \vdots \\ & \hline 0 \\ & \hline \end{aligned}$	Type ${ }^{\text {Note 9) }}$			Non-magnetizing lock								
	Holding force Ibf [N]			18 [78]	29 [131]	57 [255]	29 [131]	44 [197]	87 [385]	49 [220]	74 [330]	148 [660]
	Power consumption at $68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$ [W] $\left.{ }^{\text {Note }} 10\right)$			5.5			6			6		
	Rated voltage [V]			24 VDC $\pm 10 \%$								

Note 1) Please consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) For details, refer to "Speed-Work Load Graph (Guide)" on page 6.
Note 3) The allowable speed changes according to the stroke.
Note 4) A reference value for correcting an error in reciprocal operation.
Note 5) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to

2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 6) The power consumption (including the driver) is for when the actuator is operating.
Note 7) The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
Note 8) The maximum instantaneous power consumption (including the driver) is for when the actuator is operating.
Note 9) Only when motor option "With lock" is selected.
Note 10) For an actuator with lock, add the power consumption for the lock.

Weight

Series	LEFS25 \square V6											
Stroke [mm]	50	100	150	200	250	300	350	400	450	500	550	600
Product weight [kg]	2.06	2.20	2.34	2.50	2.62	2.75	2.90	3.05	3.18	3.30	3.46	3.60
Additional weight with lock [kg]	0.3											

Series	LEFS32 \square V7															
Stroke [mm]	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
Product weight [kg]	3.40	3.60	3.80	4.00	4.20	4.40	4.60	4.80	5.00	5.20	5.40	5.60	5.80	6.00	6.20	6.40
Additional weight with lock [kg]	0.7															

Series	LEFS40 \square V8																	
Stroke [mm]	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000
Product weight [kg]	5.92	6.20	6.48	6.75	7.05	7.35	7.61	7.90	8.17	8.35	8.73	9.00	9.30	9.55	9.86	10.15	10.42	10.70
Additional weight with lock [kg]	0.7																	

Series LEFS

Construction

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Rail guide	-	
$\mathbf{3}$	Ball screw shaft	-	
$\mathbf{4}$	Ball screw nut	-	
$\mathbf{5}$	Table	Aluminum alloy	Anodized
$\mathbf{6}$	Blanking plate	Aluminum alloy	Anodized
$\mathbf{7}$	Seal band stopper	Synthetic resin	
$\mathbf{8}$	Housing A	Aluminum die-cast	Coating
$\mathbf{9}$	Housing B	Aluminum die-cast	Coating
$\mathbf{1 0}$	Bearing stopper	Aluminum alloy	

No.	Description	Material	Note
11	Motor mount	Aluminum alloy	Coating
$\mathbf{1 2}$	Coupling	-	
13	Motor cover	Aluminum alloy	Anodized
14	Motor end cover	Aluminum alloy	Anodized
15	Motor	-	
16	Grommet	NBR	
17	Band stopper	Stainless steel	
18	Dust seal band	Stainless steel	
19	Bearing	-	
20	Bearing	-	

Dimensions: In-line Motor

LEFS25

Motor option: With lock

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of R chamfering. (Recommended height 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the work pieces and facilities around the table.
Note 3) The Z-phase first detecting position from the stroke end of the motor side.

Dimensions								[mm]
Model	L		A	B	n	D	E	F
	Without	With						
LEFS25 $\square \square$-50 \square	339	379	56	160	4	-	-	20
LEFS25 $\square \square$-100 \square	389	429	106	210	4	-	-	35
LEFS25 $\square \square$-150 \square	439	479	156	260	4	-	-	
LEFS25 $\square \square$-200 \square	489	529	206	310	6	2	240	
LEFS25 $\square \square$-250 \square	539	579	256	360	6	2	240	
LEFS25 $\square \square$-300 \square	589	629	306	410	8	3	360	
LEFS25 $\square \square$-350 \square	639	679	356	460	8	3	360	
LEFS25 $\square \square$-400 \square	689	729	406	510	8	3	360	
LEFS25 $\square \square$-450 \square	739	779	456	560	10	4	480	
LEFS25 $\square \square$-500 \square	789	829	506	610	10	4	480	
LEFS25 $\square \square$-550 \square	839	879	556	660	12	5	600	
LEFS25 $\square \square$-600 \square	889	929	606	710	12	5	600	

Series LEFS

Dimensions: In-line Motor
LEFS32

Motor option: With lock

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of R chamfering. (Recommended height 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the work pieces and facilities around the table.
Note 3) The Z-phase first detecting position from the stroke end of the motor side.

ns							[mm
Model	L		A	B	n	D	E
	Without	With					
LEFS32 $\square \square$-50 \square	391	421	56	180	4	-	-
LEFS32 $\square \square$-100 \square	441	471	106	230	4	-	-
LEFS32 $\square \square$-150 \square	491	521	156	280	4	-	-
LEFS32 $\square \square$-200 \square	541	571	206	330	6	2	300
LEFS32 $\square \square$-250 \square	591	621	256	380	6	2	300
LEFS32 $\square \square$-300 \square	641	671	306	430	6	2	300
LEFS32 $\square \square$-350 \square	691	721	356	480	8	3	450
LEFS32 $\square \square$-400 \square	741	771	406	530	8	3	450
LEFS32 $\square \square$-450 \square	791	821	456	580	8	3	450
LEFS32 $\square \square$-500 \square	841	871	506	630	10	4	600
LEFS32 $\square \square$-550 \square	891	921	556	680	10	4	600
LEFS32 $\square \square$-600 \square	941	971	606	730	10	4	600
LEFS32 $\square \square$-650 \square	991	1021	656	780	12	5	750
LEFS32 $\square \square$-700 \square	1041	1071	706	830	12	5	750
LEFS32 $\square \square$-750 \square	1091	1121	756	880	12	5	750
LEFS32 $\square \square$-800 \square	1141	1171	806	930	14	6	900

Dimensions: In-line Motor

LEFS40

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of R chamfering. (Recommended height 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the work pieces and facilities around the table.
Note 3) The Z-phase first detecting position from the stroke end of the motor side.

Dimensions
[mm]

Model	L		A	B	n	D	E
	Without	With					
LEFS40 $\square \square \mathbf{- 1 5 0} \square$	564.5	594.5	156	328	4	-	150
LEFS40 $\square \mathbf{- 2 0 0} \square$	614.5	644.5	206	378	6	2	300
LEFS40 $\square \mathbf{- 2 5 0} \square$	664.5	694.5	256	428	6	2	300
LEFS40 $\square \mathbf{- 3 0 0} \square$	714.5	744.5	306	478	6	2	300
LEFS40 $\square \mathbf{- 3 5 0} \square$	764.5	794.5	356	528	8	3	450
LEFS40 $\square \square \mathbf{- 4 0 0} \square$	814.5	844.5	406	578	8	3	450
LEFS40 $\square \mathbf{- 4 5 0} \square$	864.5	894.5	456	628	8	3	450
LEFS40 $\square \mathbf{- 5 0 0} \square$	914.5	944.5	506	678	10	4	600
LEFS40 $\square \mathbf{- 5 5 0} \square$	964.5	994.5	556	728	10	4	600
LEFS40 $\square \mathbf{- 6 0 0} \square$	1014.5	1044.5	606	778	10	4	600
LEFS40 $\square \mathbf{- 6 5 0} \square$	1064.5	1094.5	656	828	12	5	750
LEFS40 $\square \mathbf{- 7 0 0} \square$	1114.5	1144.5	706	878	12	5	750
LEFS40 $\square \mathbf{- 7 5 0} \square$	1164.5	1194.5	756	928	12	5	750
LEFS40 $\square \mathbf{- 8 0 0} \square$	1214.5	1144.5	806	978	14	6	900
LEFS40 $\square \mathbf{- 8 5 0} \square$	1264.5	1294.5	856	1028	14	6	900
LEFS40 $\square \mathbf{- 9 0 0} \square$	1314.5	1344.5	906	1078	14	6	900
LEFS40 $\square \mathbf{- 9 5 0} \square$	1364.5	1394.5	956	1128	16	7	1050
LEFS40 $\square \mathbf{- 1 0 0 0} \square$	1414.5	1444.5	1006	1178	16	7	1050

Series LEFS

Dimensions: Motor Parallel
LEFS25R

Dimensions							[mm]
Model	L	A	B	n	D	E	F
LEFS25 $\square \square \square$-50 \square	210.5	56	160	4	-	-	20
LEFS25 $\square \square \square$-100 \square	260.5	106	210	4	-	-	35
LEFS25 $\square \square \square$-150 \square	310.5	156	260	4	-	-	
LEFS25 $\square \square \square$-200 \square	360.5	206	310	6	2	240	
LEFS25 $\square \square \square$-250 \square	410.5	256	360	6	2	240	
LEFS25 $\square \square \square$-300 \square	460.5	306	410	8	3	360	
LEFS25 $\square \square \square$-350 \square	510.5	356	460	8	3	360	
LEFS25 $\square \square \square$-400 \square	560.5	406	510	8	3	360	
LEFS25 $\square \square \square$-450 \square	610.5	456	560	10	4	480	
LEFS25 $\square \square \square$-500 \square	660.5	506	610	10	4	480	
LEFS25 $\square \square \square$-550 \square	710.5	556	660	12	5	600	
LEFS25 $\square \square \square$-600 \square	760.5	606	710	12	5	600	

Dimensions: Motor Parallel

LEFS32R

Motor Dimensions				[mm]		
Motor type	X		W		Z	
	Without	With	Without	With	Without	With
V7	113.5	153.5	80	120	14	14

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)
Note 2) The Z-phase first detecting position from the stroke end of the motor side. Please consult with SMC for adjusting the Z-phase detecting position at the stroke end of the end side.

Dimensions

Model	L	A	B	n	D	E
LEFS32 $\square \square \square-50 \square$	245	56	180	4	-	-
LEFS32 $\square \square \square-100 \square$	295	106	230	4	-	-
LEFS32 $\square \square \square-150 \square$	345	156	280	4	-	-
LEFS32 $\square \square \square-200 \square$	395	206	330	6	2	300
LEFS32 $\square \square \square-250 \square$	445	256	380	6	2	300
LEFS32 $\square \square \square-300 \square$	495	306	430	6	2	300
LEFS32 $\square \square \square-350 \square$	545	356	480	8	3	450
LEFS32 $\square \square \square-400 \square$	595	406	530	8	3	450
LEFS32 $\square \square \square-450 \square$	645	456	580	8	3	450
LEFS32 $\square \square \square-500 \square$	695	506	630	10	4	600
LEFS32 $\square \square \square-550 \square$	745	556	680	10	4	600
LEFS32 $\square \square \square-600 \square$	795	606	730	10	4	600
LEFS32 $\square \square \square-650 \square$	845	656	780	12	5	750
LEFS32 $\square \square \square-700 \square$	895	706	830	12	5	750
LEFS32 $\square \square \square-750 \square$	945	756	880	12	5	750
LEFS32 $\square \square \square-800 \square$	995	806	930	14	6	900

Series LEFS

Dimensions：Motor Parallel
LEFS40R

With lock／LEFS40 \square V8 \square－\square B

Note 1）When mounting the actuator using the body mounting reference plane，set the height of the opposite surface or pin to be 3 mm or more． （Recommended height 5 mm ）
Note 2）The Z－phase first detecting position from the stroke end of the motor side．Please consult with SMC for adjusting the Z－phase detecting position at the stroke end of the end side．

Motor Dimensions					$[\mathrm{mm}]$	
Motor type	X		W		Z	
V8	Without	With	Without	With	Without	With
V8	137.5	177.5	98.5	138.5	14	14

Dimensions						［mm］
Model	L	A	B	n	D	E
LEFS40 $\square \square \square$－150 \square	403.4	156	328	4	－	150
LEFS40ㅁ）${ }^{\text {－200 }}$	453.4	206	378	6	2	300
LEFS40■ \square－ $250 \square$	503.4	256	428	6	2	300
LEFS40 $\square \square \square$－300 \square	553.4	306	478	6	2	300
	603.4	356	528	8	3	450
LEFS $40 \square \square \square-400 \square$	653.4	406	578	8	3	450
LEFS40］\square－450	703.4	456	628	8	3	450
LEFS40］\square－500	753.4	506	678	10	4	600
LEFS40Пロロ－550 \square	803.4	556	728	10	4	600
LEFS40Пロロ－600	853.4	606	778	10	4	600
LEFS40 $\square \square \square$－650 \square	903.4	656	828	12	5	750
LEFS40ロロロ－700	953.4	706	878	12	5	750
LEFS40］${ }^{\text {a }}$－750	1003.4	756	928	12	5	750
LEFS40 $\square \square \square-800 \square$	1053.4	806	978	14	6	900
LEFS40］${ }^{\text {a }}$－850	1103.4	856	1028	14	6	900
LEFS40］${ }^{\text {a }}$－900	1153.4	906	1078	14	6	900
LEFS40ㅁ）－950	1203.4	956	1128	16	7	1050
LEFS40］$\square_{\text {－1000 }}$	1253.4	1006	1178	16	7	1050

Selection Procedure

Step 2 Check the cycle time.

Step 3 Check the allowable moment.

Selection Example

Operating conditions
-Workpiece mass: 20 [kg]
-Workpiece mounting condition:

- Speed: 1500 [mm/s]
- Acceleration/Deceleration: 3000 [mm/s²]
- Stroke: 2000 [mm]
- Mounting position: Horizontal upward

Step 1 Check the work load-speed. <Speed-Work load graph> (Page 24)
Select the target model based on the workpiece mass and speed with reference to the <Speed-Work load graph>.
Selection example) The LEFB40V8S-2000 is temporarily selected based on the graph shown on the right side.

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method.
Cycle time:
T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

-T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

-T2: Constant speed time can be found from the following equation

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the conditions such as motor types, load and in positioning of the step data. Therefore, calculate the settling time with reference to the following value.

$$
\mathrm{T} 4=0.05[\mathrm{~s}]
$$

Step 3 Check the guide moment.

Based on the above calculation result, the LEFB40V8S-2000 is selected.

Calculation example)
T1 to T4 can be calculated as follows.

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=1500 / 3000=0.5[\mathrm{~s}], \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=1500 / 3000=0.5[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{2000-0.5 \cdot 1500 \cdot(0.5+0.5)}{1500} \\
& =0.83[\mathrm{~s}] \\
\mathrm{T} 4 & =0.05[\mathrm{~s}]
\end{aligned}
$$

Therefore, the cycle time can be obtained as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.5+0.83+0.5+0.05 \\
& =\mathbf{1 . 8 8}[\mathbf{s}]
\end{aligned}
$$

Speed-Work Load Graph (Guide)

LEFB $\square /$ Belt Drive

* The shaded area in the graph requires the regenerative resistor.

Cycle Time Graph (Guide)

LEFBD/Belt Drive

LEFB25/32/40

 Acceleration/Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right]$

* Cycle time is for when maximum speed.
* Maximum stroke: LEFB25: 2000 mm

LEFB32: 2500 mm
LEFB40: 3000 mm

"Regenerative resistor" area

* When using the actuator in the "Regenerative resistor" area, download the "AC servo capacity selection program/SigmaJunmaSize+" from the SMC website. Then, calculate the necessary regenerative resistor capacity to prepare an appropriate external regenerative resistor.
* Regenerative resistor should be provided by the customer.

Work Load-Acceleration/Deceleration Graph (Guide)
LEFB $\square /$ Belt Drive
LEFB25 \square V6 (Duty ratio)

LEFB32 \square V7 (Duty ratio)

LEFB40 \square V8 (Duty ratio)

Applicable Motor/Driver

Model	Applicable model				
	Motor	Servopack (SMC driver)	$	$	SEFB25 \square
:---:	SGMJV-01A3A	SGDV-R90A11 \square (LECYM2-V5)			
:---:					
SGDV-R90A21 \square (LECYU2-V5)	\(\left	\begin{array}{c}SGDV-1R6A11 \square (LECYM2-V7) 			

SGDV-1R6A21 \square (LECYU2-V7)\end{array}\right|\)| SEFB32 \square |
| :---: | SGMJV-02A3A | SGDV-2R8A11 \square (LECYM2-V8) |
| :---: |
| LEFB40 \square | SGMJV-04A3A | SGDV-2R8A21 \square (LECYU2-V8) |
| :---: |

Series LEFB

* This graph shows the amount of allowable overhang when the center of gravity of the workpiece overhangs in one direction. When the center of gravity of the workpiece overhangs in two directions, refer to the Electric Actuator Selection Software for confirmation, http://www.smcworld.com

Dynamic Allowable Moment

Table Accuracy

Model	Traveling parallelism [mm] (Every 300 mm)	
	(1) C side traveling parallelism to A side	(2) D side traveling parallelism to B side
	0.05	0.03
LEFB32	0.05	0.03
LEFB40	0.05	0.03

Note) Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)

Note 1) This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table.
Note 2) Check the clearance and play of the guide separately.

Electric Actuator/Slider Type Belt Drive AC Servo Motor

Series LEFB
 LEFS25, 32, 40

1 Size	(3) Motor type				
25	Symbol	Type	Output [W]	Size	Compatible driver
32	V6	AC servo motor (Absolute encoder)	100	25	LECYM2-V5/LECYU2-V5
40	V7		200	32	LECYM2-V7/LECYU2-V7
	V8		400	40	LECYM2-V8/LECYU2-V8

(2) Motor mounting position

$\mathbf{N i l}$	Top mounting
\mathbf{U}	Bottom mounting

(9) Driver type

	Compatible driver	Power supply voltage [V]
Nil	Without driver	-
M2	LECYM2-V \square	200 to 230
U2	LECYU2-V \square	200 to 230

10 I/O connector

Nil	Without connector
\mathbf{H}	With connector

8 Actuator cable length

[mil	Without cable
$\mathbf{3}$	3
$\mathbf{5}$	5
\mathbf{A}	10
\mathbf{C}	20

Applicable Stroke Table

- Standard/○: Produced upon receipt of order

	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500	3000	Manufacturable stroke range [mm]
LEFB25	-	-	-	-	-	-	-	-	\bigcirc	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	300 to 2000
LEFB32	-	\bullet	\bullet	\bullet	\bigcirc	-	-	\bullet	\bigcirc	\bullet	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bullet	-	300 to 2500
LEFB40	-	-	-	-	\bigcirc	-	-	-	\bigcirc	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	300 to 3000

* Please consult with SMC for strokes other than those shown above as they are produced as special orders.

Compatible Drivers

Driver type	INMECHATROLINK-II type	II MECHATROLINK-III type
Series	LECYM	LECYU
Applicable network	MECHATROLINK-II	MECHATROLINK-III
Control encoder	Absolute 20-bit encoder	
Communication device	USB communication, RS-422 communication	
Power supply voltage (V)	200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)	
Reference page	Page 103	

Specifications

LEFB25, 32, 40 AC Servo Motor

Model			LEFB25V6	LEFB32V7	LEFB40V8
	Stroke [mm] ${ }^{\text {Note 1) }}$		$\begin{gathered} 300,400,500 \\ 600,700,800 \\ 900,1000,(1100) \\ 1200,(1300,1400) \\ 1500,(1600,1700) \\ (1800,1900), 2000 \end{gathered}$	$\begin{gathered} 300,400,500 \\ 600,700,800 \\ 900,1000,(1100) \\ 1200,(1300,1400) \\ 1500,(1600,1700) \\ (1800,1900), 2000 \\ 2500 \end{gathered}$	$\begin{gathered} 300,400,500 \\ 600,700,800 \\ 900,1000,(1100) \\ 1200,(1300,1400) \\ 1500,(1600,1700) \\ (1800,1900,2000 \\ 2500,3000 \end{gathered}$
	Work load [kg] ${ }^{\text {Note 2) }}$	Horizontal	5	15	25
	Max. speed [mm/s]		2000	2000	2000
	Max. acceleration/deceler	tion [mm/s ${ }^{2}$]	20000 (Refer	limit according to wo	y ratio.) Note 3)
	Positioning repeatability [m]		± 0.06	
	Lost motion [mm] Note 4)			0.1 or less	
	Equivalent lead [mm]			54	
	Impact/Vibration resistanc	[m/s ${ }^{\text {2 }}{ }^{\text {Note }}$)		50/20	
	Actuation type			Belt	
	Guide type			Linear guide	
	Operating temperature ran			41 to $104^{\circ} \mathrm{F}$ (5 to $40^{\circ} \mathrm{C}$)	
	Operating humidity range	\%RH]		r less (No condensat	
	Motor output/Size		$100 \mathrm{~W} / \square 40$	200 W/ $\square 60$	$400 \mathrm{~W} / \square 60$
	Motor type			servo motor (200 VAC)	
	Encoder			encoder (Resolution:	
	Power consumption [W] Note 6)	Horizontal	29	41	72
		Vertical	-	-	-
	Standby power consumption when operating $[W]^{\text {Note } 7)}$	Horizontal	2	2	2
		Vertical	-	-	-
	Max. instantaneous power consumption [W] ${ }^{\text {Noti 8) }}$		445	725	1275
	Type Note 9)		Non-magnetizing lock		
	Holding force lbf [N]		6.1 [27]	12 [54]	25 [110]
	Power consumption at $68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$ [W] $\left.{ }^{\text {Note }} 10\right)$		5.5	6.0	6.0
	Rated voltage [V]		24 VDC ${ }_{-10}^{0} \%$		

Note 1) Please consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.
Note 2) For details, refer to "Speed-Work Load Graph (Guide)" on page 24.
Note 3) Maximum acceleration/deceleration changes according to the work load. Check "Work Load-Acceleration/Deceleration Graph (Guide)" of the catalog.
Note 4) A reference value for correcting an error in reciprocal operation.
Note 5) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 6) The power consumption (including the driver) is for when the actuator is operating.
Note 7) The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
Note 8) The maximum instantaneous power consumption (including the driver) is for when the actuator is operating.
Note 9) Only when motor option "With lock" is selected.
Note 10) For an actuator with lock, add the power consumption for the lock.

Weight

Series	LEFB25																	
Stroke [mm]	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000
Product weight [kg]	3.06	3.31	3.56	3.81	4.06	4.31	4.56	4.81	5.06	5.31	5.56	5.81	6.06	6.31	6.56	6.81	7.06	7.31
Additional weight with lock [kg]	0.3																	

Series	LEFB32																		
Stroke [mm]	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500
Product weight [kg]	4.90	5.25	5.60	5.95	6.30	6.65	7.00	7.35	7.70	8.05	8.40	8.75	9.10	9.45	9.80	10.15	10.50	10.85	12.60
Additional weight with lock [kg]	0.7																		

Series	LEFB40																			
Stroke [mm]	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500	3000
Product weight [kg]	7.20	7.65	8.10	8.55	9.00	9.45	9.90	10.35	10.80	11.25	11.70	12.15	12.60	13.05	13.50	13.95	14.40	14.85	17.10	19.35
Additional weight with lock [kg]	0.7																			

LEFB25V6S

* Motor bottom mounting type is the same.

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
2	Rail guide		
3	Belt		
4	Belt holder	Carbon steel	Chromating
5	Belt stopper	Aluminum alloy	Anodized
6	Table	Aluminum alloy	Anodized
7	Blanking plate	Synthetic resin	
8	Seal band stopper	Aluminum die-cast	Coating
9	Housing A	Aluminum alloy	
10	Pulley holder	Stainless steel	
11	Pulley shaft	Aluminum alloy	Anodized
12	End pulley	Aluminum alloy	Anodized
13	Motor pulley	Aluminum alloy	Coating
14	Return flange		

No.	Description	Material	Note
$\mathbf{1 5}$	Housing	Aluminum alloy	Coating
16	Motor mount	Aluminum alloy	Coating
$\mathbf{1 7}$	Motor cover	Aluminum alloy	Anodized
$\mathbf{1 8}$	Motor end cover	Aluminum alloy	Anodized
19	Band stopper	Stainless steel	
20	Motor		
21	Rubber bushing	NBR	
22	Stopper	Aluminum alloy	
23	Dust seal band	Stainless steel	
24	Bearing		
25	Bearing		
26	Spacer	Aluminum alloy	
27	Tension adjustment bolt	Chromium molybdenum steel	Chromating
28	Pulley fixing bolt	Chromium molybdenum steel	Chromating

Construction

LEFB32／40V \square S

＊Motor bottom mounting type is the same．

Component Parts

No．	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
2	Rail guide		
3	Belt		
4	Belt holder	Carbon steel	Chromating
5	Belt stopper	Aluminum alloy	Anodized
6	Table	Aluminum alloy	Anodized
7	Blanking plate	Anodized	
8	Seal band stopper	Synthetic resin	
9	End block	Aluminum alloy	Coating
10	End block cover		
11	Pulley holder	Aluminum alloy	
12	Pulley shaft	Stainless steel	
13	End pulley	Aluminum alloy	Anodized
14	Motor pulley	Aluminum alloy	Anodized

No．	Description	Material	Note
$\mathbf{1 5}$	Return flange	Aluminum alloy	Coating
$\mathbf{1 6}$	Housing	Aluminum alloy	Coating
$\mathbf{1 7}$	Motor mount	Aluminum alloy	Coating
$\mathbf{1 8}$	Motor cover	Aluminum alloy	Anodized
19	Motor end cover	Aluminum alloy	Anodized
$\mathbf{2 0}$	Band stopper	Stainless steel	
$\mathbf{2 1}$	Motor		
22	Rubber bushing	NBR	
23	Dust seal band	Stainless steel	
24	Bearing		
25	Bearing		
26	Bearing		Chromating
27	Tension adjustment bolt	Chromium molybdenum steel	C

กイอヨา／Wスอヨา

LEFB25/Motor top mounting type

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
300	552	306	467	6	2	340
400	652	406	567	8	3	510
500	752	506	667	8	3	510
600	852	606	767	10	4	680
700	952	706	867	10	4	680
800	1052	806	967	12	5	850
900	1152	906	1067	14	6	1020
1000	1252	1006	1167	14	6	1020
1100	1352	1106	1267	16	7	1190
1200	1452	1206	1367	16	7	1190
1300	1552	1306	1467	18	8	1360
1400	1652	1406	1567	20	9	1530
1500	1752	1506	1667	20	9	1530
1600	1852	1606	1767	22	10	1700
1700	1952	1706	1867	22	10	1700
1800	2052	1806	1967	24	11	1870
1900	2152	1906	2067	24	11	1870
2000	2252	2006	2167	26	12	2040

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of R chamfering. (Recommended height 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the work pieces and facilities around the table.
Note 3) The Z-phase first detecting position from the stroke end of the motor side

Dimensions: Belt Drive

LEFB25U/Motor bottom mounting type

Motor option: With lock

Dimensions						
Stroke	L	A	B	\mathbf{n}	\mathbf{D}	\mathbf{E}
300	552	306	467	6	2	340
400	652	406	567	8	3	510
500	752	506	667	8	3	510
600	852	606	767	10	4	680
700	952	706	867	10	4	680
800	1052	806	967	12	5	850
900	1152	906	1067	14	6	1020
1000	1252	1006	1167	14	6	1020
1100	1352	1106	1267	16	7	1190
1200	1452	1206	1367	16	7	1190
1300	1552	1306	1467	18	8	1360
1400	1652	1406	1567	20	9	1530
1500	1752	1506	1667	20	9	1530
1600	1852	1606	1767	22	10	1700
1700	1952	1706	1867	22	10	1700
1800	2052	1806	1967	24	11	1870
1900	2152	1906	2067	24	11	1870
2000	2252	2006	2167	26	12	2040

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of R chamfering. (Recommended height 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the work pieces and facilities around the table.
Note 3) The Z-phase first detecting position from the stroke end of the motor side

Dimensions: Belt Drive

LEFB32/Motor top mounting type

Motor option: With lock

Dimensions

Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
300	590	306	430	6	2	400
400	690	406	530	6	2	400
500	790	506	630	8	3	600
600	890	606	730	8	3	600
700	990	706	830	10	4	800
800	1090	806	930	10	4	800
900	1190	906	1030	12	5	1000
1000	1290	1006	1130	12	5	1000
1100	1390	1106	1230	14	6	1200
1200	1490	1206	1330	14	6	1200
1300	1590	1306	1430	16	7	1400
1400	1690	1406	1530	16	7	1400
1500	1790	1506	1630	18	8	1600
1600	1890	1606	1730	18	8	1600
1700	1990	1706	1830	20	9	1800
1800	2090	1806	1930	20	9	1800
1900	2190	1906	2030	22	10	2000
2000	2290	2006	2130	22	10	2000
2500	2790	2506	2630	28	13	2600

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of R chamfering. (Recommended height 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the work pieces and facilities around the table.
Note 3) The Z-phase first detecting position from the stroke end of the motor side

Dimensions: Belt Drive

LEFB32U/Motor bottom mounting type

L

Motor option: With lock

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
300	590	306	430	6	2	400
400	690	406	530	6	2	400
500	790	506	630	8	3	600
600	890	606	730	8	3	600
700	990	706	830	10	4	800
800	1090	806	930	10	4	800
900	1190	906	1030	12	5	1000
1000	1290	1006	1130	12	5	1000
1100	1390	1106	1230	14	6	1200
1200	1490	1206	1330	14	6	1200
1300	1590	1306	1430	16	7	1400
1400	1690	1406	1530	16	7	1400
1500	1790	1506	1630	18	8	1600
1600	1890	1606	1730	18	8	1600
1700	1990	1706	1830	20	9	1800
1800	2090	1806	1930	20	9	1800
1900	2190	1906	2030	22	10	2000
2000	2290	2006	2130	22	10	2000
2500	2790	2506	2630	28	13	2600

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of R chamfering. (Recommended height 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the work pieces and facilities around the table.
Note 3) The Z-phase first detecting position from the stroke end of the motor side

Series LEFB

Dimensions: Belt Drive

LEFB40/Motor top mounting type

Motor option: With lock

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
300	641.5	306	478	6	2	400
400	741.5	406	578	6	2	400
500	841.5	506	678	8	3	600
600	941.5	606	778	8	3	600
700	1041.5	706	878	10	4	800
800	1141.5	806	978	10	4	800
900	1241.5	906	1078	12	5	1000
1000	1341.5	1006	1178	12	5	1000
1100	1441.5	1106	1278	14	6	1200
1200	1541.5	1206	1378	14	6	1200
1300	1641.5	1306	1478	16	7	1400
1400	1741.5	1406	1578	16	7	1400
1500	1841.5	1506	1678	18	8	1600
1600	1941.5	1606	1778	18	8	1600
1700	2041.5	1706	1878	20	9	1800
1800	2141.5	1806	1978	20	9	1800
1900	2241.5	1906	2078	22	10	2000
2000	2341.5	2006	2178	22	10	2000
2500	2841.5	2506	2678	28	13	2600
3000	3341.5	3006	3178	32	15	3000

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of R chamfering. (Recommended height 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the work pieces and facilities around the table.
Note 3) The Z-phase first detecting position from the stroke end of the motor side

Dimensions: Belt Drive

LEFB40U/Motor bottom mounting type

Dimensions						
Stroke	\mathbf{L}	A	B	\mathbf{n}	\mathbf{D}	\mathbf{E}
300	641.5	306	478	6	2	400
400	741.5	406	578	6	2	400
500	841.5	506	678	8	3	600
600	941.5	606	778	8	3	600
700	1041.5	706	878	10	4	800
800	1141.5	806	978	10	4	800
900	1241.5	906	1078	12	5	1000
1000	1341.5	1006	1178	12	5	1000
1100	1441.5	1106	1278	14	6	1200
1200	1541.5	1206	1378	14	6	1200
1300	1641.5	1306	1478	16	7	1400
1400	1741.5	1406	1578	16	7	1400
1500	1841.5	1506	1678	18	8	1600
1600	1941.5	1606	1778	18	8	1600
1700	2041.5	1706	1878	20	9	1800
1800	2141.5	1806	1978	20	9	1800
1900	2241.5	1906	2078	22	10	2000
2000	2341.5	2006	2178	22	10	2000
2500	2841.5	2506	2678	28	13	2600
3000	3341.5	3006	3178	32	15	3000

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of R chamfering. (Recommended height 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the work pieces and facilities around the table.
Note 3) The Z-phase first detecting position from the stroke end of the motor side

Series LEF
 Electric Actuator/ Specific Product Precautions 1

Be sure to read this before handling. For Safety Instructionsand Electric Actuator Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com

Design

© Caution

1. Do not apply a load in excess of the operating limit.

Select a suitable actuator by load and allowable moment. If the product is used outside of the operating limit, the eccentric load applied to the guide will be excessive and have adverse effects such as creating play on the guide, degrading accuracy and shortening the life of the product.
2. Do not use the product in applications where excessive external force or impact force is applied to it.
This can cause a failure.

Selection

Warning

1. Do not increase the speed in excess of the operating limit. Select a suitable actuator by the relationship between the allowable work load and speed, and the allowable speed of each stroke. If the product is used outside of the operating limit, it will have adverse effects such as creating noise, degrading accuracy and shortening the life of the product.
2. Do not use the product in applications where excessive external force or impact force is applied to it.
This can cause a failure.
3. When the product repeatedly cycles with partial strokes (see the table below), operate it at a full stroke at least once every 10 strokes.
Otherwise, lubrication can run out.

Model	Partial stroke
LEFS25	65 mm or less
LEFS32	70 mm or less
LEFS40	105 mm or less

4. When external force is applied to the table, it is necessary to add external force to the work load as the total carried load for the sizing.
When a cable duct or flexible moving tube is attached to the actuator, the sliding resistance of the table increases and may lead to operational failure of the product.
5. The forward/reverse torque limit is set to $\mathbf{8 0 0 \%}$ as default.

When the product is operated with a smaller value than 300%, acceleration when driving can decrease. Set the value after confirming the actual device to be used.

Handling

© Caution

1. Do not allow the table to hit the end of stroke.

When incorrect instructions are inputted, such as using the product outside of the operating limit or operation outside of actual stroke through changes in the controller/driver setting and/or origin position, the table may collide against the stroke end of the actuator. Check these points before use.

If the table collides against the stroke end of the actuator, the guide, belt or internal stopper can be broken. This may lead to abnormal operation.

Handle the actuator with care when it is used in the vertical direction as the workpiece will fall freely from its own weight.
2. The actual speed of this actuator is affected by the work load and stroke.

Check the specifications with reference to the model selection section of the catalog.
3. Do not apply a load, impact or resistance in addition to the transferred load during return to origin.
4. Do not dent, scratch or cause other damage to the body and table mounting surfaces.
This may cause unevenness in the mounting surface, play in the guide or an increase in the sliding resistance.
5. Do not apply strong impact or an excessive moment while mounting a workpiece.

If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.
6. Keep the flatness of mounting surface $0.1 \mathbf{~ m m}$ or less.

Unevenness of a workpiece or base mounted on the body of the product may cause play in the guide and an increase in the sliding resistance.
7. When mounting the product, keep a 40 mm or longer diameter for bends in the cable.
8. Do not hit the table with the workpiece in the positioning operation and positioning range.

Series LEF
 Electric Actuator/ Specific Product Precautions 2

Be sure to read this before handling. For Safety Instructionsand Electric Actuator Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com
Handling

\triangle Caution

9. When mounting the product, use screws with adequate length and tighten them with adequate torque.
Tightening the screws with a higher torque than recommended may cause a malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

The traveling parallelism is the reference plane for the body mounting reference plane. If the traveling parallelism for a table is required, set the reference plane against positioning pins etc.

Workpiece fixed

To prevent the workpiece fixing bolts from touching the body, use bolts that are 0.5 mm or shorter than the maximum screw-in depth. If long bolts are used, they can touch the body and cause a malfunction etc.
10. Do not operate by fixing the table and moving the actuator body.
11. Check the specifications for the minimum speed of each actuator.
Otherwise, unexpected malfunctions, such as knocking, may occur.

Maintenance

© Warning

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months $/ 1000 \mathrm{~km} /$ 5 million cycles*	\bigcirc	\bigcirc

* Select whichever comes sooner.

- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

- Items for internal check

1. Lubricant condition on moving parts.
2. Loose or mechanical play in fixed parts or fixing screws.

- Belt replacement for motor parallel type (Guide)

It is recommended that the belt be replaced after being in service for 2 years, or before reaching the following distance.

Model	Distance
LEFS25 $\square \mathbf{H}$	4100 km
LEFS25 $\square \mathbf{A}$	2500 km
LEFS25 $\square \mathbf{B}$	1200 km
Model	Distance
LEFS32 $\square \mathbf{H}$	6000 km
LEFS32 $\square \mathbf{A}$	4000 km
LEFS32 $\square \mathbf{B}$	2000 km
Model	Distance
LEFS40 $\square \mathbf{H}$	6000 km
LEFS40 $\square \mathbf{A}$	4000 km
LEFS40 $\square \mathbf{B}$	2000 km

Selection Example

Operating conditions

- Work load: 60 [kg]
- Speed: 300 [mm/s]
- Acceleration/Deceleration: 3000 [mm/s²]
- Stroke: 300 [mm]
- Mounting orientation: Horizontal
- External force: 10 [N]
- Workpiece mounting condition:

Step 1 Check the speed-work load.

Select the product by referring to "Speed-Work Load Graph" (Page 42).
Selection example) The LEJS63V7B-300 is temporarily selected based on the graph shown on the right side.
The regenerative resistor may be necessary.
Refer to page 42 for "Conditions for Regenerative Resistor (Guide)".
Step 2 Check the cycle time.
Refer to method 1 for a rough estimate, and method 2 for a more precise value.

Method 1: Check the cycle time graph (Pages 43 and 44)

The graph is based on the maximum speed of each size.

Method 2: Calculation

Cycle time T can be found from the following equation.

$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$

- T 1 and T 3 can be obtained by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

The acceleration and deceleration values have upper limits depending on the workpiece mass and the duty ratio. Check that they do not exceed the upper limit, by referring to "Work load-Acceleration/Deceleration Graph (Guide)" (Pages 45 to 47).
For the ball screw type, there is an upper limit of the speed depending on the stroke. Check that if it does not exceed the upper limit, by referring to the specifications (Page 52).

- T2 can be found from the following equation.
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{s}]$
- T4 varies depending on the motor type and load. The value below is recommended.
T4 = 0.05 [s]

Calculation example)
T1 to T4 can be calculated as follows.

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}], \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{300-0.5 \cdot 300 \cdot(0.1+0.1)}{300} \\
& =0.90[\mathrm{~s}]
\end{aligned}
$$

$$
\mathrm{T} 4=0.05 \text { [s] }
$$

Therefore, the cycle time can be obtained as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4$

$$
=0.1+0.90+0.1+0.05
$$

$$
=1.15[\mathrm{~s}]
$$

<Speed-Work load graph>
(LEJS63)

L : Stroke [mm]
V : Speed [mm / s]
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right]$

T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until in position is completed
T5: Resting time [s]
Time the product is not running
T6: Total time [s]
Total time from T1 to T5
Duty ratio: Ratio of T to T6 $T \div T 6 \times 100$

Selection example) Select the LEJS63V7B-300 from the graph on the right side.
Confirm that the external force is $20[\mathrm{~N}]$ or less.
(The external force is the resistance due to cable duct, flexible trunking or air tubing.)
<Dynamic allowable moment>
(LEJS63)
大SMC

Speed-Work Load Graph/Conditions for "Regenerative Resistor" (Guide)
LEJS40V6■/Ball Screw Drive

LEJS63V7■/Ball Screw Drive

Horizontal

LEJB40V6T/Belt Drive

Horizontal

* When the stroke of the LEJB40 series exceeds 1000 mm, the work load is 10 kg .

"Regenerative resistor" area

* When using the actuator in the "Regenerative resistor" area, download the "AC servo capacity selection program/SigmaJunmaSize+" from the SMC website. Then, calculate the necessary regenerative resistor capacity to prepare an appropriate external regenerative resistor.
* Regenerative resistor should be provided by the customer.

Vertical

LEJB63V7T/Belt Drive

Horizontal

Applicable Motor/Driver

Model	Applicable model	
	Motor	Servopack (SMC driver)
LEJ $\square \mathbf{4 0} \square$	SGMJV-01A3A	SGDV-R90A11 \square (LECYM2-V5) SGDV-R90A21 \square (LECYU2-V5)
LEJ $\square \mathbf{6 3} \square$	SGMJV-02A3A	SGDV-1R6A11 \square (LECYM2-V7) SGDV-1R6A21 \square (LECYU2-V7)

Series LEJ

Cycle Time Graph (Guide)

LEJS40/Ball Screw Drive
LEJS40 $\square \mathrm{H}$

LEJS40 \square A

LEJS40 \square B

* Work load/acceleration/deceleration graph
* Maximum speed/acceleration/deceleration values graph for each stroke

LEJS63/Ball Screw Drive

LEJS63 $\square \mathrm{H}$

LEJS63 \square A

LEJS63 \square B

Model Selection

Cycle Time Graph (Guide)

LEJB40/Belt Drive

LEJB63/Belt Drive

[^5]
Series LEJ

Work Load-Acceleration/Deceleration Graph (Guide)

LEJS40/Ball Screw Drive: Horizontal
LEJS40 \square H

LEJS40 \square A

LEJS40 \square B

LEJS63/Ball Screw Drive: Horizontal
LEJS63 \square H

LEJS63 \square A

LEJS63 \square B

Work Load-Acceleration/Deceleration Graph (Guide)

LEJS40/Ball Screw Drive: Vertical
LEJS40 \square H

LEJS40 \square A

LEJS40 \square B

LEJS63/Ball Screw Drive: Vertical
LEJS63 \square H

LEJS63 \square A

LEJS63 \square B

Series LEJ

Work Load-Acceleration/Deceleration Graph (Guide)

LEJB40/Belt Drive: Horizontal

LEJB63/Belt Drive: Horizontal

			Acceleration/Deceleration $\begin{array}{lll} & -\infty 5000 \mathrm{~mm} / \mathrm{s}^{2} & ---10000 \mathrm{~mm} / \mathrm{s}^{2} \\ & ---15000 \mathrm{~mm} / \mathrm{s}^{2} & \cdots-\cdots \cdot 20000 \mathrm{~mm} / \mathrm{s}^{2}\end{array}$														
$\stackrel{\square}{\text { c }}$	Load overhanging direction m : Work load [kg] Me: Dynamic allowable moment [$\mathrm{N} \cdot \mathrm{m}$] L: Overhang to the work load center of gravity [mm]		Model														
-			LEJS40		LEJS63				LEJB40					LEJB63			
	(\%) Me																
$\stackrel{\overline{\bar{\sigma}}}{3}$																	
		Y															

Series LEJ

Dynamic Allowable Moment

Calculation of Guide Load Factor

1. Decide operating conditions. Model: LEJS/LEJB
Size: 40/63
Mounting orientation: Horizonta/Bottom/Wal/Vertica Acceleration [mm/s²]: a
Work load [kg]: m
Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph with reference to the model, size and mounting orientation.
3. Based on the acceleration and work load, obtain the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction $\alpha x=X c / L x, \alpha y=Y c / L y, \alpha z=Z c / L z$
5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$ and $\alpha \mathbf{z}$ is 1 or less $\alpha x+\alpha y+\alpha z \leq 1$
When 1 is exceeded, please consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LEJS

Size: 40
Mounting orientation: Horizontal
Acceleration [mm/s²]: 5000
Work load [kg]: 20
Work load center position [mm]: Xc=0, Yc = 50, Zc = 200
2. Select the graph on page 48 , top and left side first row.

3. $\mathbf{L x}=\mathbf{1 8 0} \mathbf{~ m m}, L y=\mathbf{1 7 0} \mathbf{~ m m}, L z=\mathbf{3 6 0} \mathbf{~ m m}$
4. The load factor for each direction can be obtained as follows
$\alpha x=0 / 180=0$
$\alpha y=50 / 170=0.29$
$\alpha z=200 / 360=0.56$

Table Accuracy（Reference Value）

Model	Traveling parallelism［mm］（Every 300 mm ）	
	（1）C side traveling parallelism to A side	（2）D side traveling parallelism to B side
	0.05	0.03
LEJ $\square \mathbf{6 3}$	0.05	0.03

Note）Traveling parallelism does not include the mounting surface accuracy．

Table Displacement（Reference Value）

Note）This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table．（Table clearance is included．）

Electric Actuator/High Rigidity Slider Type Ball Screw Drive AC Servo Mootor

Series LEJS

How to Order

(2) Motor type *1

Symbol	Type	Output [W]	Actuator size	Compatible driver
V6	AC servo motor (Absolute encoder)	100	40	LECYM2-V5 LECYU2-V5
V7	AC servo motor (Absolute encoder)	200	63	LECYM2-V7 LECYU2-V7

*1: For motor type V6, the compatible driver part number suffix is V 5 .

3 Lead [mm]		
Symbol	LEJS40	LEJS63
H	24	30
A	16	20
B	8	10

(4) St	ke $[\mathrm{mm}]^{* 2}$
200	
to	*2: Refer to th
1500	below for d

6

Cable type ${ }^{* 4, * 5}$

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

*5: The motor and encoder cables are included. (The lock cable is included when the motor with lock option is selected.)

Nil	Without cable
$\mathbf{3}$	3 m
$\mathbf{5}$	5 m
\mathbf{A}	10 m
\mathbf{C}	20 m

*6: The length of the motor, encoder and lock cables are the same.

8 Driver type *4

	Compatible driver	Power supply voltage [V]
Nil	Without driver	-
M2	LECYM2-V \square	200 to 230
U2	LECYU2-V \square	200 to 230

(9) I/O connector

NiI	Without connector
H	With connector

*4: When the driver type is selected, the cable is included. Select cable type and cable length.
*3: Please consult with SMC for non-standard strokes as they are produced as special orders.
For auto switches, refer to pages 61 to 63.

Compatible Drivers

Specifications
LEJS40/63 AC Servo Motor (100/200 W)

Model				LEJS40V6			LEJS63V7		
	Stroke [mm] Note 1)			$\begin{gathered} 200,300,400,500,600,700,800 \\ 900,1000,1200 \end{gathered}$			$\begin{gathered} 300,400,500,600,700,800,900 \\ 1000,1200,1500 \end{gathered}$		
	Work load [kg] Note 2)		Horizontal	15	30	55	30	45	85
			Vertical	3	5	10	6	10	20
	Speed Note 3) [mm / s]	Stroke range	Up to 500	1800	1200	600	1800	1200	600
			501 to 600	1580	1050	520	1800	1200	600
			601 to 700	1170	780	390	1800	1200	600
			701 to 800	910	600	300	1390	930	460
			801 to 900	720	480	240	1110	740	370
			901 to 1000	580	390	190	900	600	300
			1001 to 1100	480	320	160	750	500	250
			1101 to 1200	410	270	130	630	420	210
			1201 to 1300	-	-	-	540	360	180
			1301 to 1400	-	-	-	470	310	150
			1401 to 1500	-	-	-	410	270	130
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			20000 (Refer to pages 45 to 47 for limit according to work load and duty ratio.)					
	Positioning repeatability [mm] Note 4)			± 0.02					
	Lost motion [mm] Note 5)			0.1 or less					
	Lead [mm]			24	16	8	30	20	10
	Impact/Vibration resistance [m/s ${ }^{\mathbf{2}}$] Note 6)			50/20					
	Actuation type			Ball screw					
	Guide type			Linear guide					
	Operating temperature range			41 to $104^{\circ} \mathrm{F}$ (5 to $40^{\circ} \mathrm{C}$)					
	Operating humidity range [\%RH]			90 or less (No condensation)					
	Regenerative resistor			May be required depending on speed and work load. (Refer to page 42.)					
	Motor output [W]/Size [mm]			100/ $\square 40$			200/ $\square 60$		
	Motor type			AC servo motor (200 VAC)					
	Encoder			Absolute 20-bit encoder (Resolution: $1048576 \mathrm{p} / \mathrm{rev}$)					
	Note 7)Power consumption [W]		Horizontal	65			80		
			Vertical	165			235		
	Standby power consumption when operating [W] Note 8)		Horizontal	2			2		
			Vertical	10			12		
	Max. instantaneous power consumption [W] Note 9)			445			725		
- ¢	Type Note 10)			Non-magnetizing lock					
令気	Holding force lbf [N]			15 [67]	23 [101]	45 [202]	24 [108]	36 [162]	73 [324]
등:	Power consumption at $68^{\circ} \mathrm{F}\left(\mathbf{2 0}{ }^{\circ} \mathrm{C}\right)[\mathrm{W}]^{\text {Note 11) }}$			5.5			6		
-	Rated voltage [V]			$24 \mathrm{VDC}_{-10 \%}^{0}$					

Note 1) Please consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) Check "Speed-Work Load Graph (Guide)" on page 42.
Note 3) The allowable speed changes according to the stroke.
Note 4) Conforming to JIS B 6191-1999
Note 5) A reference value for correcting an error in reciprocal operation.
Note 6) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)

Note 7) The power consumption (including the driver) is for when the actuator is operating.
Note 8) The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
Note 9) The maximum instantaneous power consumption (including the driver) is for when the actuator is operating.
Note 10) Only when motor option "With lock" is selected.
Note 11) For an actuator with lock, add the power consumption for the lock.
Note 12) Sensor magnet position is located in the table center. For detailed dimensions, refer to "Auto Switch Mounting Position".
Note 13) Do not allow collisions at either end of the table traveling distance. Additionally, when running the positioning operation, do not set within 2 mm of both ends.
Note 14) For the manufacture of intermediate strokes, please contact SMC. (LEJS40/Manufacturable stroke range: 200 to 1200 mm , LEJS63/ Manufacturable stroke range: 300 to 1500 mm)

Weight

Model	LEJS40									
Stroke [mm]	200	300	400	500	600	700	800	900	1000	1200
Product weight [kg]	5.6	6.4	7.1	7.9	8.7	9.4	10.2	11.0	11.7	13.3
Additional weight with lock [kg]	0.3 (Absolute encoder)									
Model	LEJS63									
Stroke [mm]	300	400	500	600	700	800	900	1000	1200	1500
Product weight [kg]	11.4	12.7	13.9	15.2	16.4	17.7	18.9	20.1	22.6	26.4
Additional weight with lock [kg]	0.7 (Absolute encoder)									

Series LEJS

Construction

Component Parts

No	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw assembly	-	
$\mathbf{3}$	Linear guide assembly	-	
$\mathbf{4}$	Table	Aluminum alloy	Anodized
$\mathbf{5}$	Housing A	Aluminum alloy	Coating
$\mathbf{6}$	Housing B	Aluminum alloy	Coating
$\mathbf{7}$	Seal magnet	-	
$\mathbf{8}$	Motor cover	Aluminum alloy	Anodized
$\mathbf{9}$	End cover A	Aluminum alloy	Anodized
$\mathbf{1 0}$	Roller shaft	Stainless steel	
$\mathbf{1 1}$	Roller	Synthetic resin	
$\mathbf{1 2}$	Bearing stopper	Carbon steel	

Electric Actuator/High Rigidity Slider Type Ball Screw Drive
 Series LEJS

Dimensions: Ball Screw Drive

LEJS40

Note 1) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) The Z-phase first detecting position from the stroke end of the motor side
Note 3) Auto switch magnet is located in the table center.

Model	L		A	B	n	C	D	E
	Without lock	With lock						
LEJS40V $\square \square$-200 $\square-\square \square \square \square$	523.5	563.5	206	260	6	1	200	80
LEJS40V $\square \square$-300 $\square-\square \square \square \square$	623.5	663.5	306	360	6	1	200	180
LEJS40V $\square \square-400 \square-\square \square \square \square$	723.5	763.5	406	460	8	2	400	80
LEJS40V $\square \square-500 \square-\square \square \square \square$	823.5	863.5	506	560	8	2	400	180
LEJS40V $\square \square-600 \square-\square \square \square \square$	923.5	963.5	606	660	10	3	600	80
LEJS40V $\square \square-700 \square-\square \square \square \square$	1023.5	1063.5	706	760	10	3	600	180
LEJS40V $\square \square$-800 \square - $\square \square \square \square$	1123.5	1163.5	806	860	12	4	800	80
LEJS40V $\square \square$-900 $\square-\square \square \square \square$	1223.5	1263.5	906	960	12	4	800	180
LEJS40V $\square \square$-1000 $\square-\square \square \square \square$	1323.5	1363.5	1006	1060	14	5	1000	80
LEJS40V $\square \square$-1200 $\square-\square \square \square \square$	1523.5	1563.5	1206	1260	16	6	1200	80

Series LEJS

Dimensions: Ball Screw Drive
LEJS63

Note 1) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) The Z-phase first detecting position from the stroke end of the motor side
Note 3) Auto switch magnet is located in the table center.

Model	L		A	B	n	C	D	E
	Without lock	With lock						
LEJS63V $\square \square$-300 \square - $\square \square \square \square$	656.5	696.5	306	370	6	1	200	180
LEJS63V $\square \square$-400 \square - $\square \square \square \square$	756.5	796.5	406	470	8	2	400	80
LEJS63V $\square \square$-500 \square - $\square \square \square \square$	856.5	896.5	506	570	8	2	400	180
LEJS63V $\square \square$-600 $\square-\square \square \square \square$	956.5	996.5	606	670	10	3	600	80
LEJS63V $\square \square$-700 $\square-\square \square \square \square$	1056.5	1096.5	706	770	10	3	600	180
LEJS63V $\square \square$-800 $\square-\square \square \square \square$	1156.5	1196.5	806	870	12	4	800	80
LEJS63V $\square \square$-900 \square - $\square \square \square \square$	1256.5	1296.5	906	970	12	4	800	180
LEJS63V $\square \square$-1000 $\square-\square \square \square \square$	1356.5	1396.5	1006	1070	14	5	1000	80
LEJS63V $\square \square$-1200 $\square-\square \square \square \square$	1556.5	1596.5	1206	1270	16	6	1200	80
LEJS63V $\square \square$-1500 $\square-\square \square \square \square$	1856.5	1896.5	1506	1570	18	7	1400	180

Electric Actuator/High Rigidity Slider Type Belt Drive
 AC Servo Motor

 Series LEJB
How to Order

(2) Motor type *1

Symbol	Type	Output [W]	Actuator size	Compatible driver
V6	AC servo motor (Absolute encoder)	100	40	LECYM2-V5 LECYU2-V5
V7	AC servo motor (Absolute encoder)	200	63	LECYM2-V7 LECYU2-V7

*1: For motor type V6, the compatible driver part number suffix is V5.

6 Cable type ${ }^{* 4, * 5}$

Nil	Without cable
S	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

*5: The motor and encoder cables are included. (The lock cable is included when the motor with lock option is selected.)

7 Cable length [m] ${ }^{* 4, * 6}$Nil Without cable $\mathbf{3}$ 3 m $\mathbf{5}$ 5 m \mathbf{A} 10 m \mathbf{C} 20 m

*6: The length of the motor, encoder and lock cables are the same.

(9) I/O connector

Nil	Without connector
\mathbf{H}	With connector

Applicable Stroke Table *3

*3: Please consult with SMC for non-standard strokes as they are produced as special orders.
*4: When the driver type is selected, the cable is included. Select cable type and cable length.

For auto switches, refer to pages 61 to 63.

Compatible Drivers

Series LEJB

Specifications

LEJB40/63 AC Servo Motor

Note 1) Please consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) Check "Speed-Work Load Graph (Guide)" on page 42.
Note 3) Conforming to JIS B 6191-1999
Note 4) A reference value for correcting an error in reciprocal operation.
Note 5) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 6) The power consumption (including the driver) is for when the actuator is operating.
Note 7) The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
Note 8) The maximum instantaneous power consumption (including the driver) is for when the actuator is operating.
Note 9) Only when motor option "With lock" is selected.
Note 10) For an actuator with lock, add the power consumption for the lock.
Note 11) Sensor magnet position is located in the table center.
For detailed dimensions, refer to "Auto Switch Mounting Position".
Note 12) Do not allow collisions at either end of the table traveling distance. Additionally, when running the positioning operation, do not set within 2 mm of both ends.
Note 13) For the manufacture of intermediate strokes, please contact SMC.
(LEJB40/Manufacturable stroke range: 200 to 2000 mm , LEJB63/Manufacturable stroke range: 300 to 3000 mm)

Weight

Model	LEJB40											
Stroke [mm]	200	300	400	500	600	700	800	900	1000	1200	1500	2000
Product weight [kg]	5.7	6.4	7.1	7.7	8.4	9.1	9.8	10.5	11.2	12.6	14.7	18.1
Additional weight with lock [kg]	0.3 (Absolute encoder)											
Model	LEJB63											
Stroke [mm]	300	400	500	600	700	800	900	1000	1200	1500	2000	3000
Product weight [kg]	11.5	12.7	13.8	15.0	16.2	17.4	18.6	19.7	22.1	25.7	31.6	43.4
Additional weight with lock [kg]	0.7 (Absolute encoder)											

Construction

Motor details

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
2	Belt	-	
3	Belt holder	Carbon steel	
4	Belt stopper	Aluminum alloy	
5	Linear guide assembly	-	
6	Table	Aluminum alloy	Anodized
7	Housing A	Aluminum alloy	Coating
8	Housing B	Aluminum alloy	Coating
9	Seal magnet	Aluminum alloy	Anodized
10	Motor cover	Aluminum alloy	Anodized
11	End cover A	Aluminum alloy	Anodized
12	End cover B	Stainless steel	
13	Roller shaft	Synthetic resin	
14	Roller	Aluminum alloy	
15	Pulley holder	Aluminum alloy	
16	Drive pulley	Aluminum alloy	
17	Speed reduction pulley	Aluminum alloy	
18	Motor pulley	Aluminum alloy	
19	Spacer		

No.	Description	Material	Note
$\mathbf{2 0}$	Pulley shaft A	Stainless steel	
$\mathbf{2 1}$	Pulley shaft B	Stainless steel	
$\mathbf{2 2}$	Table cap	Synthetic resin	
$\mathbf{2 3}$	Seal band stopper	Synthetic resin	
$\mathbf{2 4}$	Blanking plate	Aluminum alloy	Anodized
$\mathbf{2 5}$	Motor mount plate	Carbon steel	
$\mathbf{2 6}$	Pulley block	Aluminum alloy	Anodized
$\mathbf{2 7}$	Pulley cover	Aluminum alloy	Anodized
$\mathbf{2 8}$	Belt stopper	Aluminum alloy	
$\mathbf{2 9}$	Side plate	Aluminum alloy	Anodized
$\mathbf{3 0}$	Motor plate	Carbon steel	
$\mathbf{3 1}$	Belt	-	
$\mathbf{3 2}$	Motor	-	
$\mathbf{3 3}$	Grommet	NBR	
$\mathbf{3 4}$	Dust seal band	Stainless steel	
$\mathbf{3 5}$	Bearing	-	
$\mathbf{3 6}$	Bearing	-	
$\mathbf{3 7}$	Stopper pin	Stainless steel	
$\mathbf{3 8}$	Magnet	-	

LEJB40

(ø7)

Note 1) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) The Z-phase first detecting position from the stroke end of the motor side
Note 3) Auto switch magnet is located in the table center.

Model	L	A	B	n	C	D	E
LEJB40V $\square \square$-200 \square - $\square \square \square \square$	542	206	260	6	1	200	80
LEJB40V $\square \square$-300 $\square-\square \square \square \square$	642	306	360	6	1	200	180
LEJB40V $\square \square$-400 \square - $\square \square \square \square$	742	406	460	8	2	400	80
LEJB40V $\square \square$-500 $\square-\square \square \square \square$	842	506	560	8	2	400	180
LEJB40V $\square \square$-600 $\square-\square \square \square \square$	942	606	660	10	3	600	80
LEJB40V $\square \square$-700 $\square-\square \square \square \square$	1042	706	760	10	3	600	180
LEJB40V $\square \square$-800 \square - $\square \square \square \square$	1142	806	860	12	4	800	80
LEJB40V $\square \square$-900 \square - $\square \square \square \square$	1242	906	960	12	4	800	180
LEJB40V $\square \square$-1000 $\square-\square \square \square \square$	1342	1006	1060	14	5	1000	80
LEJB40V $\square \square$-1200 $\square-\square \square \square \square$	1542	1206	1260	16	6	1200	80
LEJB40V $\square \square$-1500 $\square-\square \square \square \square$	1842	1506	1560	18	7	1400	180
LEJB40V $\square \square$-2000 $\square-\square \square \square \square$	2342	2006	2060	24	10	2000	80

Dimensions: Belt Drive

LEJB63

Note 1) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) The Z-phase first detecting position from the stroke end of the motor side
Note 3) Auto switch magnet is located in the table center.

Model	L	A	B	n	C	D	E
LEJB63V $\square \square$-300 \square - $\square \square \square \square$	704	306	370	6	1	200	180
LEJB63V $\square \square$-400 $\square-\square \square \square \square$	804	406	470	8	2	400	80
LEJB63V $\square \square$-500 \square - $\square \square \square \square$	904	506	570	8	2	400	180
LEJB63V $\square \square$-600 $\square-\square \square \square \square$	1004	606	670	10	3	600	80
LEJB63V $\square \square$-700 $\square-\square \square \square \square$	1104	706	770	10	3	600	180
LEJB63V $\square \square$-800 $\square-\square \square \square \square$	1204	806	870	12	4	800	80
LEJB63V $\square \square$-900 $\square-\square \square \square \square$	1304	906	970	12	4	800	180
LEJB63V $\square \square$-1000 $\square \square \square \square \square$	1404	1006	1070	14	5	1000	80
LEJB63V $\square \square$-1200 $\square-\square \square \square \square$	1604	1206	1270	16	6	1200	80
LEJB63V $\square \square$-1500 $\square-\square \square \square \square$	1904	1506	1570	18	7	1400	180
LEJB63V $\square \square$-2000 $\square-\square \square \square \square$	2404	2006	2070	24	10	2000	80
LEJB63V $\square \square$-3000 $\square-\square \square \square \square$	3404	3006	3070	34	15	3000	80

Auto Switch Mounting Position

Model	Size	A	B	C	Operating range
LEJS	40	77	80	160	5.5
LEJB					5.0
LEJS	63	83	86	172	7.0
LEJB					6.5

Note) The operating range is a guideline including hysteresis, not meant to be guaranteed. There may be large variations (as much as $\pm 30 \%$) depending on the ambient environment.

Auto Switch Mounting

When mounting the auto switches, they should be inserted into the actuator's auto switches mounting groove from the direction shown in the drawing on the below. Once in the mounting position, use a flat head watchmaker's screwdriver to tighten the included auto switch mounting screw.

Auto Switch Mounting Screw Tightening Torque

Auto switch model	Tightening torque
$\mathbf{D}-\mathbf{M 9} \square(\mathbf{V})$ $\mathbf{D}-\mathbf{M 9} \square \mathbf{W}(\mathbf{V})$	0.89 to 1.33 lbf in $(0.10$ to $0.15 \mathrm{~N} \cdot \mathrm{~m})$

Note) When tightening the auto switch mounting screw, use a watchmaker's screwdriver with a handle diameter of about 5 to 6 mm .

Solid State Auto Switch Direct Mounting Style D－M9N（V）／D－M9P（V）／D－M9B（V）

Refer to SMC website for the details about products conforming to the

Grommet

－2－wire load current is reduced （ 2.5 to 40 mA ）．
－Flexibility is 1.5 times greater than the conventional model （SMC comparison）．
－Using flexible cable as standard．

\triangle Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body．The auto switch may be damaged if a screw other than the one supplied is used．

Auto Switch Specifications
international standards．
PLC：Programmable Logic Controller

D－M9 \square ，D－M9 \square V（With indicator light）						
Auto switch model	D－M9N	D－M9NV	D－M9P	D－M9PV	D－M9B	D－M9BV
Electrical entry	In－line	Perpendicular	In－line	Perpendicular	In－line	Perpendicular
Wiring type	3－wire				2－wire	
Output type	NPN		PNP		－	
Applicable load	IC circuit，Relay，PLC				24 VDC relay，PLC	
Power supply voltage	5，12， 24 VDC（4．5 to 28 V ）				－	
Current consumption	10 mA or less				－	
Load voltage	28 VDC or less		－		24 VDC （10 to 28 VDC ）	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA （ 2 V or less at 40 mA ）				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED lights up when turned ON．					
Standards	CE marking，RoHS					

Oilproof Heavy－duty Lead Wire Specifications

Auto switch model		D－M9N \square	D－M9P \square	D－M9B \square
Sheath	Outside diameter［mm］	2.7×3.2（ellipse）		
Insulator	Number of cores	3 cores	e／Black）	2 cores（Brown／Blue）
	Outside diameter［mm］	$\varnothing 0.9$		
Conductor	Effective area［mm²］	0.15		
	Strand diameter［mm］	$\varnothing 0.05$		
Minimum bending radius［mm］（Reference value）		20		

Note 1）Refer to the Best Pneumatics No． 2 for solid state auto switch common specifications． Note 2）Refer to the Best Pneumatics No． 2 for lead wire lengths．

Weight

Auto switch model		D－M9N（V）	D－M9P（V）	D－M9B（V）
Lead wire length	$0.5 \mathrm{~m} \mathrm{(Nil)}$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathrm{~L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

Dimensions

（mm）
D－M9 \square

2-Color Indication Solid State Auto Switch Direct Mounting Style

 D-M9NW(V)/D-M9PW(V)/D-M9BW(V)Refer to SMC website for the details

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Flexibility is 1.5 times greater than the conventional model (SMC comparison).
- Using flexible cable as standard.
- The optimum operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.
about products conforming to the international standards.
Auto Switch Specifications

| PLC: Programmable Logic Controller | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| D-M9 \square W, D-M9 | | | | |

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW \square	D-M9PW \square	D-M9BW \square
Sheath	Outside diameter [mm]	2.7×3.2 (ellipse)		
Insulator	Number of cores	3 cores (B	ue/Black)	2 cores (Brown/Blue)
	Outside diameter [mm]	$\varnothing 0.9$		
Conductor	Effective area [mm^{2}]	0.15		
	Strand diameter [mm]	$ø 0.05$		
Minimum bending radius [mm] (Reference value)		20		

Note 1) Refer to the Best Pneumatics No. 2 for solid state auto switch common specifications. Note 2) Refer to the Best Pneumatics No. 2 for lead wire lengths.

Weight

(g)

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
Lead wire length	$0.5 \mathrm{~m} \mathrm{(Nil)}$	8	7	
	$1 \mathrm{~m} \mathrm{(M)}$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m} \mathrm{(Z)}$	68	63	

Dimensions

D-M9■W

D-M9 \square WV

Series LEJ Electric Actuator／ Specific Product Precautions 1

Be sure to read this before handling．For Safety Instructions and Electric Actuator Precautions，refer to＂Handling Precautions for SMC Products＂and the Operation Manual on SMC website，http：／／www．smcworld．com

Design

\triangle Caution

1．Do not apply a load in excess of the operating limit．
Select a suitable actuator by work load and allowable moment．If the product is used outside of the operating limit，the eccentric load applied to the guide will be excessive and have adverse effects such as creating play on the guide，degrading accuracy and shortening the life of the product．
2．Do not use the product in applications where excessive external force or impact force is applied to it．
The product can be damaged．
The components including the motor are manufactured to precise tolerances．So that even a slight deformation may cause a malfunc－ tion or seizure．

Selection

Warning

1．Do not increase the speed in excess of the operating limit．

Select a suitable actuator by the relationship of the allowable work load and speed，and the allowable speed of each stroke．If the product is used outside of the operating limit，it will have adverse effects such as creating noise，degrading accuracy and shortening the life of the product．
2．When the product repeatedly cycles with partial strokes （ 100 mm or less），lubrication can run out．Operate it at a full stroke at least once a day or every 1000 strokes．
3．When external force is applied to the table，it is neces－ sary to add external force to the work load as the total carried load for the sizing．
When a cable duct or flexible moving tube is attached to the actuator，the sliding resistance of the table increases and may lead to operational failure of the product．
Handling

© Caution

1．Do not allow the table to hit the end of stroke．
When incorrect instructions are inputted，such as using the product outside of the operating limit or operation outside of actual stroke through changes in the controller／driver setting and／or origin position，the table may collide against the stroke end of the actuator．Please check these points before use．
If the table collides against the stroke end of the actuator，the guide，belt or internal stopper can be broken．This may lead to abnormal operation．

Handle the actuator with care when it is used in the vertical direction as the workpiece will fall freely from its own weight．
2．The actual speed of this actuator is affected by the work load and stroke．

Check specifications with reference to the model selection section of the catalog．
3．Do not apply a load，impact or resistance in addition to the transferred load during return to origin．
4．Do not dent，scratch or cause other damage to the body and table mounting surfaces．

This may cause unevenness in the mounting surface，play in the guide or an increase in the sliding resistance．
5．Do not apply strong impact or an excessive moment while mounting the product or a workpiece．
If an external force over the allowable moment is applied，it may cause play in the guide or an increase in the sliding resistance．
6．Keep the flatness of mounting surface 0.1 mm or less．
Unevenness of a workpiece or base mounted on the body of the product may cause play in the guide and an increase in the sliding resistance．

In the case of overhang mounting（including cantilever），to avoid deflection of the actuator body，use a support plate or support guide．
7．When mounting the actuator，use all mounting holes．
If all mounting holes are not used，it influences the specifications， e．g．，the amount of displacement of the table increases．
8．Do not hit the table with the workpiece in the position－ ing operation and positioning range．
9．Do not apply external force to the dust seal band．
Particularly during the transportation．

Be sure to read this before handling. For Safety Instructions and Electric Actuator Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com

Handling

\triangle Caution

10. When mounting the product, use screws with adequate length and tighten them with adequate torque.
Tightening the screws with a higher torque than recommended may cause a malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

Workpiece fixed

Model	Bolt	Max. tightening torque lbf.ft (N.m)	L (Max. screw-in depth) (mm)
LEJ $\square 40$	M6 $\times 1$	$3.8(5.2)$	10
LEJ $\square 63$	M8 $\times 1.25$	$9.2(12.5)$	12

To prevent the workpiece fixing bolts from touching the body, use bolts that are 0.5 mm or shorter than the maximum screw-in depth. If long bolts are used, they can touch the body and cause a malfunction, etc.
11. Do not operate by fixing the table and moving the actuator body.
12. The belt drive actuator cannot be used vertically for applications.
13. Vibration may occur during operation, this could be caused by the operating conditions.
If it occurs, refer to the operation manuals of the driver and actuator.
14. When mounting the actuator using the body mounting reference plane, use a pin. Set the height of the pin to be 5 mm or more because of chamfering. (Recommended height 6 mm)

Maintenance

\triangle Warning

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check	Belt check
Inspection before daily operation	\bigcirc	-	-
Inspection every 6 months/1000 km/ 5 million cycles*	\bigcirc	\bigcirc	\bigcirc

* Select whichever comes sooner.

- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

- Items for internal check

1. Lubricant condition on moving parts.

* For lubrication, use lithium grease No. 2.

2. Loose or mechanical play in fixed parts or fixing screws.

- Items for belt check

Stop operation immediately and replace the belt when belt appear to be below. Further, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out.

Canvas fiber becomes fuzzy. Rubber is removed and the fiber becomes whitish. Lines of fibers become unclear.
b. Peeling off or wearing of the side of the belt

Belt corner becomes round and frayed thread sticks out.
c. Belt partially cut

Belt is partially cut. Foreign matter caught in teeth other than cut part causes flaw.
d. Vertical line of belt teeth

Flaw which is made when the belt runs on the flange.
e. Rubber back of the belt is softened and sticky.
f. Crack on the back of the belt

Selection Procedure

Positioning Control Selection Procedure

> Step 1
> Check the work load-speed. (Vertical transfer)

Step 2 Check the cycle time.

Selection Example

Operating
conditions
-Workpiece mass: 16 [kg] •Speed: 300 [mm/s]

- Acceleration/Deceleration: 5000 [mm/s²]
- Stroke: 300 [mm]
-Workpiece mounting condition: Vertical upward downward transfer

Step 1 Check the work load-speed. <Speed-Vertical work load graph> Select the target model based on the workpiece mass and speed with reference to the <Speed-Vertical work load graph>.
Selection example) The LEY25 $\square \mathbf{B}$ is temporarily selected based on the graph shown on the right side.

* It is necessary to mount a guide outside the actuator when used for horizontal transfer. When selecting the target model, refer to pages 75 and 76 for the horizontal work load in the specifications, and page 98 for the precautions.

<Speed-Vertical work load graph>

The regenerative resistor may be necessary. Refer to pages 69 and 70 for "Conditions for Regenerative Resistor (Guide)".

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method.

- Cycle time T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

-T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

-T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the conditions such as motor types, load and in positioning of the step data. Therefore, please calculate the settling time with reference to the following value.

$$
\mathrm{T} 4=0.05[\mathrm{~s}]
$$

Calculation example)

L : Stroke [mm] ... (Operating condition)
V : Speed [mm/s] ... (Operating condition) a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)

T1: Acceleration time [s] ... Time until reaching the set speed T2: Constant speed time [s] ... Time while the actuator is operating at a constant speed
T3: Deceleration time [s] ... Time from the beginning of the constant speed operation to stop
T4: Settling time [s] ... Time until in position is completed

T1 to T4 can be calculated as follows.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=300 / 5000=0.06[\mathrm{~s}], \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=300 / 5000=0.06[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}=\frac{300-0.5 \cdot 300 \cdot(0.06+0.06)}{300}=0.94[\mathrm{~s}]$
$\mathrm{T} 4=0.05[\mathrm{~s}]$
Therefore, the cycle time can be obtained as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4=0.06+0.94+0.06+0.05=1.11[\mathrm{~s}]$
Based on the above calculation result, the LEY25 $\square \mathrm{B}-300$ is selected.

Pushing Control Selection Procedure

Selection Example

Operating conditions

```
-Mounting condition: Horizontal (pushing) \bulletPushing speed: 35[mm/s]
    \bulletJig weight: 0.5 [kg] - Stroke: 300 [mm]
-Pushing force: 200 [N]
```

Select the target model based on the torque limit／command value and pushing force with reference to the＜Force conversion graph＞．
Selection example）
Based on the graph shown on the right side，
－Torque limit／Command value： 72 ［\％］
－Pushing force： 200 ［N］

Step 2 Check the lateral load on the rod end．

＜Graph of allowable lateral load on the rod end＞
Confirm the allowable lateral load on the rod end of the actuator： LEY25B，which has been selected temporarily with reference to the ＜Graph of allowable lateral load on the rod end＞．
Selection example）
Based on the graph shown on the right side，
－Jig weight： $0.5[\mathrm{~kg}] \approx 5[\mathrm{~N}]$
－Product stroke： 300 ［mm］
Therefore，the lateral load on the rod end is in the allowable range．

Based on the above calculation result，the LEY25B－300 is selected．

Step 1 Check the pushing force．＜Force conversion graph＞

＜Graph of allowable lateral load on the rod end＞

＜Force conversion graph＞

Series LEY

Speed-Work Load Graph/Conditions for "Regenerative Resistor" (Guide)

LEY25■V6 (Motor mounting position: Top/Parallel, In-line)

LEY32 \square V7 (Motor mounting position: Top/Parallel)

Vertical

Horizontal

Horizontal

LEY32DV7 (Motor mounting position: In-line)

"Regenerative resistor" area

* When using the actuator in the "Regenerative resistor" area, download the "AC servo capacity selection program/SigmaJunmaSize+" from the SMC website. Then, calculate the necessary regenerative resistor capacity to prepare an appropriate external regenerative resistor.
* Regenerative resistor should be provided by the customer

Horizontal

Applicable Motor/Driver

Model	Applicable model	
	Motor	Servopack (SMC driver)
SGMJV-01A3A	SGDV-R90A11 \square (LECYM2-V5) SGDV-R90A21 \square (LECYU2-V5)	
LEY32 \square	SGMJV-02A3A	SGDV-1R6A11 SGDV-1R6A21 (LECYM2-V7) SECYU2-V7)

Speed-Work Load Graph/Conditions for "Regenerative Resistor" (Guide)
LEY63 \square V8 (Motor mounting position: Top/Parallel, In-line)

Vertical

"Regenerative resistor" area

* When using the actuator in the "Regenerative resistor" area, download the "AC servo capacity selection program/SigmaJunmaSize+" from the SMC website. Then, calculate the necessary regenerative resistor capacity to prepare an appropriate external regenerative resistor.
* Regenerative resistor should be provided by the customer.

Horizontal

Applicable Motor/Driver

Product no.	Applicable model	
	Motor	Servopack (SMC driver)
LEY63 \square	SGMJV-04A3A	SGDV-2R8A11 \square (LECYM2-V8)
	SGDV-2R8A21 \square (LECYU2-V8)	

Allowable Stroke Speed

Model	AC servo motor	Lead		Stroke [mm]													
		Symbol	[mm]	Up to 30	Up to 50	Up to 100	Up to 150	Up to 200	Up to 250	Up to 300	Up to 350\|	Up to 400	Up to 450	Up to 500	Up to 600	Up to 700	Up to 800
LEY25 $\left(\begin{array}{c}\text { Motor mounting } \\ \text { position: } \\ \text { Top/Parallel, In-line }\end{array}\right)$	$\begin{aligned} & 100 \mathrm{~W} \\ & / \square 40 \end{aligned}$	A	12	900							60	0	-	-	-	-	-
		B	6				450				30		-	-	-	-	-
		C	3				225				15	50	-	-	-	-	-
		(Motor rotation speed)					(4500 rpm)				(3000	rpm)	-	-	-	-	-
$\begin{gathered} \text { LEY32 } \square \\ \left(\begin{array}{c} \text { Motor mounting } \\ \text { position: } \\ \text { Top/Parallel } \end{array}\right) \end{gathered}$	$\begin{gathered} 200 \mathrm{~W} \\ / \square 60 \end{gathered}$	A	20	1200									800		-	-	-
		B	10	600									400		-	-	-
		C	5	300									200		-	-	-
		(Motor rotation speed)		(3600 rpm)									(2400 rpm)		-	-	-
$\begin{gathered} \text { LEY32D } \\ \left(\begin{array}{c} \text { Motor mounting } \\ \text { position: } \\ \text { In-line } \end{array}\right) \end{gathered}$	$\begin{gathered} 200 \mathrm{~W} \\ / \square 60 \end{gathered}$	A	16	1000									640		-	-	-
		B	8	500									320		-	-	-
		C	4	250									160		-	-	-
		(Motor rotation speed)		(3750 rpm)									(2400 rpm)		-	-	-
LEY63$\left(\begin{array}{c} \text { Motor mounting } \\ \text { position: } \\ \text { Top/Parallel, In-line } \end{array}\right)$	$\begin{aligned} & 400 \mathrm{~W} \\ & / \square 60 \end{aligned}$	A	20	-	1000										800	600	500
		B	10	-	500										400	300	250
		C	5	-	250										200	150	125
		(Motor rotation speed)		-					(3000	rpm)					(2400 rpm)	(1800 rpm)	(1500 rpm)
		L	2.86	-	70												
		(Motor rotation speed)		-	(1470 rpm)												

Series LEY

Size

Force Conversion Graph (Guide)
LEY25 \square (Motor mounting position: Top/Parallel, In-line)

LEY32 \square (Motor mounting position: Top/Parallel)

LEY63 \square (Motor mounting position: Top/Parallel, In-line)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
75 or less	100	-
90	$100(60)$	$-(1.5)$
120	$50(30)$	$1.5(0.5)$
150	$30(20)$	$0.5(0.16)$

*1 When limiting the torque with LEY25/32, the value of the internal torque limit or external torque should be set to 90% or less.
Internal torque limit: Parameter No. Pn402/Forward torque limit, No. Pn403/Reverse torque limit

- External torque limit: Parameter No. Pn404/Forward external torque limit, No. Pn405/Reverse external torque limit
*2 When limiting the torque with LEY63, the value of the internal torque limit or external torque should be set to 150% or less.
Internal torque limit: Parameter No. Pn402/Forward torque limit, No. Pn403/Reverse torque limit
External torque limit: Parameter No. Pn404/Forward external torque limit, No. Pn405/Reverse external torque limit
* The values in () are for a closely-mounted driver.

Graph of Allowable Lateral Load on the Rod End (Guide)

[Stroke] = [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]

Model Selection Series LEY

Non-rotating Accuracy: θ

Size	Non-rotating accuracy θ
$\mathbf{2 5}$	$\pm 0.8^{\circ}$
$\mathbf{3 2}$	$\pm 0.7^{\circ}$
$\mathbf{6 3}$	$\pm 0.6^{\circ}$

Rod Displacement: δ

Size	Stroke [mm]													
	30	50	100	150	200	250	300	350	400	450	500	600	700	800
25	± 0.3	± 0.4	± 0.7	± 0.7	± 0.9	± 1.1	± 1.3	± 1.5	± 1.7	-	-	-	-	-
32	± 0.3	± 0.4	± 0.7	± 0.6	± 0.8	± 1.0	± 1.1	± 1.3	± 1.5	± 1.7	± 1.8	-	-	-
63	-	-	± 1.0	-	± 1.7	-	± 1.3	-	± 1.7	-	± 2.1	± 1.7	± 2.0	± 2.2

How to Order

2 Motor mounting position

Nil	Top mounting
\mathbf{R}	Right side parallel
\mathbf{L}	Left side parallel
\mathbf{D}	In-line

(3) Motor type

Symbol	Type	Output [W]	Size	Compatible driver
V6	AC servo motor (Absolute encoder)	100	25	$\begin{aligned} & \text { LECYM2-V5 } \\ & \text { LECYU2-V5 } \end{aligned}$
V7		200	32	LECYM2-V7 LECYU2-V7
V8		400	63	LECYM2-V8 LECYU2-V8

(4) Lead [mm]

Symbol	LEY25	LEY32 ${ }^{* 1}$	LEY63
A	12	$16(20)$	20
B	6	$8(10)$	10
C	3	$4(5)$	5
L	-	-	$2.86 * 2$

*1 The values shown in () are the lead for top mounting, right/left side parallel types. (Equivalent lead which includes the pulley ratio [1.25:1])
*2 Only available for top mounting and right/left side parallel types. (Equivalent lead which includes the pulley ratio [4:7])
5 Stroke [mm]

$\mathbf{3 0}$	30
to	to
$\mathbf{8 0 0}$	800

* Refer to the applicable stroke table.

7
Motor option

Nil	Without option
\mathbf{B}	With lock

* When "With lock" is selected for the top mounting and right/left side parallel types, the motor body will stick out of the end of the body for size 25 with strokes 30 or less.
Check for interference with workpieces before selecting a model.

Dust/Drip proof (Only available for LEY63)

Symbol	LEY25/32	LEY63
Nil	Equivalent to IP4x	IP5x (Dust proof specification)
\mathbf{P}	-	IP65 (Dust/Drip proof specification)/
With vent hole tap		

* When using the dust/drip proof (IP65), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water.
* The fitting and tubing should be provided separately by the customer. Select [Applicable tubing O.D.: $\varnothing 4$ or more, Connection thread: Rc1/8].

8 Rod end thread

Nil	Rod end female thread
\mathbf{M}	Rod end male thread (1 rod end nut is included.)

Applicable Stroke Table e: Standard

Stroke (mm) Model	30	50	100	150	200	250	300	350	400	450	500	600	700	800	Manufacturable stroke range
LEY25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15 to 400
LEY32	\bigcirc	-	-	-	20 to 500										
LEY63	-	-	-	-	\bigcirc	-	\bigcirc	-	-	-	-	-	-	-	50 to 800

[^6]For auto switches, refer to pages 96 and 97.

*1 Mounting bracket is shipped together, (but not assembled).
*2 For horizontal cantilever mounting with the ends tapped and rod/head flange, use the actuator within the following stroke range. - LEY25: 200 or less • LEY32: 100 or less • LEY63: 400 or less
*3 For mounting with the double clevis, use the actuator within the following stroke range.

- LEY25: 200 or less • LEY32: 200 or less • LEY63: 300 or less
*4 Rod flange is not available for the LEY 25 with strokes 30 and motor option "With lock".
*5 Head flange is not available for the LEY32/LEY63.
10 Cable type

Nil	Without cable
S	Standard cable
R	Robotic cable (Flexible cable)

11 Cable length [m]

Nil	Without cable
$\mathbf{3}$	3
$\mathbf{5}$	5
\mathbf{A}	10
\mathbf{C}	20

12 Driver type
Nil
Compatible driver
Without driver
M2
LECYM2-V \square
U2
LECYU2-V \square

* When the driver type is selected, the cable is included. Select cable type and cable length.

(13 I/O connector

$\mathbf{N i l}$	Without connector
\mathbf{H}	With connector

Compatible Drivers

Driver type	MECHATROLINK-II type	MMECHATROLINK-III type
Series	LECYM	LECYU
Applicable network	MECHATROLINK-I	MECHATROLINK-III
Control encoder	Absolute 20-bit encoder	
Communication device	USB communication, RS-422 communication	
Power supply voltage (V)	200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)	
Reference page	Page 103	

Series LEY

Specifications

Model				LEY25 (Top/Parallel)/LEY25D (In-line)			LEY32 (Top/Parallel)			LEY32D (In-line)		
Stroke [mm] ${ }^{\text {Note 1) }}$				$\begin{gathered} 30,50,100,150,200,250, \\ 300,350,400 \end{gathered}$			$\begin{aligned} & 30,50,100,150,200,250, \\ & 300.350 .400,450.500 \end{aligned}$			$\begin{gathered} 30,50,100,150,200,250 \\ 300,350,400,450,500 \end{gathered}$		
	Work load [kg]		$\begin{array}{\|l\|} \hline \text { Horizontal Note 2) } \\ \hline \text { Vertical } \\ \hline \end{array}$	18	50	50	30	60	60	30	60	60
		Vert		8	16	30	9	19	37	12	24	46
	Pushing force lbf [N] Note 3) (Set value: 45 to 90\%)			$\begin{gathered} 15 \text { to } 29 \\ {[65 \text { to } 131]} \\ \hline \end{gathered}$	$\begin{gathered} 29 \text { to } 57 \\ {[127 \text { to } 255]} \end{gathered}$	$\begin{gathered} 54 \text { to } 109 \\ {[242 \text { to } 485]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 18 \text { to } 35 \\ \text { [79 to } 157 \text {] } \\ \hline \end{array}$	$\left[\begin{array}{c} 35 \text { to } 69 \\ {[154 \text { to } 308]} \end{array}\right]$	$\begin{gathered} 66 \text { to } 132 \\ {[294 \text { to } 588]} \end{gathered}$	$\begin{array}{c\|} \hline 22 \text { to } 44 \\ \text { [98 to 197] } \\ \hline \end{array}$	$\begin{gathered} 43 \text { to } 87 \\ {[192 \text { to } 385]} \end{gathered}$	$\begin{array}{\|c\|} \hline 83 \text { to } 165 \\ {[368 \text { to } 736]} \\ \hline \end{array}$
	Max. speed $[\mathrm{mm} / \mathrm{s}]$	Stroke range	Up to 300 305 to 400	900	450 300	225 150	1200	600	300	1000	500	250
			405 to 500	-	-	-	800	400	200	640	320	160
	Pushing speed [mm/s] ${ }^{\text {Note } 5)}$			35 or less			30 or less			30 or less		
	Max. acceleration/deceleration [$\mathrm{mm} / \mathrm{s}^{2}$]			5000			5000					
	Positioning repeatability [mm]			± 0.02			± 0.02					
	Lost motion [mm] Note 6)			0.1 or less			0.1 or less					
	Lead [mm] (including pulley ratio)			12	6	3	20	10	5	16	8	4
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{\text {Note 7) }}$			50/20			50/20					
	Actuation type			Ball screw + Belt (LEYD)/Ball screw (LEYDD)			Ball screw + Belt [1.25:1]			Ball screw		
	Guide type			Sliding b	bushing (Pisto	ton rod)	Sliding bushing (Piston rod)					
	Operating temperature range			41 to $104^{\circ} \mathrm{F}$ [95 to $40^{\circ} \mathrm{C}$]			41 to $104^{\circ} \mathrm{F}\left[95\right.$ to $\left.40^{\circ} \mathrm{C}\right]$					
	Operating humidity range [\%RH]			90 or less (No condensation)			90 or less (No condensation)					
	Conditions for Note 8) "Regenerative resistor" [kg]		Horizontal	Not required			Not required					
			Vertical		6 or more		4 or more					
	Motor output/Size			$100 \mathrm{~W} / \square 40$					200 W	/ $\square 60$		
	Motor type			AC servo motor (200 VAC)			AC servo motor (200 VAC)					
	Encoder			Absolute 20-bit encoder (Resolution: $1048576 \mathrm{p} / \mathrm{rev}$)								
	Power consumption [W] Note 9)		Horizontal	45			65			65		
			Vertical	145			175			175		
	Standby power consumption when operating [W] ${ }^{\text {Note } 10)}$		Horizontal	2			2			2		
			Vertical		8			8			8	
	Max. instantaneous power consumption [W] Nat 11)			445			724			724		
	Type Note 12)			Non-magnetizing lock								
	Holding force lbf [N]			29 [131]	57 [255]	109 [485]	35 [157]	69 [308]	132 [588]	44 [197]	87 [385]	165 [736]
				5.5			6			6		
				$24 \mathrm{VDC}_{-10 \%}^{0}$								

Note 1) Please consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) The maximum value of the horizontal work load. An external guide is necessary to support the load. The actual work load changes according to the condition of the external guide. Please confirm using actual device.
Note 3) The force setting range (set values for the driver) for the pushing operation with the torque control mode, etc. Set it with reference to "Force Conversion Graph (Guide)" on page 71.
Note 4) The allowable speed changes according to the stroke.
Note 5) The allowable collision speed for the pushing operation with the torque control mode, etc.
Note 6) A reference value for correcting an error in reciprocal operation.
Note 7) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)

Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 8) The work load conditions which require "Regenerative resistor" when operating at the maximum speed (Duty ratio: 100\%). Order the regenerative resistor separately. For details, refer to "Conditions for Regenerative Resistor (Guide)" on pages 69 and 70.
Note 9) The power consumption (including the driver) is for when the actuator is operating.
Note 10) The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
Note 11) The maximum instantaneous power consumption (including the driver) is for when the actuator is operating.
Note 12) Only when motor option "With lock" is selected.
Note 13) For an actuator with lock, add the power consumption for the lock.

Weight

Additional Weight

Size		$\mathbf{2 5}$	$\mathbf{3 2}$
Lock	0.30	0.60	
Rod end male thread	Male thread	0.03	0.03
	Nut	0.02	0.02
Foot (2 sets including mounting bolt)	0.08	0.14	
Rod flange (including mounting bolt)	0.17	0.20	
Head flange (including mounting bolt)			
Double clevis (including pin, retaining ring and mounting bolt)	0.16	0.22	

Specifications

Model				LEY63 \square (Top/Parallel)				LEY63D \square (In-line)		
	Stroke [mm] ${ }^{\text {Note 1) }}$			100, 200, 300, 400, 500, 600, 700, 800						
	Work load [kg]		Horizontal ${ }^{\text {Note 2) }}$	40	70	80	200	40	70	80
			Vertical	19	38	72	115	19	38	72
	Pushing force lbf [N]/Set value Note 3) : 45 to $150 \%{ }^{\text {Note } 4)}$			$\begin{gathered} 35 \text { to } 117 \\ {[156 \text { to } 521]} \end{gathered}$	$\begin{gathered} 68 \text { to } 228 \\ {[304 \text { to 1012] }} \end{gathered}$	$\begin{gathered} 129 \text { to } 429 \\ \text { [573 to 1910] } \\ \hline \end{gathered}$	$\begin{gathered} 225 \text { to } 752 \\ {[1003 \text { to } 3343]} \end{gathered}$	$\begin{gathered} 35 \text { to } 117 \\ {[156 \text { to } 521]} \end{gathered}$	$\begin{gathered} 68 \text { to } 228 \\ {[304 \text { to 1012] }} \end{gathered}$	$\begin{gathered} 129 \text { to } 429 \\ {[573 \text { to } 1910]} \end{gathered}$
	Note 5) Max. speed [mm/s]	Stroke range	Up to 500	1000	500	250	70	1000	500	250
			505 to 600	800	400	200		800	400	200
			605 to 700	600	300	150		600	300	150
			705 to 800	500	250	125		500	250	125
	Pushing speed [mm/s] ${ }^{\text {Note 6) }}$			30 or less						
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			5000			3000	5000		
	Positioning repeatability [mm]			± 0.02						
	Lost motion [mm] Note 7)			0.1 or less						
	Screw lead [mm] (including pulley ratio)			20	10	5	5 (2.86)	20	10	5
	Impact/Vibration resistance [m/s ${ }^{2}$] Note 8)			50/20						
	Actuation type			Ball screw			Ball screw + Belt [Pulley ratio 4:7]	Ball screw		
	Guide type			Sliding bushing (Piston rod)						
	Operating temperature range			41 to $104^{\circ} \mathrm{F}$ (5 to $40^{\circ} \mathrm{C}$)						
	Operating humidity range [\%RH]			90 or less (No condensation)						
	Conditions for Note 9) "Regenerative resistor" [kg]		Horizontal	Not required						
			Vertical	2.5 or more						
	Motor output/Size			$400 \mathrm{~W} / \square 60$						
	Motor type			AC servo motor (200 VAC)						
	Encoder			Absolute 20-bit encoder (Resolution: $1048576 \mathrm{p} / \mathrm{rev}$)						
	Power consumption [W] Note 10)		Horizontal	210						
			Vertical	230						
	Standby power consumption when operating [W] Note 11)		Horizontal	2						
			Vertical	18						
	Max. instantaneous power consumption [W] ${ }^{\text {Note 12) }}$			1275						
	Type Note 13)			Non-magnetizing lock						
	Holding force lbf [N]			70 [313]	136 [607]	258 [1146]	451 [2006]	70 [313]	136 [607]	258 [1146]
	Power consumption [W] at $68{ }^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$ Note 14)			6						
	Rated voltage [V]			$24 \mathrm{VDC}_{-10 \%}^{0}$						

Note 1) Please consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) The maximum value of the horizontal work load. An external guide is necessary to support the load. The actual work load changes according to the condition of the external guide Please confirm using actual device.
Note 3) Set values for the driver.
Note 4) The force setting range (set values for the driver) for the pushing operation with the torque control mode etc. The pushing force and duty ratio change according to the set value. Set it with reference to "Force Conversion Graph (Guide)" on page 71.
Note 5) The allowable speed changes according to the stroke.
Note 6) The allowable collision speed for the pushing operation with the torque control mode etc.
Note 7) A reference value for correcting an error in reciprocal operation.
Note 8) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 9) The work load conditions which require "Regenerative resistor" when operating at the maximum speed (Duty ratio: 100\%).
Note 10) The power consumption (including the driver) is for when the actuator is operating.
Note 11) The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
Note 12) The maximum instantaneous power consumption (including the driver) is for when the actuator is operating.
Note 13) Only when motor option "With lock" is selected.
Note 14) For an actuator with lock, add the power consumption for the lock.

Weight

Product Weight

[kg]										
Series	LEY63 \square (Motor mounting position: Top/Parallel)									
Stroke $[\mathrm{mm}]$	100	200	300	400	500	600	700	800		
Weight $[\mathrm{kg}]$	5.3	6.5	8.2	9.3	10.4	12.1	13.3	14.4		
Series	LEY63D \square (Motor mounting position: In-line)									
Stroke $[\mathrm{mm}]$	100	200	300	400	500	600	700	800		
Weight $[\mathbf{k g}]$	5.5	6.6	8.3	9.5	10.6	12.3	13.4	14.6		

Additional Weight

Size		63
Lock	0.6	
Rod end male thread	Male thread	0.12
	Nut	0.04
Foot (2 sets including mounting bolt)	0.26	
Rod flange (including mounting bolt)	0.51	
Double clevis (including pin, retaining ring and mounting bolt)	0.58	

Series LEY

Size

Construction

Motor top mounting type: LEY 32

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw shaft	Alloy steel	
$\mathbf{3}$	Ball screw nut	Resin/Alloy steel	
$\mathbf{4}$	Piston	Aluminum alloy	
$\mathbf{5}$	Piston rod	Stainless steel	Hard chrome plated
$\mathbf{6}$	Rod cover	Aluminum alloy	
$\mathbf{7}$	Bearing holder	Aluminum alloy	
$\mathbf{8}$	Rotation stopper	POM	
$\mathbf{9}$	Socket	Free cutting carbon steel	Nickel plated
$\mathbf{1 0}$	Connected shaft	Free cutting carbon steel	Nickel plated
$\mathbf{1 1}$	Bushing	Lead bronze cast	
$\mathbf{1 2}$	Bearing	-	
$\mathbf{1 3}$	Return box	Aluminum die-cast	Coating
$\mathbf{1 4}$	Return plate	Aluminum die-cast	Coating
$\mathbf{1 5}$	Magnet	-	
$\mathbf{1 6}$	Wear ring holder	Stainless steel	Stroke 101 mm or more
$\mathbf{1 7}$	Wear ring	POM	Stroke 101 mm or more
$\mathbf{1 8}$	Screw shaft pulley	Aluminum alloy	

No.	Description	Material	Note
$\mathbf{1 9}$	Motor pulley	Aluminum alloy	
$\mathbf{2 0}$	Belt	-	
21	Parallel pin	Stainless steel	
$\mathbf{2 2}$	Seal	NBR	
23	Retaining ring	Steel for spring	Phosphate coated
24	Motor adapter	Aluminum alloy	Coating
25	Motor	-	
26	Motor block	Aluminum alloy	Coating
27	Hub	Aluminum alloy	
28	Spider	Urethane	
29	Socket (Male thread)	Free cunting carbon steel	Nickel plated
$\mathbf{3 0}$	Nut	Alloy steel	Zinc chromated

Replacement Parts (Top/Parallel only)/Belt

No.	Size	Order no.	No.	Size	Lead	Order no.
20	25	LE-D-2-2	20	63	A/B/C	LE-D-2-5
	32	LE-D-2-4			L	LE-D-2-6

Dimensions: Motor Top/Parallel

Note 1) Range within which the rod can move. Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod.
Note 2) The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.

Size	Stroke range (mm)	A	B	C	D	EH	EV	H	J	K	L	M	O1	R	S
25	15 to 100	130.5	116	13	20	44	45.5	M8 x 1.25	24	17	14.5	34	M5 x 0.8	8	46
	105 to 400	155.5	141												
32	20 to 100	148.5	130	13	25	51	56.5	M8 $\times 1.25$	31	22	18.5	40	M6 x 1.0	10	60
	105 to 500	178.5	160												
63	50 to 200	192.6	155.2	21	40	76	82	M16 x 2	44	36	37.4	60	M8 $\times 1.25$	16	80
	205 to 500	227.6	190.2												
	505 to 800	262.6	225.2												

Size	Stroke range (mm)	T	U	Y	V	Without lock			With lock			F	G
						W	X	Z	W	X	Z		
25	15 to 100	92	1	26.5	40	82.5	115.5	11	127.5	160.5	11	2	4
	105 to 400												
32	20 to 100	118	1	34	60	80	120	14	120	160	14	2	4
	105 to 500												
63	50 to 200	146	4	32.2	60	98.5	138.5	$\begin{gathered} 12.5 \\ (13.5)^{*} \end{gathered}$	138.5	178.5	$\left\|\begin{array}{c} 12.5 \\ (13.5)^{*} \end{array}\right\|$	4	8
	205 to 500												
	505 to 800												

*L lead

Motor right side parallel type: LEY 32R

63

Size	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{T}_{\mathbf{2}}$	\mathbf{U}
$\mathbf{2 5}$	47	91	1
$\mathbf{3 2}$	61	117	1
$\mathbf{6 3}$	84	142	4

[^7]
Dimensions: In-line Motor

Size	Stroke range (mm)	C	D	EH	EV	H	J	K	L	M	O1	R	S	T	U
25	$\begin{array}{\|c\|} \hline 15 \text { to } 100 \\ \hline 105 \text { to } 400 \\ \hline \end{array}$	13	20	44	45.5	M8 $\times 1.25$	24	17	14.5	34	M5 $\times 0.8$	8	45	46.5	1.5
32	$\begin{array}{\|c\|} \hline 20 \text { to } 100 \\ \hline 105 \text { to } 500 \\ \hline \end{array}$	13	25	51	56.5	$\mathrm{M} 8 \times 1.25$	31	22	18.5	40	$\mathrm{M} 6 \times 1.0$	10	60	61	1
63	50 to 200 205 to 500 505 to 800	21	40	76	82	M16 $\times 2$	44	36	37.4	60	M8 $\times 1.25$	16	78	83	5

Size	Stroke range (mm)	B	V	Without lock			With lock			F	G
				A	W	Z	A	W	Z		
25	15 to 100	136.5	40	233.5	82.5	11.5	278.5	127.5	11.5	2	4
	105 to 400	161.5		258.5			303.5				
32	20 to 100	156	60	254.5	80	14	294.5	120	14	2	4
	105 to 500	186		284.5			324.5				
63	50 to 200	190.7	60	326.6	98.5	5	366.6	138.5	5	4	8
	205 to 500	225.7		361.6			401.6				
	505 to 800	260.7		396.6			436.6				

End male thread: LEY ${ }_{63}^{25} \stackrel{\text { A }}{\mathrm{A}^{-}}-\square \square \mathrm{M}$

* Refer to Electric Actuators catalog (CAT.E 102) for details about the rod end nut and mounting bracket.
Note) Refer to the "Mounting" precautions on page 99 when mounting end brackets such as knuckle joint or workpieces.

IP65 (Dust/Drip proof specification): LEY63D $\square \square-\square \mathbf{P}$
(View ZZ) *LEY63 only

* When using the dust/drip proof (IP 65), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water. The fitting and tubing should be provided separately by the customer.
Select [Applicable tubing O.D.: ø4 or more, Connection thread: Rc1/8].

Dimensions

Body bottom tapped In－line motor：LEY $32 \mathrm{D} \square$ 63

Body Bottom Tapped

Size	Stroke range（mm）	L	MA	MB	MC	MD	MH	ML
25	15 to 35	14.5	20	46	24	32	29	50
	40 to 100				42	41		
	105 to 120							75
	125 to 200				59	49.5		
	205 to 400				76	58		
32	20 to 35	18.5	25	55	22	36	30	50
	40 to 100				36	43		
	105 to 120							80
	125 to 200				53	51.5		
	205 to 500				70	60		
63	50 to 70	37.4	38	52.2	24	50	44	65
	75 to 120				45	60.5		
	125 to				58	67		
	205 to				86	81		100
	505 to							135

［mm］														
Size	$\begin{array}{c\|} \hline \text { Stroke } \\ \text { range }(\mathrm{mm}) \end{array}$	A	LS	LS ${ }_{1}$	LL	LD	LG	LH	LT	LX	LY	LZ	X	Y
25	15 to 100	136.6	98.8	19.8	8.4	6.6	3.5	30	2.6	57	51.5	71	11.2	5.8
25	105 to 400	161.6	123.8											
32	20 to 100	155.7	114	19.2	11.3	6.6	4	36	3.2	76	61.5	90	11.2	7
63	50 to 200	200.8	133.2	25.2	29.2	8.6	5	50	3.2	95	88	110	14.2	8
	205 to 500	235.8	168.2											
	505 to 800	270.8	203.2											

Material：Carbon steel（Chromate treated）
＊The A measurement is when the unit is in the Z－phase first detecting position．At this position， 2 mm at the end（size 25,32 ）and 4 mm at the end（size 63）． Note）When the motor mounting is the right or left side parallel type，the head side foot should be mounted outwards．

Dimensions

Rod flange: $L E Y{ }_{32}^{25} \square \square \stackrel{\text { A }}{\mathrm{B}}-\square \square \square \mathrm{F}$

* Refer to Electric Actuators catalog (CAT.E102) for details about the rod end nut and mounting bracket.
Double Clevis
[mm]

Size	Stroke range (mm)	A		CL		CD	CT
25	15 to 100	160.5		150.5		10	5
	105 to 200	185.5		175.5			
32	20 to 100	180.5		170.5		10	6
	105 to 200	21		200			
63	50 to 200	236.6		222.6		14	8
	205 to 500	271.6		257.6		-	-
	505 to 800	306.6		292.6		-	-
Size	Stroke range (mm)	CU	CW	CX	CZ	L	RR
25	15 to 100	14	20	18	36	14.5	10
	105 to 200						
32	20 to 100	14	22	18	36	18.5	10
	105 to 200						
63	50 to 200	22	30	22	44	37.4	14
	205 to 500						
	505 to 800						

Material: Cast iron (Coating)

* The A and CL measurements are when the unit is in the Z-phase first detecting position. At this position, 2 mm at the end (size 25,32) and 4 mm at the end (size 63).

Moment Load Graph
Selection conditions

Mounting position	Vertical	Horizontal	
Max. speed [mm/s]	"Speed-Work Load Graph"	200 or less	Over 200
Graph (Sliding bearing type)	(1), (2)	(5), (6)*	(7), 88
Graph (Ball bushing bearing type)	(3), (4)	(9), (10)	(11), (12)

* For the sliding bearing type, the speed is restricted with a horizontal/moment load.

Vertical Mounting, Sliding Bearing

* The limit of vertical load mass varies depending on "lead" and "speed".

Check "Speed-Work Load Graph" on page 85.
Vertical Mounting, Ball Bushing Bearing

[^8]

Moment Load Graph
Horizontal Mounting, Sliding Bearing

(7) $L=\mathbf{5 0} \mathbf{~ m m}$ Max. speed $=$ Over $200 \mathbf{~ m m} / \mathrm{s}$

(6) $L=\mathbf{1 0 0} \mathbf{~ m m}$ Max. speed $=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(8) $L=100$ mm Max. speed $=$ Over $\mathbf{2 0 0 ~ m m / s ~}$

Horizontal Mounting, Ball Bushing Bearing

(9) $L=\mathbf{5 0} \mathbf{~ m m ~ M a x . ~ s p e e d ~} \mathbf{=} \mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(11) $L=50 \mathrm{~mm}$ Max. speed $=$ Over $200 \mathrm{~mm} / \mathrm{s}$

(10) $L=100 \mathbf{~ m m ~ M a x . ~ s p e e d ~}=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(12) $L=100 \mathbf{~ m m ~ M a x . ~ s p e e d ~}=$ Over 200 mm/s

Operating Range when Used as Stopper

LEYG \square (Sliding bearing)

Series LEYG

Speed-Work Load Graph/Conditions for "Regenerative Resistor" (Guide)
LEYG25 \square V6 (Motor mounting position: Top mounting/In-line)

Vertical

Horizontal

LEYG32 \square V7 (Motor mounting position: Top mounting)

Vertical

Horizontal

LEYG32 \square DV7 (Motor mounting position: In-line)

Vertical

"Regenerative resistor" area

* When using the actuator in the "Regenerative resistor" area, download the "AC servo capacity selection program/SigmaJunmaSize+" from the SMC website. Then, calculate the necessary regenerative resistor capacity to prepare an appropriate external regenerative resistor.
* Regenerative resistor should be provided by the customer.

Horizontal

Applicable Motor/Driver

Model	Applicable model	
	Motor	Servopack (SMC driver)
LEYG25 \square	SGMJV-01A3A	SGDV-R90A11 SGDV-R90A21 (LECYM2-V5) SECYU2-V5)
LEYG32 \square	SGMJV-02A3A	SGDV-1R6A11 SGDV-1R6A21 (LECYM2-V7) SECYU2-V7)

Force Conversion Graph

LEYG25 \square (Motor mounting position: Top mounting/ln-line)

LEYG32 \square (Motor mounting position: Top mounting)

LEYG32D (Motor mounting position: In-line)

*1 When limiting the torque with incremental encoder, parameter No. PC12/the value of the internal torque command should be set to 90% or less.
$* 2$ When limiting the torque with absolute encoder, parameter No. PC13/the value of the maximum output command for analog torque should be set to 90% or less.

Torque limit/ Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
75 or less	100	-
90	$100(60)$	$-(1.5)$

* The values in () are for a closely-mounted driver.

Series LEYG

Allowable Rotational Torque of Plate: T

Non-rotating Accuracy of Plate: θ

Size	LEYG $\square \mathbf{M}$	LEYG $\square \mathbf{L}$
$\mathbf{2 5}$	$\pm 0.05^{\circ}$	$\pm 0.06^{\circ}$
$\mathbf{3 2}$		

Plate Displacement: δ

Model	[mm]				
	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$	$\mathbf{3 0 0}$
LEYG25M	± 0.26	± 0.31	± 0.25	± 0.38	± 0.36
LEYG25L	± 0.13	± 0.13	± 0.17	± 0.20	± 0.23
LEYG32M	± 0.23	± 0.29	± 0.23	± 0.36	± 0.34
LEYG32L	± 0.11	± 0.11	± 0.15	± 0.19	± 0.22

Electric Actuator/Guide Rod Type

AC Servo Motor
Series LEYG
LEYG25, 32

How to Order

4 Motor type

Symbol	Type	Output $[W]$	Actuator size	Compatible driver
V6	AC servo motor	100	25	LECYM2-V5 LECYU2-V5
	(Absolute encoder)	200	32	LECYM2-V7 LECYU2-V7

(5) Lead [mm]

Symbol	LEYG25	LEYG32 ${ }^{*}$
A	12	$16(20)$
B	6	$8(10)$
\mathbf{C}	3	$4(5)$

* The values shown in () are the lead for top mounting type. (Equivalent lead which includes the pulley ratio [1.25:1])

6) Stroke [mm]

$\mathbf{3 0}$	30
to	to
$\mathbf{3 0 0}$	300

* Refer to the applicable stroke table.

7 Motor option

Nil	Without option
\mathbf{B}	With lock

* When "With lock" is selected for the top mounting type, the motor body will stick out of the end of the body for size 25 with strokes 30 or less. Check for interference with workpieces before selecting a model.

10 Cable length [m]

$\mathbf{N i l}$	Without cable
$\mathbf{3}$	3
$\mathbf{5}$	5
\mathbf{A}	10
\mathbf{C}	20

Applicable Stroke Table
$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \text { Model } & \begin{array}{r}\text { Stroke } \\ (\mathrm{mm})\end{array} & \mathbf{3 0} & \mathbf{5 0} & 100 & 150 & 200 & 250 & \mathbf{3 0 0}\end{array} \begin{array}{c}\text { Manufacturable } \\ \text { stroke range }\end{array}\right]$

[^9]
11) Driver type

	Compatible driver	Power supply voltage [V]
Nil	Without driver	-
M2	LECYM2-V \square	200 to 230
U2	LECYU2-V \square	200 to 230

12 I/O connector

$\mathbf{N i l}$	Without connector
\mathbf{H}	With connector

* When the driver type is selected, the cable is included.

Select cable type and cable length.

Use of auto switches for the guide rod type LEYG series

Insert the auto switch from the front side with rod (plate) sticking out.
For the parts hidden behind the guide attachment (Rod stick out side), the auto switch cannot be fixed.
Consult with SMC when using auto switch on the rod stick out side.

Compatible Drivers

Driver type	IAMECHATROLINK-II type	II MECHATROLINK-III type
Series	LECYM	LECYU
Applicable network	MECHATROLINK-I	MECHATROLINK-III
Control encoder	Absolute 20-bit encoder	
Communication device	USB communication, RS-422 communication	
Power supply voltage (V)	200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)	
Reference page	Page 103	

Specifications

Model			LEYG25 ${ }_{\mathrm{L}}^{\mathrm{L}}$（Top mounting） LEYG25쏜（In－line）			LEYG32 ${ }^{\text {M }}$（Top mounting）			LEYG32 ${ }^{\text {L }}$ D（In－line）		
Stroke［mm］${ }^{\text {Note 1）}}$			$\begin{gathered} 30,50,100,150 \\ 200,250,300 \end{gathered}$			$\begin{gathered} 30,50,100,150, \\ 200,250,300 \\ \hline \end{gathered}$			$\begin{gathered} 30,50,100,150, \\ 200,250,300 \end{gathered}$		
	Work load［kg］	zontal Note 2）	18	50	50	30	60	60	30	60	60
			7	15	29	7	17	35	10	22	44
	Pushing force Ibf［N］Note 3） （Set value： 45 to 90\％）		$\begin{gathered} 15 \text { to } 29 \\ {[65 \text { to } 131]} \end{gathered}$	$\left\|\begin{array}{c} 28 \text { to } 57 \\ {[127 \text { to } 255]} \end{array}\right\|$	$\begin{gathered} 54 \text { to } 109 \\ {[242 \text { to } 485]} \end{gathered}$	$\begin{gathered} 18 \text { to } 35 \\ {[79 \text { to } 157]} \end{gathered}$	$\begin{array}{c\|} 35 \text { to } 69 \\ {[154 \text { to } 308]} \end{array}$	66 to 132 $[294$ to 588$]$	$\begin{gathered} 22 \text { to } 44 \\ {[98 \text { to } 197]} \end{gathered}$	$\begin{gathered} 43 \text { to } 87 \\ {[192 \text { to } 385]} \end{gathered}$	$\begin{array}{\|c\|} \hline 83 \text { to } 165 \\ \text { [368 to } 736] \end{array}$
	Max．speed［mm／s］		900	450	225	1200	600	300	1000	500	250
	Pushing speed［mm／s］${ }^{\text {Note 4）}}$		35 or less			30 or less			30 or less		
	Max．acceleration／deceleration［ $\mathrm{mm} / \mathrm{s}^{2}$ ］		5000			5000					
	Positioning repeatability［mm］		± 0.02			± 0.02					
	Lead［mm］（including pulley ratio）		12	6	3	20	10	5	16	8	4
	Impact／Vibration resistance［m／s²］Note 5）		50／20			50／20					
	Actuation type		Ball screw＋Belt［1：1］／Ball screw			Ball screw＋Belt［1：1．25］			Ball screw		
	Guide type		Sliding bearing（LEYGロM），Ball bushing bearing（LEYGロL）								
	Operating temperature range		41 to $105^{\circ} \mathrm{F}$（ 5 to $40^{\circ} \mathrm{C}$ ）			41 to $105^{\circ} \mathrm{F}$（ 5 to $40^{\circ} \mathrm{C}$ ）					
	Operating humidity range［\％RH］		90 or less（No condensation）			90 or less（No condensation）					
	Conditions for Note 6） ＂Regenerative resistor＂［kg］	Horizontal	Not required			Not required					
		Vertical	5 or more			2 or more					
免	Motor output／Size		$100 \mathrm{~W} / \square 40$			$200 \mathrm{~W} / \square 60$					
	Motor type		AC servo motor（200 VAC）			AC servo motor（200 VAC）					
	Encoder		Absolute 20－bit encoder（Resolution： $1048576 \mathrm{p} / \mathrm{rev}$ ）								
	Power consumption［W］${ }^{\text {Note } 7 \text { ］}}$	Horizontal	45			65			65		
		Vertical	145			175			175		
	Standby power consumption when operating［W］Note 8）	Horizontal	2			2			2		
		Vertical	8			8			8		
	Max．instantaneous power consumption［W］${ }^{\text {Noie } 9 \text { 9 }}$		445			724			724		
	Type Note 10）		Non－magnetizing lock			Non－magnetizing lock					
Sti	Holding force lbf［N］		29 ［131］	57 ［255］	109 ［485］	35 ［157］	69 ［308］	132 ［588］	44 ［197］	87 ［385］	165 ［736］
			5.5			6			6		
			$24 \mathrm{VDC}_{-10 \%}^{0}$								

Note 1）Please consult with SMC for non－standard strokes as they are produced as special orders．
Note 2）The maximum value of the horizontal work load．An external guide is necessary to support the load．The actual work load changes according to the condition of the external guide．Please confirm using actual device．
Note 3）The force setting range（set values for the driver）for the pushing operation with the torque control mode，etc．Set it with reference to＂Force Conversion Graph＂on page 86.
Note 4）The allowable collision speed for the pushing operation with the torque control mode， etc．
Note 5）Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．

Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 6）The work load conditions which require＂Regenerative resistor＂when operating at the maximum speed（Duty ratio：100\％）．Order the regenerative resistor separately For details，refer to＂Conditions for Regenerative Resistor（Guide）＂on page 85.
Note 7）The power consumption（including the driver）is for when the actuator is operating
Note 8）The standby power consumption when operating（including the driver）is for when the actuator is stopped in the set position during operation．
Note 9）The maximum instantaneous power consumption（including the driver）is for when the actuator is operating．
Note 10）Only when motor option＂With lock＂is selected
Note 11）For an actuator with lock，add the power consumption for the lock．

Weight

Product Weight：Top Mounting Type

Series	LEYG25M							LEYG32M						
Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Weight［kg］	1.7	1.9	2.2	2.6	3.0	3.3	3.6	3.1	3.4	4.0	4.7	5.3	5.7	6.2
Series	LEYG25L							LEYG32L						
Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Weight［kg］	1.7	1.9	2.2	2.6	2.9	3.2	3.4	3.1	3.4	3.8	4.5	5.0	5.5	5.9

Product Weight：In－line Motor Type

Series	LEYG25MD							LEYG32MD						
Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Weight［kg］	1.7	1.9	2.2	2.6	3.0	3.3	3.6	3.2	3.4	4.0	4.7	5.3	5.8	6.2
Series	LEYG25LD							LEYG32LD						
Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Weight［kg］	1.7	2.0	2.2	2.6	2.9	3.2	3.4	3.2	3.4	3.8	4.6	5.0	5.5	5.9

Additional Weight

Size	$\mathbf{~} \mathrm{kg}]$	
Lock	0.3	$\mathbf{3 2}$

Construction
Motor mounting position: Top mounting type

LEYG $\square M$

LEYG $\square \mathrm{L}$

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw shaft	Alloy steel	
$\mathbf{3}$	Ball screw nut	-	
4	Piston	Aluminum alloy	
$\mathbf{5}$	Piston rod	Stainless steel	Hard chrome plated
6	Rod cover	Aluminum alloy	
$\mathbf{7}$	Bearing holder	Aluminum alloy	
$\mathbf{8}$	Rotation stopper	POM	
9	Socket	Free cutting carbon steel	Nickel plated
10	Connected shaft	Free cutting carbon steel	Nickel plated
11	Bushing	Lead bronze cast	
12	Bearing	-	
13	Return box	Aluminum die-cast	Trivalent chromated
14	Return plate	Aluminum die-cast	Trivalent chromated
15	Magnet	-	
16	Wear ring holder	Stainless steel	Stroke 101 mm or more
17	Wear ring	POM	Stroke 101 mm or more
18	Screw shaft pulley	Aluminum alloy	

Support Block

Size	Order no.
$\mathbf{2 5}$	LEYG-S025
$\mathbf{3 2}$	LEYG-S032

No.	Description	Material	Note
$\mathbf{1 9}$	Motor pulley	Aluminum alloy	
$\mathbf{2 0}$	Belt	-	
$\mathbf{2 1}$	Parallel pin	Stainless steel	
$\mathbf{2 2}$	Seal	NBR	
$\mathbf{2 3}$	Retaining ring	Steel for spring	Phosphate coated
$\mathbf{2 4}$	Motor adapter	Aluminum alloy	Anodized
$\mathbf{2 5}$	Motor	-	
$\mathbf{2 6}$	Motor block	Aluminum alloy	Anodized
$\mathbf{2 7}$	Hub	Aluminum alloy	
$\mathbf{2 8}$	Spider	Urethane	
$\mathbf{2 9}$	Guide attachment	Aluminum alloy	Anodized
$\mathbf{3 0}$	Guide rod	Carbon steel	
$\mathbf{3 1}$	Plate	Aluminum alloy	Anodized
$\mathbf{3 2}$	Plate mounting bolt	Carbon steel	Nickel plated
$\mathbf{3 3}$	Guide bolt	Carbon steel	Nickel plated
$\mathbf{3 4}$	Sliding bearing	-	
$\mathbf{3 5}$	Retaining ring	Steel for spring	Phosphate coated
$\mathbf{3 6}$	Ball bushing	-	

Replacement Parts/Belt

Size	Order no.
$\mathbf{2 5}$	LE-D-2-2
$\mathbf{3 2}$	LE-D-2-4

LEYG $\square M$, LEYG \square L Common

LEYG \square M, LEYG $\square \mathrm{L}$ Common

Size	Stroke range (mm)	B	C	DA	EB		EH	EV	FA	FB	FC	G	GA	H	J	K	NA	NC
25	15 to 35	136.5	50	20	85		103	52.3	11	14.5	12.5	5.4	40.3	53.3	30.8	29	M5 $\times 0.8$	6.5
	40 to 100		67.5															
	105 to 120	161.5																
	125 to 200		84.5															
	205 to 300		102															
32	20 to 35	156	55	25	101		123	63.8	12	18.5	16.5	5.4	50.3	68.3	38.3	30	M6 x 1.0	8.5
	40 to 100		68															
	105 to 120	186	68															
	125 to 200		85															
	205 to 300		102															
Size	Stroke range (mm)	OA	OB	P	Q		S	T	U	V	WA	WB	WC	X	XA	XB	YD	Z
25	15 to 35	$\begin{gathered} \mathrm{M} 6 \mathrm{x} \\ 1.0 \end{gathered}$	12	80	18		30	95	6.8	40	35	26	70	54	4	5	47	8.5
	40 to 100										50	335	70					
	105 to 120										50	33.5	95					
	125 to 200										70	43.5						
	205 to 300										85	51						
32	20 to 35	$\begin{gathered} \mathrm{M} 6 \mathrm{x} \\ 1.0 \end{gathered}$	12	95		28	40	117	7.3	60	40	28.5	75	64	5	6	60	8.5
	40 to 100										50	33.5						
	105 to 120												105					
	125 to 200										70	43.5						
	205 to 300										85	51						
Size	Stroke range	Without lock				With lock												
Size	(mm)	A	VB			A		VB	VC									
25	15 to 100	255.5	82.5	11.5		300.5		127.5	11.5									
25	105 to 300	280.5				325.5												
32	15 to 100	266.5	80	14		306.5		120	14									
	105 to 300	296.5				336.5												

Series LEYG

Support Block

- Guide for support block application

When the stroke exceeds 100 mm and the mounting orientation is horizontal, the body will be bent. Mounting the support block is recommended. (Please order it separately from the models shown below.)

Support Block Model

LEYG-S025

\triangle Caution

Do not install the body using only a support block.
The support block should be used only for support.

Size	Model	Stroke range	EB	G	GA	OA	OB	ST	WC	X
25	LEYG-S025	15 to 100	85	5.4	40.3	M6 x 1.0	12	20	70	54
		105 to 300							95	
32	LEYG-S032	20 to 100	101	5.4	50.3	M6 x 1.0	12	22	75	64
		105 to 300							105	

* Two body mounting bolts are included with the support block.

Solid State Auto Switch / Direct Mounting Style (E D-M9N(V)/D-M9P(V)/D-M9B(V)

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Flexibility is 1.5 times greater than the conventional model (SMC comparison).
- Using flexible cable as standard.

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Internal Circuit

D-M9P/M9PV

Auto Switch Specifications

PLC: Programmable Logic Controller						
D-M9 \square, D-M9 \square V (With indicator light)						
Auto switch model	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED lights up when turned ON.					
Standards	CE marking, RoHS					

- Lead wires - Oilproof flexible heavy-duty vinyl cord: ø2.7 x 3.2 ellipse, $0.15 \mathrm{~mm}^{2}$, 2 cores (D-M9B(V)), 3 cores (D-M9N(V)/D-M9P(V))
Note) Refer to the Best Pneumatics No. 2 for solid state auto switch common specifications.
Weight
[g]

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length (m)	0.5	8	8	7
	1	14	14	13
	3	41	41	38
	5	68	68	63

2-Color Indication Solid State Auto Switch Direct Mounting Style D-M9NW(V)/D-M9PW(V)/D-M9BW(V)

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Flexibility is 1.5 times greater than the conventional model (SMC comparison).
- Using flexible cable as standard.
- The optimum operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

© Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Internal Circuit

D-M9PW/M9PWV

D-M9BW/M9BWV

Indicator light/Indication method

Auto Switch Specifications

Refer to SMC website for details about products conforming to the international standards.

PLC: Programmable Logic Controller

D-M9 \square W, D-M9 \square WV (With indicator light)						
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC	or less			24 VDC (10	to 28 VDC$)$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range $\cdot . ~ R e d ~ L E D ~ l i g h t s ~ u p . ~$Optimum operating range $\cdots \cdots \cdots .$. Green LED lights up.					
Standards	CE marking, RoHS					

- Lead wires - Oilproof flexible heavy-duty vinyl cord: ø2.7 x 3.2 ellipse, $0.15 \mathrm{~mm}^{2}$, 2 cores
(D-M9BW(V)), 3 cores (D-M9NW(V), D-M9PW(V))
Note) Refer to the Best Pneumatics No. 2 for solid state auto switch common specifications.

Weight

[g]

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
Lead wire length (m)	0.5	8	8	7
	1	14	14	13
	3	41	41	38
	5	68	68	63

How to Order

Dimensions

SeriesLEY／LEYG Electric Actuators／ Specific Product Precautions 1

\triangle
Be sure to read this before handling．For Safety Instructions and Electric Actuator Precautions，refer to＂Handling Precautions for SMC Products＂and the Operation Manual on SMC website，http：／／www．smeworld．com

Design／Selection

\triangle Warning

1．Do not apply a load in excess of the operating limit．
Select a suitable actuator by work load and allowable lateral load on the rod end．If the product is used outside of the operating limit，the eccentric load applied to the piston rod will be excessive and have adverse effects such as creating play on the sliding parts of the piston rod，degrading accuracy and shortening the life of the product．
2．Do not use the product in applications where excessive external force or impact force is applied to it．
This can cause failure．
3．When used as a stopper，select the LEYG series＂Sliding bearing＂for a stroke of $\mathbf{3 0} \mathrm{mm}$ or less．
4．When used as a stopper，fix the main body with a guide attach－ ment（＂Top mounting＂or＂Bottom mounting＂）
If the end of the actuator is used to fix the main body（end mount－ ing），the excessive load acts on the actuator，which adversely affects the operation and life of the product．

Handling

Caution

1．When the pushing operation is used，be sure to set to＂Torque control mode＂，and use within the specified pushing speed range for each series．
Do not allow the piston rod to hit the workpiece and end of the stroke in the＂Position control mode＂，＂Speed control mode＂or ＂Positioning mode＂．The lead screw，bearing and internal stopper may be damaged and lead to malfunction．
2．When operating with＂Torque control mode＂，the value of the internal torque limit or the external torque limit（LECY）should be set to $\mathbf{9 0 \%}$ or less．（ $\mathbf{1 5 0 \%}$ or less only for the LEY63） It may lead to damage and malfunction．
3．The forward／reverse torque limit is set to 800% as default．
When the product is operated with a smaller value than 300% ， acceleration when driving can decrease．Set the value after confirming the actual device to be used．
4．The maximum speed of this actuator is affected by the product stroke．
Check the model selection section of the catalog．
5．Do not apply a load，impact or resistance in addition to the transferred load during return to origin．
Additional force will cause the displacement of the origin position．
6．Do not scratch or dent the sliding parts of the piston rod，by striking or attaching objects．
The piston rod and guide rod are manufactured to precise tolerances， even a slight deformation may cause malfunction．
7．When an external guide is used，connect it in such a way that no impact or load is applied to it．
Use a freely moving connector（such as a floating joint）．
8．Do not operate by fixing the piston rod and moving the actua－ tor body．
Excessive load will be applied to the piston rod，leading to damage to the actuator and reduced the life of the product．

Handling

\triangle Caution

9．When an actuator is operated with one end fixed and the other free（ends tapped（standard），flange type），a bending moment may act on the actuator due to vibration generated at the stroke end，which can damage the actuator．In such a case， install a mounting bracket to suppress the vibration of the actuator body or reduce the speed so that the actuator does not vibrate．
Also，use a mounting bracket when moving the actuator body or when a long stroke actuator is mounted horizontally and fixed at one end．
10．Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod．
This may cause deformation of the non－rotating guide，abnormal responses of the auto switch，play in the internal guide or an increase in the sliding resistance．
Refer to the table below for the approximate values of the allowable range of rotational torque．

Allowable rotational torque lbf $[\mathrm{N} \cdot \mathrm{m}]$ or less	LEY25 \square	LEY32	LEY63

When screwing in a bracket or nut to the end of the piston rod， hold the flats of the rod end with a wrench（the piston rod should be fully retracted）．Do not apply tightening torque to the non－rotat－ ing mechanism．

11．When using auto switch with the guide rod type LEYG series， the following limits will be in effect．Please select the product while paying attention to this．
－Insert the auto switch from the front side with rod（plate）sticking out．
－The auto switches with perpendicular electrical entry cannot be used．
－For the parts hidden behind the guide attachment（Rod stick out side），the auto switch cannot be fixed．
－Consult with SMC when using auto switch on the rod stick out side．

Enclosure

 Second characteristic numeral
－First Characteristics：
Degrees of protection against solid foreign objects

$\mathbf{0}$	Non－protected
$\mathbf{1}$	Protected against solid foreign objects of $50 \mathrm{mmø}$ and greater
$\mathbf{2}$	Protected against solid foreign objects of 12 mm and greater
$\mathbf{3}$	Protected against solid foreign objects of 2.5 mm and greater
$\mathbf{4}$	Protected against solid foreign objects of 1.0 mm and greater
$\mathbf{5}$	Dust－protected
$\mathbf{6}$	Dust－tight

SeriesLEY/LEYG Electric Actuators/ Specific Product Precautions 2
 Be sure to read this before handling. For Safety Instructions and Electric Actuator Precautions, refer to "Handling

\triangle Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com

Enclosure

- Second Characteristics:

Degrees of protection against water

$\mathbf{0}$	Non-protected	-
$\mathbf{1}$	Protected against vertically falling water drops	Dripproof type 1
$\mathbf{2}$	Protected against vertically falling water drops when enclosure tilted up to 15°	Dripproof type 2
$\mathbf{3}$	Protected against rainfall when enclosure tilted up to 60	Rainproof type
$\mathbf{4}$	Protected against splashing water	Splashproof type
$\mathbf{5}$	Protected against water jets	Water-jet- proof type
$\mathbf{6}$	Protected against powerful water jets	Powerful water- jet-proof type
$\mathbf{7}$	Protected against the effects of temporary immersion in water	Immersible type
$\mathbf{8}$	Protected against the effects of continuous immersion in water	Submersible type

Example) IP65: Dust-tight, Water-jet-proof type
"Water-jet-proof type" means that no water intrudes inside an equipment that could hinder from operating normally by means of applying water for 3 minutes in the prescribed manner. Take appropriate protection measures, since a device is not usable in an environment where a droplet of water is splashed constantly.

Mounting

\triangle Caution

1. When mounting workpieces or jigs to the piston rod end, hold the flats of the piston rod end with a wrench so that the piston rod does not rotate. The bolt should be tightened within the specified torque range.
This may cause abnormal responses of the auto switch, play in the internal guide or an increase in the sliding resistance.
2. When mounting the product and/or a workpiece, tighten the mounting screws within the specified torque range.
Tightening the screws with a higher torque than recommended may cause a malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.
<Series LEY>

Workpiece fixed/Rod end female thread

Model	Bolt	Max. tightening torque lbf.ft($\mathrm{N} \cdot \mathrm{m}$)	Max. screw-in depth (mm)	End socket width across flats (mm)
LEY25	M8 $\times 1.25$	$9.2[12.5]$	13	17
LEY32	M8 $\times 1.25$	$9.2[12.5]$	13	22
LEY63	M16 2	$78[106]$	21	36

Workpiece fixed/Rod end male thread

Model	Bolt	Max. tightening torque lbf.f($\mathrm{N} \cdot \mathrm{m}$)	Effective thread length (mm)	End socket width across flats (mm)
LEY25	$\mathrm{M} 14 \times 1.5$	$37[50]$	20.5	17
LEY32	$\mathrm{M} 14 \times 1.5$	$37[50]$	20.5	22
LEY63	$\mathrm{M} 18 \times 1.5$	$71[97]$	26	36

99 screw-in dept

Model	Rod end nut		End bracket screw-in depth (mm)
	Width across flats (mm)	Length (mm)	
LEY25	22	8	14
LEY32	22	8	14
LEY63	27	11	18

Mounting

© Caution

Body fixed/Body bottom tapped style (When "Body bottom tapped" is selected.)

Model	Bolt	Max. tightening torque lbffti(N.m)	Max. screw-in depth (mm)
LEY25	M5 $\times 0.8$	$2.2[3.0]$	6.5
LEY32	M6 $\times 1.0$	$3.8[5.2]$	8.8
LEY63	M8 $\times 1.25$	$9.2[12.5]$	10

Body fixed/Rod side/Head side tapped style

<Series LEYG>
Workpiece fixed/Plate tapped style

Body fixed/Top mounting

Model	Bolt	Max. tightening torque lbffit(N.m	Length: L (mm)
LEYG25 ${ }_{\text {M }}$	M5 x 0.8	2.2 [3.0]	40.5
LEYG32 ${ }_{\text {L }}$	M5 x 0.8	2.2 [3.0]	50.5

Body fixed/Bottom mounting

Model	Bolt	Max. tightening torque lbfft(iN.m	Max. screw-in depth (mm)
LEYG25 L	$\mathrm{M} 6 \times 1.0$	$3.8[5.2]$	12
LEYG32 L	$\mathrm{M} 6 \times 1.0$	$3.8[5.2]$	12

Body fixed/Head side tapped style

Model	Bolt	Max. tightening torque lbfft(N.m $)$	Max. screw-in depth (mm)
LEYG25 L	$\mathrm{M} 5 \times 0.8$	$2.2[3.0]$	8
LEYG32 L	$\mathrm{M} 6 \times 1.0$	$3.8[5.2]$	10

3. Keep the flatness of the mounting surface within the following ranges when mounting the actuator body and workpiece.
Unevenness of a workpiece or base mounted on the body of the product may cause an increase in the sliding resistance.

Model	Mounting position	Flatness
LEY \square	Body/Body bottom	$\begin{aligned} & 0.1 \mathrm{~mm} \\ & \text { or less } \end{aligned}$
LEYG \square	Bottom mounting	$\begin{aligned} & 0.05 \mathrm{~mm} \\ & \text { or less } \end{aligned}$
	Workpiece/Plate mounting	$\begin{gathered} 0.05 \mathrm{~mm} \\ \text { or less } \end{gathered}$

Maintenance

© Warning

1. Ensure that the power supply is stopped and the workpiece is removed before starting maintenance work or replacement of the product.

- Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Belt check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months/ $250 \mathrm{~km} / 5$ million cycles*	\bigcirc	\bigcirc

* Select whichever comes sooner.
- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

- Items for belt check

Stop operation immediately and replace the belt when belt appear to be below. Further, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out

Canvas fiber becomes fuzzy. Rubber is removed and the fiber becomes whitish. Lines of fibers become unclear.
b. Peeling off or wearing of the side of the belt

Belt corner becomes round and frayed thread sticks out.
c. Belt partially cut

Belt is partially cut. Foreign matter caught in teeth other than cut part causes flaw.
d. Vertical line of belt teeth

Flaw which is made when the belt runs on the flange.
e. Rubber back of the belt is softened and sticky
f. Crack on the back of the belt

AC Servo Motor Driver

Series LECYM/LECYU
 (MIMECHATROLINK-II Type)
 (11 MECHATROLINK-III Type)
 RoHS

Dimensions

HMECHATROLINK-II type
LECYM2-V \square

Connector name	Description
CN1	I/O signal connector
CN2	Encoder connector
CN3 Note)	Digital operator connector
CN6A	MECHATROLINK-II communication connector
CN6B	MECHATROLINK- II communication connector
CN7	PC connector
CN8	Safety connector

Note) Digital operator is JUSP-OP05A-1-E manufactured by YASKAWA Electric Corporation.
When using the digital operator, it should be provided by the customer.

Motor capacity	Hole position	Mounting dimensions				Mounting hole
		A	B	C	D	
V5 (100 W)	(1)(2)	5	-	5	5	$\varnothing 5$
V7 (200 W)	(1)(2)	5	-	5	5	
V8 (400 W)	(2)(3)	5	5	5	5	

* The mounting hole position varies depending on the motor capacity.

MMECHATROLINK-III type
 LECYU2-V \square

Connector name	Description
CN1	I/O signal connector
CN2	Encoder connector
CN3 Note)	Digital operator connector
CN6A	MECHATROLINK-IIIcommunication connector
CN6B	MECHATROLINK-IIIcommunication connector
CN7	PC connector
CN8	Safety connector

Note) Digital operator is JUSP-OP05A-1-E manufactured by YASKAWA Electric Corporation.
When using the digital operator, it should be provided by the customer.

Motor capacity	Hole position	Mounting dimensions				Mounting hole
		A	B	C	D	
V5 (100 W)	(1)(2)	5	-	5	5	$\varnothing 5$
V7 (200 W)	(1)(2)	5	-	5	5	
V8 (400 W)	(2)(3)	5	5	5	5	

* The mounting hole position varies depending on the motor capacity.

AC Servo Motor Driver Series LECYM

Specifications

MMECHATROLNK－II Type

Series $\operatorname{LECY}_{U}^{M}$

Specifications

HMECHATROLINK-III Type					
Model			LECYU2-V5	LECYU2-V7	LECYU2-V8
Compatible motor capacity [W]			100	200	400
Compatible encoder			Absolute 20-bit encoder (Resolution: $1048576 \mathrm{p} / \mathrm{rev}$)		
Main circuit power supply	Power voltage [V]		Three phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
	Allowable voltage fluctuation [V]		Three phase 170 to 253 VAC		
Control power supply	Power voltage [V]		Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
	Allowable voltage fluctuation [V]		Single phase 170 to 253 VAC		
Power supply capacity (at rated output) [A]			0.91	1.6	2.8
Input circuit			NPN (Sink circuit)/PNP (Source circuit)		
Parallel input (7 inputs)	Number of optional allocations	7 inputs	[Initial allocation] - Homing deceleration switch (/DEC) - External latch (/EXT 1 to 3) - Forward run prohibited (P-OT), reverse run prohibited (N-OT) [Can be allocated by setting the parameters.] - Forward external torque limit (/P-CL), reverse external torque limit (/N-CL) Signal allocations can be performed, and positive and negative logic can be changed.		
Parallel output (4 outputs)	Number of fixed allocations	1 output	. Servo alarm (ALM)		
	Number of optional allocations	3 outputs	[Initial allocation] - Lock (/BK) [Can be allocated by setting the parameters.] - Positioning completion (/COIN) - Speed limit detection (/VLT) - Speed coincidence detection (/V-CMP) - Rotation detection (/TGON) - Warning (/WARN) - Servo ready (/S-RDY) - Near (/NEAR) - Torque limit detection (/CLT) Signal allocations can be performed, and positive and negative logic can be changed.		
MECHATROLINK communication	Communication protocol		MECHATROLINK-III		
	Station address		03H to EFH		
	Communication speed		100 Mbps		
	Communication cycle		$125 \mu \mathrm{~s}, 250 \mu \mathrm{~s}, 500 \mu \mathrm{~s}, 750 \mu \mathrm{~s}, 1 \mathrm{~ms}$ to 4 ms (Multiples of 0.5 ms)		
	Number of transmission bytes		16 bytes, 32 bytes, 48 bytes,		
	Max. number of stations		62		
	Cable length		Cable length between the stations: 0.5 m or more, 75 m or less		
Command method	Control method		Position, speed, or torque control with MECHATROLINK-III communication		
	Command input		MECHATROLINK-III command (Motion, data setting, monitoring or adjustment)		
Function	Gain adjustment		Tuning-less/Advanced autotuning/One-parameter tuning		
	Communication setting		USB communication, RS-422 communication		
	Torque limit		Internal torque limit, external torque limit, and torque limit by analog command		
	Encoder output		Phase A, B, C: Line driver output		
	Emergency stop		CN8 Safety function		
	Overtravel		Dynamic brake stop, deceleration to a stop, or free run to a stop at P-OT or N-OT		
	Alarm		Alarm signal, MECHATROLINK-III command		
Operating temperature range			32 to $131^{\circ} \mathrm{F}$ (0 to $55^{\circ} \mathrm{C}$) (No freezing)		
Operating humidity range [\%RH]			90 or less (No condensation)		
Storage temperature range			-4 to $185^{\circ} \mathrm{F}$ (-20 to $85^{\circ} \mathrm{C}$) (No freezing)		
Storage humidity range [\%RH]			90 or less (No condensation)		
Insulation resistance [M M]			$10 \mathrm{M} \Omega$ (500 VDC)		
Weight [g]			900		1000

Power Supply Wiring Example: LECY \square

■Three phase 200 V LECYM2- \square
 LECYU2- \square

1QF : Molded-case circuit breaker
1FLT: Noise filter
1KM : Magnetic contactor (for control power supply) 2KM : Magnetic contactor (for main circuit power supply)

1Ry: Relay
1PL : Indicator light
1SA: Surge absorber
2SA: Surge absorber
3SA: Surge absorber
1D : Flywheel diode

* For the LECY $\square 2-\mathrm{V} 5$, LECY $\square 2-\mathrm{V} 7$ and LECY $\square 2-\mathrm{V} 8$, terminals B2 and B3 are not short-circuited.

Do not short-circuit these terminals.

Main Circuit Power Supply Connector * Accessory

Terminal name	Function	Details
L1	Main circuit power supply	Connect the main circuit power supply. Single phase 200 to 230 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L1, L2 Three phase 200 to 230 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L1, L2, L3
L2		
L3		
L1C	Control power supply	Connect the control power supply. Single phase 200 to 230 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L1C, L2C
L2C		
B1/ \dagger	External regenerative resistor connection terminal	When the regenerative resistor is required, connect it between terminals $\mathrm{B} 1 \oplus$ and B 2 .
B2		
B3		
$\bigcirc 1$	Main circuit negative terminal	$\Theta 1$ and $\Theta 2$ are connected at shipment.
$\bigcirc 2$		

Motor Connector * Accessory

Terminal name	Function	
U	Servo motor power (U)	
V	Servo motor power (V)	Connect to motor cable (U, V, W).
W	Servo motor power (W)	

Power Supply Wire Specifications

Item	Specifications
Applicable wire size	L1, L2, L3, L1C, L2C Single wire, Twisted wire, AWG14 $\left(2.0 \mathrm{~mm}^{2}\right)$
Stripped wire length	

Main circuit power supply connector

Control Signal Wiring Example: LECYM

Note 1) J shows twisted-pair wires.
Note 2) The 24 VDC power supply is not included. Use a 24 VDC power supply with double insulation or reinforced insulation.
Note 3) When using the safety function, a safety function device must be connected to the wiring that is necessary to activate the safety function. Otherwise, the servo motor is not turned ON. When not using the safety function, use the driver with the Safety Jumper Connector (provided as an accessory) inserted into the CN8.
Note 4) Always use line receivers to receive the output signals.

* The functions allocated to the input signals /DEC, P-OT, N-OT, /EXT1, /EXT2 and /EXT3, and the output signals /SO1, /SO2 and /SO3 can be changed by setting the parameters.

Note 1) ff shows twisted-pair wires.
Note 2) The 24 VDC power supply is not included. Use a 24 VDC power supply with double insulation or reinforced insulation.
Note 3) When using the safety function, a safety function device must be connected to the wiring that is necessary to activate the safety function. Otherwise, the servo motor is not turned ON. When not using the safety function, use the driver with the Safety Jumper Connector (provided as an accessory) inserted into the CN8.
Note 4) Always use line receivers to receive the output signals.

* The functions allocated to the input signals /DEC, P-OT, N-OT, /EXT1, /EXT2 and /EXT3, and the output signals /SO1, /SO2 and /SO3 can be changed by setting the parameters.

Options

Motor cable, Motor cable for lock option, Encoder cable (LECYM/LECYU common)

Cable length (L) [m]

* The cable entry direction is axis side only.

LE-CYM- $\square \square$ - \square : Motor cable

M4 Crimped terminal

LE-CYB- $\square \square \mathrm{A}-\square$: Motor cable for lock option

LE-CYE- $\square \square A:$ Encoder cable

Products no.	$\boldsymbol{\text { øD }}$
LE-CYE-S $\square \mathbf{A}$	6.5
LE-CYE-R $\square \mathbf{A}$	6.8

$\frac{\text { Battery case }}{\text { Depth dimension: } 25 \mathrm{~mm}}$

* LE-CYM-S \square A- \square is JZSP-CSM0 $\square-\square \square$-E manufactured by YASKAWA CONTROLS CO., LTD. LE-CYB-S \square A- \square is JZSP-CSM1 $\square-\square \square$-E manufactured by YASKAWA CONTROLS CO., LTD. LE-CYE-S \square A is JZSP-CSP05- $\square \square-E$ manufactured by YASKAWA CONTROLS CO., LTD. LE-CYM-R \square A- \square is JZSP-CSM2 $\square-\square \square-E$ manufactured by YASKAWA CONTROLS CO., LTD. LE-CYB-R \square A- \square is JZSP-CSM3 $\square-\square \square$-E manufactured by YASKAWA CONTROLS CO., LTD. LE-CYE-R \square A is JZSP-CSP25- $\square \square$-E manufactured by YASKAWA CONTROLS CO., LTD.

Options

* LE-CYNA: 10126-3000PE (connector)/10326-52F0-008 (shell kit) manufactured by Sumitomo 3M Limited or equivalent item.
* Conductor size: AWG24

MMECHATROLNK cable type

* LEC-CYM- \square is JEPMC-W6002- $\square \square$-E manufactured by YASKAWA CONTROLS CO., LTD.
* LEC-CYU- \square is JEPMC-W6012- $\square \square$-E manufactured by YASKAWA CONTROLS CO., LTD.

MMECHATROLINK-II cable

MMECHATROLINK-III cable

Terminating connector for MMECHATROLNK-II

LEC-CYRM

* LEC-CYRM is JEPMC-W6022-E manufactured by YASKAWA CONTROLS CO., LTD.

Options

Drivers

Setup software (SigmaWin $+^{\text {TM }}$) (LECYM/LECYU common)

* Please download the SigmaWin $+{ }^{\text {TM }}$ via our website.

SigmaWin $+{ }^{\text {TM }}$ is a registered trademark or trademark of YASKAWA Electric Corporation.
Adjustment, waveform display, diagnostics, parameter read/write, and test operation can be performed upon a PC.

Compatible PC

When using setup software (SigmaWin $+^{\text {TM }}$), use an IBM PC/AT compatible PC that meets the following operating conditions.
Hardware Requirements

Equipment		Setup software (SigmaWin+ ${ }^{\text {TM }}$)
$\begin{aligned} & \text { Note 1) 2) 3) 4) } \\ & \text { PC } \end{aligned}$	OS	Windows ${ }^{\circledR}$ XP Note 5), Windows Vista ${ }^{\circledR}$, Windows ${ }^{\circledR} 7$ (32-bit/64-bit)
	Available HD space	350 MB or more (When the software is installed, 400 MB or more is recommended.)
	Communication interface	Use USB port.
Display		XVGA monitor (1024×768 or more, "The small font is used.") 256 color or more (65536 color or more is recommended.) The connectable with the above PC
Keyboard		The connectable with the above PC
Mouse		The connectable with the above PC
Printer		The connectable with the above PC
USB cable		LEC-JZ-CVUSB Note 6)
Other		Adobe Reader Ver. 5.0 or higher (* Except Ver. 6.0)

Note 1) Windows, Windows Vista ${ }^{\circledR}$, Windows ${ }^{\circledR} 7$ are registered trademarks of Microsoft Corporation in the United States and/or other countries.
Note 2) On some PCs, this software may not run properly.
Note 3) Not compatible with 64-bit Windows ${ }^{\circledR}$ XP and 64-bit Windows Vista ${ }^{\circledR}$.
Note 4) For Windows ${ }^{\circledR}$ XP, please use it by the administrator authority (When installing and using it.).
Note 5) In PC that uses the program to correct the problem of HotfixQ328310, it is likely to fail in the installation. In that case, please use the program to correct the problem of HotfixQ329623.
Note 6) Order USB cable separately.

Battery (LECYM/LECYU common)
 LEC-JZ-CVBAT

* JZSP-BA01 manufactured by YASKAWA CONTROLS CO., LTD.

Battery for replacement.
Absolute position data is maintained by installing the battery to the battery case of the encoder cable.

USB cable (2.5 m)

LEC-JZ-CVUSB

* JZSP-CVS06-02-E manufactured by YASKAWA CONTROLS CO., LTD.

Cable for connecting PC and driver when using the setup software (SigmaWin+ $+^{\text {TM }}$).
Do not use any cable other than this cable.

Cable for safety function device (3 m)
 LEC-JZ-CVSAF

* JZSP-CVH03-03-E manufactured by YASKAWA CONTROLS CO., LTD.

Cable for connecting the driver and device when using the safety function.
Do not use any cable other than this cable.

Series LECYM/LECYU AC Servo Motor Driver/ Specific Product Precautions 1

Be sure to read this before handling. For Safety Instructions and Electric Actuator Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com

Design/Selection

\triangle Warning

1. Use the specified voltage.

If the applied voltage is higher than the specified voltage, malfunction and damage to the driver may result. If the applied voltage is lower than the specified voltage, there is a possibility that the load cannot be moved due to internal voltage drop. Check the operating voltage prior to start. Also, confirm that the operating voltage does not drop below the specified voltage during operation.
2. Do not use the products outside the specifications.

Otherwise, fire, malfunction or damage to the driver/actuator can result. Check the specifications before use.
3. Install an emergency stop circuit.

Install an emergency stop outside the enclosure in easy reach to the operator so that the operator can stop the system operation immediately and intercept the power supply.
4. To prevent danger and damage due to a breakdown or malfunction of these products, which may occur at a certain probability, a backup system should be arranged in advance by using a multiple-layered structure or by making a fail-safe equipment design etc.
5. If there is a risk of fire or personal injury due to abnormal heat generation, sparking, smoke generated by the product, etc., cut off the power supply from this product and the system immediately.

Handling

\triangle Warning

1. Never touch the inside of the driver and its peripheral devices. Otherwise, electric shock or failure can result.
2. Do not operate or set up this equipment with wet hands.

Otherwise, electric shock can result.
3. Do not use a product that is damaged or missing any components.

Electric shock, fire or injury can result.
4. Use only the specified combination between the electric actuator and driver.
Otherwise, it may cause damage to the driver or to the other equipment.
5. Be careful not to touch, get caught or hit by the workpiece while the actuator is moving.
An injury can result.
6. Do not connect the power supply or power up the product until it is confirmed that the workpiece can be moved safely within the area that can be reached by the workpiece.
Otherwise, the movement of the workpiece may cause an accident.
7. Do not touch the product when it is energized and for some time after the power has been disconnected, as it is very hot.
Otherwise, it may cause burns due to the high temperature.
8. Check the voltage using a tester at least 5 minutes after power-off when performing installation, wiring and maintenance.

Handling

\triangle Warning

9. Static electricity may cause a malfunction or damage the driver. Do not touch the driver while power is supplied to it.
Take sufficient safety measures to eliminate static electricity when it is necessary to touch the driver for maintenance.
10. Do not use the products in an area where they could be exposed to dust, metallic powder, machining chips or splashes of water, oil or chemicals.
Otherwise, a failure or malfunction can result.
11. Do not use the products in a magnetic field.

Otherwise, a malfunction or failure can result.
12. Do not use the products in an environment where flammable, explosive or corrosive gases, liquids or other substances are present.
Otherwise, fire, explosion or corrosion can result.
13. Avoid heat radiation from strong heat sources, such as direct sunlight or a hot furnace.
Otherwise, it will cause a failure to the driver or its peripheral devices.
14. Do not use the products in an environment with cyclic temperature changes.
Otherwise, it will cause a failure to the driver or its peripheral devices.
15. Do not use the products in an environment where surges are generated.
Devices (solenoid type lifters, high frequency induction furnaces, motors, etc.) that generate a large amount of surge around the product may lead to deterioration or damage to the internal circuits of the products. Avoid supplies of surge generation and crossed lines.
16. Do not install these products in a place subject to vibration and impact.
Otherwise, a malfunction or failure can result.
17. When a surge generating load such as a relay or solenoid valve is directly driven, use a product that incorporates a surge absorption element.

Mounting

Warning

1. Install the driver and its peripheral devices on fireproof material.
Direct installation on or near flammable material may cause fire.
2. Do not install these products in a place subject to vibration and impact.
Otherwise, a malfunction or failure can result.
3. The driver should be mounted on a vertical wall in a vertical direction.

Also, do not cover the driver's suction/exhaust ports.
4. Install the driver and its peripheral devices on a flat surface.

If the mounting surface is not flat or uneven, excessive force may be applied to the housing and other parts resulting in a malfunction.

Series LECYM/LECYU AC Servo Motor Driver/ Specific Product Precautions 2
Be sure to read this before handling. For Safety Instructions and Electric Actuator Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com

Power Supply

\triangle Caution

1. Use a power supply with low noise between lines and between power and ground.
In cases where noise is high, use an isolation transformer.
2. Take appropriate measures to prevent surges from lightning. Ground the surge absorber for lightning separately from the grounding of the driver and its peripheral devices.

Wiring

\triangle Warning

1. The driver will be damaged if a commercial power supply (100V/200V) is added to the driver,s servo motor power (U , $\mathrm{V}, \mathrm{W})$. Be sure to check wiring such as wiring mistakes when the power supply is turned on.
2. Connect the ends of the U, V, W wires from the motor cable correctly to the phases (U, V, W) of the servo motor power. If these wires do not match up, it is unable to control the servo motor.

Grounding

© Warning

1. For grounding actuator, connect the copper wire of the actuator to the driver,s protective earth (PE) terminal and connect the copper wire of the driver to the earth via the control panel,s protective earth (PE) terminal.
Do not connect them directly to the control panel,s protective earth (PE) terminal.

Control panel

2. In the unlikely event that malfunction is caused by the ground, it may be disconnected.

Maintenance

© Warning

1. Perform maintenance checks periodically.

Confirm wiring and screws are not loose.
Loose screws or wires may cause unexpected malfunction.
2. Conduct an appropriate functional inspection and test after completed maintenance.
In case of any abnormalities (if the actuator does not move or the equipment does not operate properly etc.), stop the operation of the system.
Otherwise, unexpected malfunction may occur and safety cannot be assured.
Conduct a test of the emergency stop to confirm the safety of the equipment.
3. Do not disassemble, modify or repair the driver or its peripheral devices.
4. Do not put anything conductive or flammable inside the driver.
Otherwise, fire can result.
5. Do not conduct an insulation resistance test or insulation withstand voltage test.
6. Reserve sufficient space for maintenance.

Design the system so that it allows required space for maintenance.

Global Manufacturing, Distribution and Service Network

Worldwide Subsidiaries

EUROPE

AUSTRIA
SMC Pneumatik GmbH (Austria)
BELGIUM
SMC Pneumatics N.V./S.A.
buLgaria
SMC Industrial Automation Bulgaria EOOD
CROATIA
SMC Industrijska Automatika d.o.o.
CZECH
SMC Industrial Automation CZ s.r.o.
DENMARK
SMC Pneumatik A/S
ESTONIA
SMC Pneumatics Estonia
FINLAND
SMC Pneumatics Finland OY
FRANCE
SMC Pneumatique S.A.
GERMANY
SMC Pneumatik GmbH
GREECE
SMC Hellas EPE
hUNGARY
SMC Hungary lpari Automatizálási Kft. IRELAND
SMC Pneumatics (Ireland) Ltd.
italy
SMC Italia S.p.A.

LATVIA
SMC Pneumatics Latvia SIA

LITHUANIA

SMC Pneumatics Lietuva, UAB
NETHERLANDS
SMC Pneumatics BV
NORWAY
SMC Pneumatics Norway A/S
POLAND
SMC Industrial Automation Polska Sp.z.o.o.
ROMANIA
SMC Romania S.r.I.
RUSSIA
SMC Pneumatik LLC.
SLOVAKIA
SMC Priemyselná Automatizáciá, s.r.o.
SLOVENIA
SMC Industrijska Avtomatika d.o.o.
SPAIN / PORTUGAL
SMC España, S.A.
sweden
SMC Pneumatics Sweden AB
SWITZERLAND
SMC Pneumatik AG
UK
SMC Pneumatics (U.K.) Ltd.

ASIA

CHINA
SMC (China) Co., Ltd.
HONG KONG
SMC Pneumatics (Hong kong) Ltd. INDIA
SMC Pneumatics (India) Pvt. Ltd.
JAPAN
SMC Corporation
MALAYSIA
SMC Pneumatics (S.E.A.) Sdn. Bhd. PHILIPPINES
SMC Pneumatics (Philippines), Inc. SINGAPORE
SMC Pneumatics (S.E.A.) Pte. Ltd. SOUTH KOREA
SMC Pneumatics Korea Co., Ltd.

TAIWAN

SMC Pneumatics (Taiwan) Co., Ltd.

THAILAND

SMC Thailand Ltd.

NORTH AMERICA

CANADA
SMC Pneumatics (Canada) Ltd.
MEXICO
SMC Corporation (Mexico) S.A. DE C.V.
USA
SMC Corporation of America

SOUTH AMERICA

ARGENTINA
SMC Argentina S.A.
BOLIVIA
SMC Pneumatics Bolivia S.R.L.
BRAZIL
SMC Pneumaticos do Brazil Ltda.
CHILE
SMC Pneumatics (Chile) S.A.
PERU
SMC Corporation Peru S.A.C.
VENEZUELA
SMC Neumatica Venezuela S.A.

OCEANIA

aUStralia
SMC Pneumatics (Australia) Pty. Ltd.
NEW ZEALAND
SMC Pneumatics (N.Z.) Ltd.

U.S. \& Canadian Sales Offices

| WEST | EAST |
| :--- | :--- | :--- |
| Austin | Atlanta |
| Dallas | Birmingham |
| Los Angeles | Boston |
| Phoenix | Charlotte |
| Portland | Nashville |
| San Francisco | New Jersey |
| | Rochester |
| CENTRAL | Tampa |
| Chicago | |
| Cincinnati | CANADA |
| Cleveland | Vancouver |
| Detroit | Toronto |
| Indianapolis | Windsor |
| Milwaukee | Montreal |
| Minneapolis | |
| St. Louis | |

SMC Corporation of America 10100 SMC Blvd., Noblesville, IN 46060 www.smcusa.com
SMC Pneumatics (Canada) Ltd. www.smcpneumatics.ca

[^0]: * Please consult with SMC for the manufacture of intermediate strokes.

[^1]: * The values in () are for a closely-mounted driver.

[^2]: * The values in () are for a closely-mounted driver.

[^3]: * The L1 measurement is when the unit is in the

 Z-phase first detecting position. At this position, 2 mm at the end (size 25,32) and 4 mm at the end (size 63).

[^4]: * Please consult with SMC for the manufacture of intermediate strokes.

[^5]: *Work load/acceleration/deceleration graph

 * Maximum speed/acceleration/deceleration values graph for each stroke

[^6]: * Please consult with SMC for the manufacture of intermediate strokes.

[^7]: Note) When the motor is mounted on the left or right side in parallel, the groove for auto switch on the side to which the motor is mounted is hidden.

[^8]: * The limit of vertical load mass varies depending on "lead" and "speed" Check "Speed-Work Load Graph" on page 85.

[^9]: * Please consult with SMC for the manufacture of intermediate strokes.

