Electric Actuator

LEL Series

Guide Rod Slider

Low-profile/Flat Height 48 mm

Profile reduced by side mounting of motor

Max. stroke: 1000 mm Transfer speed: 1000 mm/s

No interference with motor, even with large workpieces!

Belt drive

With belt cover

Compatible with sliding bearing and ball bushing bearing

Model	Size	Bearing	Stroke [mm]	Work load (Horizontal) [kg]	Speed [mm / s]	Positioning repeatability [mm]	Page
LEL25M	25	Sliding bearing	Up to 1000	3	Up to 500	± 0.08	- Page 152
LEL25L		Ball bushing bearing	Up to 1000	5	Up to 1000	± 0.08	

Simple construction. Guide type can be selected.

Max. stroke: 1000 mm
Transfer speed: 1000 mm/s

Guide type

- Sliding bearing

Work load: 3 kg (Horizontal)
Reduced noise (60 dB or less) ${ }^{\text {Note) }}$

- Ball bushing bearing

Work load: 5 kg (Horizontal)
Transfer speed: $1000 \mathrm{~mm} / \mathrm{s}$
Note) When the maximum speed is $500 \mathrm{~mm} / \mathrm{s}$
(Measured by SMC)

Auto switch mountable (Option: With magnet/switch rail)

For checking the limit and intermediate signal
Applicable to the D-M9 \square and D-M9 \square W (2-color indicator)

* The auto switches should be ordered separately. Refer to pages 161 and 162 for details.

2-color indicator solid state auto switch Appropriate setting of the mounting position can be performed without mistakes.
a green light

Red Green Red
lights up at the optimum operating

Optimum operating range range.

Step Motor (Servo/24 VDC)

Electric Actuator/Guide Rod Slider LEL Series

	Model Selection .. Page 152
	How to Order ... Pages 156, 157-1
	Specifications .. Page 158
	Construction .. Page 159
	Dimensions .. Page 160
	Auto Switch .. Page 161
	Specific Product Precautions ... Page 163

Step Motor (Servo/24 VDC) Controller

Electric Actuators

Guide Rod Slider

LEL Series

Step Motor (Servo/24 VDC)

Selection Procedure

Selection Example

Operating
conditions

Step 1
Check the work load-speed. <Speed-Work load graph> (Page 155) Select the target model based on the workpiece mass and speed with reference to the <Speed-Work load graph>.
Selection example) The LEL25LT-500 is temporarily selected based on the graph shown on the right side.

<Speed-Work load graph> (LEL25L/Step motor)

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method.

Cycle time:

T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$
-T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]$
-T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the conditions such as motor types, load and in position of the step data. Therefore, please calculate the settling time with reference to the following value.

T4 = 0.3 [s]

Step 3 Check the guide moment.

Based on the above calculation result, the LEL25LT-500 is selected.

Calculation example)
T1 to T4 can be calculated as follows.

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}], \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{500-0.5 \cdot 300 \cdot(0.1+0.1)}{300} \\
& =1.57[\mathrm{~s}] \\
\mathrm{T} 4 & =0.3[\mathrm{~s}]
\end{aligned}
$$

Therefore, the cycle time can be obtained as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.1+1.57+0.1+0.3 \\
& =\mathbf{2} .07[\mathbf{s}]
\end{aligned}
$$

L : Stroke [mm]
...(Operating condition)
V : Speed [mm/s]
...(Operating condition)
a1: Acceleration [$\mathrm{mm} / \mathrm{s}^{2}$]
...(Operating condition)
a2: Deceleration [$\mathrm{mm} / \mathrm{s}^{2}$]
...(Operating condition)
T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is
operating at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until positioning is completed

Model Selection LEL Series
 Step Motor (Servo/24 VDC)

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to "Calculation of Guide
Dynamic Allowable Moment Load Factor" or the Electric Actuator Selection Software for confirmation, http://www smcworld com

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LEL
Size: 25
Mounting orientation: Horizontal/Bottom/Wall

Acceleration [mm/s ${ }^{2}$]: a

Work load [kg]: m
Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph with reference to the model, size and mounting orientation.
3. Based on the acceleration and work load, obtain the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.
$\alpha x=X c / L x, \alpha y=Y c / L y, \alpha z=Z c / L z$
5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$ and $\alpha \mathbf{z}$ is 1 or less.
$\alpha x+\alpha y+\alpha z \leq 1$
When 1 is exceeded, please consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LEL
Size: 25L
Stroke: $500 \quad$ 3. $\mathbf{L x}=\mathbf{1 2 0} \mathbf{~ m m}, \mathbf{L y}=\mathbf{6 5} \mathbf{~ m m}, \mathbf{L z}=\mathbf{3 9 0} \mathbf{~ m m}$
Mounting orientation: Horizontal
Acceleration [$\mathrm{mm} / \mathrm{s}^{2}$]: 3000
Work load [kg]: 4
Work load center position [mm]: Xc=30, Yc=20, Zc=100
2. Select three graphs from the top of the right side on page 153.
4. The load factor for each direction can be obtained as follows.

$$
\alpha x=30 / 120=0.25
$$

$$
\alpha y=20 / 65=0.31
$$

$\alpha z=100 / 390=0.26$
5. $\alpha x+\alpha y+\alpha z=0.82 \leq 1$

Model selection $L E L$ Series
Step Motor (Servo/24 VDC)

Speed-Work Load Graph (Guide)

LEL25M

LEL25L

Table Displacement (Reference Value)

* Amount of displacement of the table when the load center of gravity is located at the table center in the middle of the stroke.

Table Displacement (Reference Value)

* Amount of displacement when the load is offset by "L" from the center of the table.

Electric Actuator/Guide Rod Slider Belt Drive

Applicable to the LEC \square series

4 Stroke

100	100 mm
to	to
1000	1000 mm

* Refer to the applicable stroke table.

5 Motor option

Nil	Without option
\mathbf{B}	With lock
\mathbf{C}	With motor cover*

* When [With lock] is selected, [With motor cover] cannot be selected.

Switch rail option

\triangle Caution

[CE-compliant products]
(1) EMC compliance was tested by combining the electric actuator LEL series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) CC-Link direct input type (LECPMJ) is not CE-compliant.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

* After purchashing the "Nil" type, the magnet and switch rail cannot be attached afterwards.

Applicable Stroke Table - Standard/ \bigcirc : Produced upon receipt of order

Model Stroke	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$	$\mathbf{3 0 0}$	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$	$\mathbf{6 0 0}$	$\mathbf{7 0 0}$	$\mathbf{8 0 0}$	$\mathbf{9 0 0}$	1000
LEL25	\bigcirc	\bigcirc	\ominus	\ominus	\bullet	\ominus	\bigcirc	\bigcirc	\bigcirc	\bigcirc

* Please consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.

The actuator and controller are provided as a set.

Confirm that the combination of the controller and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller.
(2) Check Parallel I/O configuration matches (NPN or PNP).

[^0]

Actuator cable type/length

Nil	Without cable
S1	Standard cable 1.5 m
S3	Standard cable 3 m
S5	Standard cable 5 m
R1	Robotic cable 1.5 m
R3	Robotic cable 3 m
R5	Robotic cable 5 m
R8	Robotic cable $8 \mathrm{~m}^{* 1}$
RA	Robotic cable $10 \mathrm{~m}^{* 1}$
RB	Robotic cable $15 \mathrm{~m}^{* 1}$
RC	Robotic cable $20 \mathrm{~m}^{* 1}$

*1 Produced upon receipt of order (Robotic cable only)
*2 The standard cable should only be used on fixed parts.
For use on moving parts, select the robotic cable.

(10) Controller mounting

Nil	D
D	

Screw mounting

* DIN rail is not included. Order it separately.

8 Controller type*		
Nil	Without controller	
6N	LECP6	NPN
6P	(Step data input type)	PNP
1N	LECP1	NPN
1P	(Programless type)	PNP
MJ	LECPMJ (CC-Link direct input type)	-

* For details about controller and compatible motor, refer to the compatible controller below.

9 I/0 cable length [m]** Communication plug Nil \quad Without cable (Without communication plug connector)* ${ }^{2}$

$\mathbf{1}$	1.5^{*}
$\mathbf{3}$	3^{*}
$\mathbf{5}$	5^{*}
\mathbf{S}	Straight type communication plug connector*2
\mathbf{T}	T-branch type communication plug connector*2

*1 When "Without controller" is selected for controller types, I/O cable length cannot be selected.
*2 For the LECPMJ, only "Nil", " S " and " T " are selectable since I/O cable is not included.

Compatible Controller

Type	Step data input type	CC-Link direct input type	Programless type
Series	LECP6	LECPMJ	LECP1
Features	Value (Step data) input Standard controller	CC-Link direct input	Capable of setting up operation (step data) without using a PC or teaching box
Compatible motor	Step motor (Servo/24 VDC)		
Maximum number of step data	64 points		14 points
Power supply voltage	24 VDC		
Reference page	Page 560	Page 600	Page 576

Electric Actuator/Guide Rod Slider Belt Drive

Refer to page 156 for the communication protocol CC-Link.

5 Motor option

Nil	Without option
\mathbf{B}	With lock
\mathbf{C}	With motor cover*

* When [With lock] is selected, [With motor cover] cannot be selected.

(2) Bearing type

\mathbf{M}	Sliding bearing
\mathbf{L}	Ball bushing bearing

4 Stroke

100	100 mm
to	to
1000	1000 mm

* Refer to the applicable stroke table.

6) Switch rail option

Nil	Without option
\mathbf{R}	With magnet/switch rail

* After purchashing the "Nil" type, the magnet and switch rail cannot be attached afterwards.

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LE series and the JXCE1/91/ P1/D1/L1 series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.

Applicable Stroke Table										
Model	100	200	300	400	500	600	700	800	900	100
LEL25	\bigcirc	\bigcirc	-	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	

* Please consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.

7 Actuator cable type/length

Nil	Without cable
S1	Standard cable 1.5 m
S3	Standard cable 3 m
S5	Standard cable 5 m
R1	Robotic cable 1.5 m
R3	Robotic cable 3 m
R5	Robotic cable 5 m
R8	Robotic cable $8 \mathrm{~m}^{* 1}$
RA	Robotic cable $10 \mathrm{~m}^{* 1}$
RB	Robotic cable $15 \mathrm{~m}^{* 1}$
RC	Robotic cable $20 \mathrm{~m}^{* 1}$

*1 Produced upon receipt of order (Robotic cable only)
*2 The standard cable should only be used on fixed parts.
For use on moving parts, select the robotic cable.

Compatible Controller

Type	EtherCAT ${ }^{\oplus}$ direct input type	EtherNet/IPTM direct input type	PROFINET direct input type	DeviceNet ${ }^{\text {TM }}$ direct input type	IO-Link direct input type
Series	JXCE1	JXC91	JXCP1	JXCD1	JXCL1
Features	EtherCAT ${ }^{\circledR}$ direct input	EtherNet/IP ${ }^{\text {TM }}$ direct input	PROFINET direct input	DeviceNet ${ }^{T M}$ direct input	IO-Link direct input
Compatible motor	Step motor (Servo/24 VDC)				
Maximum number of step data	64 points				
Power supply voltage	24 VDC				
Reference page	Page 603-5				

Specifications

Note 1) Strokes shown in () are produced upon receipt of order. Please consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.
Note 2) Speed changes according to the work load. Check "Speed-Work Load Graph (Guide)" on page 155. The work load changes according to the stroke and work load mounting condition.
Check "Dynamic Allowable Moment" graph on page 153. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m .
Note 3) A reference value for correcting an error in reciprocal operation.
Note 4) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both the stroke direction and a perpendicular direction to the stroke. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz , when the actuator was tested in both stroke direction and a perpendicular direction to the stroke. (The test was performed with the actuator in the initial state.)
Note 5) Allowable external resistance is the allowable resistance when flexible moving tube or similar is used.
Note 6) The power consumption (including the controller) is for when the actuator is operating.
Note 7) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during operation.
Note 8) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 9) With lock only
Note 10) For an actuator with lock, add the power consumption for the lock.

Actuator Product Weight

Stroke [mm]		(100)	(200)	300	400	500	600	(700)	(800)	(900)	(1000)
Product weight [kg]	LEL25M	2.13	2.47	2.82	3.17	3.52	3.87	4.21	4.56	4.91	5.26
	LEL25L	2.38	2.72	3.07	3.42	3.77	4.12	4.47	4.82	5.17	5.52
Additional weight with lock [kg]		0.26									
Additional weight with cover [kg]		0.04									

Component Parts

No.	Description	Material	Note
1	Table	Aluminum alloy	Anodized
2	Motor end plate	Aluminum alloy	Anodized
3	End plate	Aluminum alloy	Anodized
4	Motor mount	Aluminum die-cast	Painting
5	Pulley holder	Aluminum alloy	
6	Belt cover	Aluminum alloy	Anodized
7	Guide rod	Carbon steel	Hard chrome plating
8	Belt holder	Carbon steel	Chromating
9	Pulley shaft	Stainless steel	
10	Spacer	Aluminum alloy	
11	Belt stopper	Aluminum alloy	Anodized
12	Tension plate	Synthetic resin	"With motor cover" only
13	Motor cover	Synthetic resin	"With motor cover" only
14	Grommet	Aluminum alloy	Anodized
15	Motor pulley	Aluminum alloy	Anodized
16	End pulley	-	
17	Motor	-	
18	Belt	-	"With magnet/switch rail" only
19	Bushing	-	
	Ball bushing bearing	-	
20	Bearing	Carbon steel	
21	Bearing	Aluminum alloy	
22	Hexagon bolt	-	
23	Switch rail		
24	Magnet		

LEL Series

Step Motor (Servo/24 VDC)

Dimensions

LEL25 ${ }_{\mathrm{L}}^{\mathrm{M}}$ T

Note 1) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.

Model	L	L*	A	B	C	D	E
LEL25MT-100 $\square \square$ - $\square \square \square \square \square$	272.5	280	210	106	63	3	64
LEL25MT-200 $\square \square-\square \square \square \square \square$	372.5	380	310	206			
LEL25MT-300 $\square \square$ - $\square \square \square \square \square$	472.5	480	410	306			
LEL25MT-400 $\square \square$ - $\square \square \square \square \square$	572.5	580	510	406			
LEL25MT-500 $\square \square$ - $\square \square \square \square \square$	672.5	680	610	506			
LEL25MT-600 $\square \square$ - $\square \square \square \square \square$	772.5	780	710	606			
LEL25MT-700 $\square \square$ - $\square \square \square \square \square$	872.5	880	810	706			
LEL25MT-800 $\square \square$ - $\square \square \square \square \square$	972.5	980	910	806			
LEL25MT-900 $\square \square$ - $\square \square \square \square \square$	1072.5	1080	1010	906			
LEL25MT-1000 $\square \square-\square \square \square \square \square$	1172.5	1180	1110	1006			
LEL25LT-100 $\square \square-\square \square \square \square \square$	292.5	300	230	108	73	4	82
LEL25LT-200 $\square \square$ - $\square \square \square \square \square$	392.5	400	330	208			
LEL25LT-300 $\square \square$ - $\square \square \square \square \square$	492.5	500	430	308			
LEL25LT-400 $\square \square$ - $\square \square \square \square \square$	592.5	600	530	408			
LEL25LT-500 $\square \square-\square \square \square \square \square$	692.5	700	630	508			
LEL25LT-600 $\square \square-\square \square \square \square \square$	792.5	800	730	608			
LEL25LT-700 $\square \square$ - $\square \square \square \square \square$	892.5	900	830	708			
LEL25LT-800 $\square \square$ - $\square \square \square \square \square$	992.5	1000	930	808			
LEL25LT-900 $\square \square-\square \square \square \square \square$	1092.5	1100	1030	908			
LEL25LT-1000 $\square \square-\square \square \square \square \square$	1192.5	1200	1130	1008			

[^1]
Solid State Auto Switch Direct Mounting Type D-M9N(V)/D-M9P(V)/D-M9B(V) C ϵ

Refer to SMC website for the details of

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.

\triangle Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.
the products conforming to the international standards.
Auto Switch Specifications

Oilproof Heavy-duty Lead Wire Specifications

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Sheath	Outside diameter $[\mathrm{mm}]$	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $\left[\mathrm{mm}{ }^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius [mm] (Reference values)				

Note 1) Refer to Best Pneumatics No. 2-1 for solid state auto switch common specifications. Note 2) Refer to Best Pneumatics No. 2-1 for lead wire lengths.

Weight

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

D-M9 \square V

2-Color Indicator Solid State Auto Switch Direct Mounting Type
 D-M9NW(V)/D-M9PW(V)D-M9BW(V) C ϵ

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to SMC website for the details of the products conforming to the international standards.

PLC: Programmable Logic Controller						
D-M9 \square W, D-M9 \square WV (With indicator light)						
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP			-
Applicable load	IC circuit, Relay, PLC				24 VDC r	relay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)					-
Current consumption	10 mA or less					
Load voltage	28 VDC	or less		-	24 VDC (1	to $28 \mathrm{VDC)}$
Load current	40 mA or less				2.5 to	40 mA
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or	or less
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA	or less
Indicator light	Operating range \qquad Red LED illuminates. Proper operating range \qquad Green LED illuminates.					
Standard	CE marking, RoHS					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
Sheath	Outside diameter $[\mathrm{mm}]$	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius $[\mathrm{mm}]$ (Reference values)				

Note 1) Refer to Best Pneumatics No. 2-1 for solid state auto switch common specifications. Note 2) Refer to Best Pneumatics No. 2-1 for lead wire lengths.

Weight (g)

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

Dimensions

D-M9 \square W

D-M9 $\square \mathbf{W V}$

LEL Series
Electric Actuator/Guide Rod Slider

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 3 to 8 for Electric Actuator Precautions.

Design

© Caution

1. Do not apply a load in excess of the specification limits. Select a suitable actuator by work load and allowable moment. If the product is used outside of the specification limits, the eccentric load applied to the guide will be excessive and have adverse effects such as creating play on the guide, degrading accuracy and shortening the life of the product. And also when "With magnet/switch rail" option is selected, Auto switch may not detect correctly by the deflection of the guide.
2. Do not use the product in applications where excessive external force or impact force is applied to it.
This can cause failure.
3. Because of the guide mechanism type, vibration that comes from an external source may be introduced into the workpiece during operation. Do not use this product in a location where vibration is not allowed.
4. When the product repeatedly cycles with partial strokes (see the table below), operate it at a full stroke at least once every $\mathbf{1 0}$ dozens of cycles.
Otherwise, lubrication can run out.

Model	Partial stroke
LEL25L	40 mm or less

Handling

\triangle Caution

1. Set [In position] in the step data to at least 1.

Otherwise, completion signal of in position may not be output.
2. INP output signal

1) Positioning operation

When the product comes within the set range by step data [In position], the INP output signal will turn on.
Initial value: Set to [1] or higher.

\triangle Caution

3. Never hit at the stroke end except during return to origin.
When incorrect instructions are inputted, such as using the product outside of the specification limits or operation outside of actual stroke through changes in the controller/driver setting and/or origin position, the table may collide against the stroke end of the actuator. Check these points before use.
If the table collides against the stroke end of the actuator, the guide, belt or internal stopper can be broken. This may lead to abnormal operation.

4. The moving force should be the initial value (100%). If the moving force is set below the initial value, it may cause an alarm.
5. The actual speed of this actuator is affected by the work load.
When selecting a product, check the catalog for the instructions regarding selection.
6. Do not apply a load, impact or resistance in addition to the transferred load during return to origin.
Additional force will cause the displacement of the origin position since it is based on detected motor torque.
7. Do not dent, scratch or cause other damage to the body and table mounting surfaces.
This may cause unevenness in the mounting surface, play in the guide or an increase in the sliding resistance.
8. Do not apply strong impact or an excessive moment while mounting a workpiece.
If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.
9. Keep the flatness of the mounting surface 0.2 mm or less.
Unevenness of a workpiece or base mounted on the body of the product may cause play in the guide and an increase in the sliding resistance.
10. When mounting the product, keep a 40 mm or longer diameter for bends in the cable.
11. Do not hit the table with the workpiece in the positioning operation and positioning range.
12. Hold by the end plates when moving the body. Do not hold the belt cover.

Handling

\triangle Caution

13. When mounting the product, use screws with adequate length and tighten them with adequate torque.
Tightening the screws with a higher torque than recommended may cause a malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

Workpiece fixed

To prevent the workpiece retaining screws from touching the body, use screws that are 0.5 mm or shorter than the maximum screw-in depth. If long screws are used, they can touch the body and cause a malfunction.
14. Do not operate by fixing the table and moving the actuator body.
15. The belt drive actuator cannot be used vertically for applications.
16. Check the specifications for the minimum speed of each actuator.
Otherwise, unexpected malfunctions, such as knocking, may occur.
17. In the case of the belt drive actuator, vibration may occur during operation at speeds within the actuator specifications, this could be caused by the operating conditions. Change the speed setting to a speed that does not cause vibration.

Maintenance

\triangle Warning

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check	Belt check
Inspection before daily operation	\bigcirc	-	-
Inspection every 6 months $/ 1000 \mathrm{~km} /$ 5 million cycles*	\bigcirc	\bigcirc	\bigcirc

* Select whichever comes first

- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

- Items for internal check

1. Lubricant condition on moving parts.
2. Loose or mechanical play in fixed parts or fixing screws.

- Items for belt check

Stop operation immediately and replace the belt when belt appear to be below. Further, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out.

Canvas fiber becomes fuzzy. Rubber is removed and the fiber becomes whitish. Lines of fibers become unclear.
b. Peeling off or wearing of the side of the belt

Belt corner becomes round and frayed thread sticks out.
c. Belt partially cut

Belt is partially cut. Foreign matter caught in teeth other than cut part causes flaw.
d. Vertical line of belt teeth

Flaw which is made when the belt runs on the flange.
e. Rubber back of the belt is softened and sticky.
f. Crack on the back of the belt

[^0]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

[^1]: * With motor cover

