Precision Cylinder

MTS Series

ø8, ø12, ø16, ø20, ø25, ø32, ø40

Precision Cylinder

Precision Cylinder

Non-rotating accuracy: 0.1° or less

(0.2° or less for $\varnothing 8$, within allowable torque values)

MTS8

Short mounting pitch: 15 mm

Small size $\varnothing 8$ introduced to series

Rod through-hole allows
vacuum piping (Made-to-order).
Lifting and transfer of small electronic parts is possible with short mounting pitch.

Piping is possible from two directions.

Uses new type compact auto switches ($\varnothing 8$ only). Two auto switches can be mounted even with the minimum 5 stroke (mm).

Mounting space reduced

Two types of rod

 end configurationStandard: Rod end female threads Option: Rod end male thread (Using stud bolt)

Three types of mounting are possible

Auto switch capable on four sides
(Two sides for $\varnothing 8$)

with Internal Guide Function.

MTS Series

Deflection: 0.1 mm or less

(For MTS12-25, within allowable lateral load values)

Reduced labor for design and assembly

Mounting is possible in high accuracy.

Parallelism of mounting surfaces (side, bottom) to rod: 0.1 mm or less Squareness of mounting surface (front) to rod: 0.1 mm or less

Air cushion standardized

 (08 equipped with rubber bumper)Rear end lock type added to series ($\varnothing 12$ to $\varnothing 40$)

Sealing and durability equivalent to current round rod models have been achieved with a specially configured rod seal.

Application Example

Stroke adjustment mechanism/ Made to Order Specifications
Stroke adjustment is possible on the rod extension side. Stroke adjustment range: 0 to 10 mm (ø8)
: 0 to $25 \mathrm{~mm}(\varnothing 12$ to $\varnothing 40)$

MTS Series

Model Selection

\triangle Caution Confirmation of theoretical output is required separately. Refer to "Theoretical Output" on page 385.

Selection Conditions/Follow the tables below in order to determine selection conditions and choose one selection graph.

Vertical Mounting

Mounting orientation								
Maximum speed (mm/s)		Up to 100	Up to 200	Up to 300	Up to 400	Up to 500	Up to 600	Up to 800
Stroke (mm)		All strokes						
Selection graph	ø8	(1)	-	(2)	-	(3)	-	-
	¢12 to 40	-	(4)	-	(5)	-	(6)	(7)

Horizontal Mounting

Mounting orientation		Up to 300					${ }^{w}$	W	\square	* Dire	ction for L	can be up	down, left,	, right, or d	diagonal.
Maximum	peed (mm/s)				Up to 500			Up to 600				Up to 800			
Stroke	(mm)	Up to 10	Up to 20	Up to 30	Up to 10	Up to 20	Up to 30	Up to 50	Up to 100	Up to 150	Up to 200	Up to 50	Up to 100	Up to 150	Up to 200
Selection	ø8	(8)	(9)	(10)	(11)	(12)	(13)	-	-	-	-	-	-	-	-
graph	012 to ø40	-	-	-	-	-	-	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)

* L: Overhang The distance between the cylinder's central axis and the load center of gravity

© Caution

- In the case of horizontal mounting, when the load center of gravity is beyond the rod end, add that distance to the stroke to select a graph.

Selection Example

1. Selection conditions

Mounting: Vertical Maximum speed: $800 \mathrm{~mm} / \mathrm{s}$ Overhang: 50 mm Load mass: 2 kg

Refer to graph (7) based on vertical mounting and the maximum speed of $800 \mathrm{~mm} / \mathrm{s}$. On graph (7), find the intersecting point for the overhang of 50 mm and the load mass of 2 kg to determine $ø 32$.
2. Selection conditions $\left\{\begin{array}{l}\text { Mounting: Horizontal } \\ \text { Maximum speed: } 600 \mathrm{~mm} / \mathrm{s} \\ \text { Stroke: } 125 \mathrm{~mm} \\ \text { Overhang: } 80 \mathrm{~mm} \\ \text { Load mass: } 0.7 \mathrm{~kg}\end{array}\right.$

Refer to graph (16) based on horizontal mounting, the maximum speed of $600 \mathrm{~mm} / \mathrm{s}$, and 125 mm stroke. On graph (16), find the intersecting point for the overhang of 80 mm and the load mass of 0.7 kg to determine ø25.

Vertical Mounting

Graph (2) Maximum Speed: Up to $\mathbf{3 0 0}$ (mm / s)

Graph (3) Maximum Speed: Up to 500 (mm / s)

ø12 to ø40

Graph (6) Maximum Speed: Up to $600(\mathrm{~mm} / \mathrm{s})$

Graph (7) Maximum Speed: Up to $800(\mathrm{~mm} / \mathrm{s})$

MTS Series

Horizontal Mounting

ø8

Maximum speed: Up to $\mathbf{3 0 0}$ mm/s
Graph (8) Stroke: Up to 10 stroke

Graph (9) Stroke: Up to 20 stroke

Graph (10) Stroke: Up to 30 stroke

Maximum speed: Up to 500 mm/s
Graph (11) Stroke: Up to 10 stroke

Graph (12) Stroke: Up to 20 stroke

Graph (13) Stroke: Up to 30 stroke

Maximum speed: Up to $600 \mathrm{~mm} / \mathrm{s}$
Graph (14) Stroke: Up to 50 stroke

Graph (15) Stroke: Up to 100 stroke

Graph (16) Stroke: Up to 150 stroke

Graph (17) Stroke: Up to 200 stroke

Graph (20) Stroke: Up to 150 stroke

Graph (21) Stroke: Up to 200 stroke

MTS Series

Spline Rod Displacement

Warp Angle

Displacement angle of spline rod due to torque load
The displacement angle when a static load is applied in the direction of the arrow, with the spline rod retracted.

$\varnothing 8$

$\varnothing 12$

$\varnothing 16$

$\varnothing 20$

$\varnothing 25$

$\varnothing 32$

$\varnothing 40$

Deflection Amount

Displacement of spline rod due to pitch moment load
Displacement of the rod end when a static load is applied in the direction of the arrow, with the spline rod fully extended.
$\varnothing 8$

$\varnothing 12$

$\varnothing 16$

$\varnothing 20$

\triangle Caution

1. Displacement may increase after an impact load has been applied.
If an impact load is applied to the spline rod, the guide unit may be permanently deformed and displacement may increase.

Precision Cylinder
 MTS Series
 $\varnothing 8, \varnothing 12, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 32, \varnothing 40$

How to Order

Applicable Auto Switches/Refer to pages 1119 to 1245 for further information on auto switches.

Type	Special function	Electrical entry		Wiring (Output)	Load voltage			Auto switch model		Lead wire length (m)				Pre-wired connector	Applicable load	
					DC		AC	Perpendicular	In-line	$\begin{array}{\|c\|} \hline 0.5 \\ \text { (Nil) } \end{array}$	$\begin{gathered} 1 \\ (\mathrm{M}) \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (\mathrm{Z}) \end{gathered}$			
		Grommet	Yes	3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	-	M9NV	M9N	-	-	-	\bigcirc	\bigcirc	$\underset{\text { circuit }}{\text { IC }}$	Relay, PLC
				3-wire (PNP)				M9PV	M9P	-	\bullet	-	\bigcirc	\bigcirc		
				2-wire		12 V		M9BV	M9B	-	-	\bullet	\bigcirc	\bigcirc	-	
	Diagnostic indication (2-color indicator)			3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NWV	M9NW	-	-	-	\bigcirc	\bigcirc	IC circuit	
				3-wire (PNP)				M9PWV	M9PW	-	-	-	\bigcirc	\bigcirc		
				2-wire		12 V		M9BWV	M9BW	-	\bullet	\bullet	\bigcirc	\bigcirc	-	
	Water resistant (2-color indicator)			3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NAV*1	M9NA**	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	IC circuit	
				3-wire (PNP)				M9PAV*1	M9PA*1	O	\bigcirc	-	\bigcirc	\bigcirc		
				2-wire		12 V		M9BAV*1	M9BA**	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	
		Grommet	Yes	3-wire (NPN equivalent)	-	5 V	-	A96V	A96	-	-	-	-	-	$\begin{gathered} \text { IC } \\ \text { circuit } \end{gathered}$	-
$\stackrel{\text { ¢ }}{ }$				2-wire	24 V	12 V	100 V	A93V*2	A93	\bullet	-	\bullet	-	-	-	Relay, PLC
			No				100 V or less	A90V	A90	-	-	\bullet	-	-	IC circuit	

[^0]* Since there are other applicable auto switches than listed, refer to page 395 for details.
* For details about auto switches with pre-wired connector, refer to pages 1192 and 1193.
* Auto switches are shipped together (not assembled).

Specifications

Standard Stroke

Bore size (mm)	Standard stroke (mm)
$\mathbf{8}$	$5,10,15,20,25,30$
$\mathbf{1 2 , \mathbf { 1 6 }}$	$25,50,75,100$
$\mathbf{2 0 , 2 5 , 3 2 , 4 0}$	$25,50,75,100,125$, $150,175,200$

Strokes other than the above are produced upon receipt of order.

Stud Bolt Part No.

Bore size (mm)	Part no.
8	MT-S8
12	MT-S12
16	MT-S16
20	MT-S20
25	MT-S25
32	MT-S32
40	MT-S40

* Replacement parts for rod end male thread.
* Rod end nut is attached.

\triangle Caution

Mounting

- When attaching or removing loads, be sure to do so while securing the spline rod's width across flats and not to apply a rotating torque on the spline nut.
If rotational torque must be applied due to unavoidable circumstances, use the table below to make sure the allowable rotational torque is not exceeded.

Bore size (mm)	$\mathbf{8}$	$\mathbf{1 2}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Allowable rotating torque (N.m)	0.03	0.18	0.38	0.69	1.08	5.75	10.4

Bore size (mm)			8	12	16	20	25	32	40
Spline rod size (mm)			4	6	8	10	13	16	20
Fluid			Air						
Min. operating pressure	Without end lock		0.15 MPa	0.12 MPa		0.1 MPa			
	With end lock*		-	0.17 MPa		0.15 MPa			
Maximum operating pressure			0.7 MPa						
Proof pressure			1.0 MPa						
Ambient and fluid temperature			-10 to 60° (No freezing)						
Bearing type			Ball spline						
Cushion			Rubber bumper	Air cushion					
Effective cushion length (mm)			-	9	10	11	12	17	17
Lubrication			Not required (Non-lube)						
Piston speed (mm/s)			50 to 500	50 to 800					
Allowable kinetic energy (J)			0.02	0.19	0.32	0.55	0.78	1.6	2.8
Stroke tolerance			${ }_{0}^{+1.0} \mathrm{~mm}$						
Non-rotating accuracy			0.2° or less (Within allowable torque values)	0.1° or less (Within allowable torque values)					
Piping port size		-	M3 $\times 0.5$	M5 x 0.8	M5 x 0.8	M5 x 0.8	M5 $\times 0.8$	Rc $1 / 8$	Rc 1/8
		TN	-	-	-	-	-	NPT 1/8	NPT 1/8
		TF	-	-	-	-	-	G 1/8	G 1/8

* Except lock unit, 0.12 MPa for $\varnothing 12$ and $16 ; 0.10 \mathrm{MPa}$ for $\varnothing 20$ to 40 respectively.

End Lock Specifications

Bore size (mm)	$\mathbf{1 2}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Lock position	Head end only					
Holding force (Max.) (N)	29	53	82	125	211	329
Backlash	1 mm					
Manual release						

Theoretical Output

$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	Operating direction	$\begin{gathered} \text { Piston area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$	Operating pressure (MPa)					
			0.2	0.3	0.4	0.5	0.6	0.7
8	OUT	50	10	15	20	25	30	35
	IN	37	8	11	15	19	22	26
12	OUT	113	23	34	45	57	68	79
	IN	84	17	25	34	42	50	59
16	OUT	201	40	60	80	101	121	141
	IN	150	30	45	60	75	90	105
20	OUT	314	63	94	126	157	188	220
	IN	235	47	71	94	118	141	165
25	OUT	490	98	147	196	245	294	343
	IN	358	72	107	143	179	215	251
32	OUT	804	161	241	322	402	482	563
	IN	603	121	181	241	302	362	422
40	OUT	1,256	251	377	502	628	754	879
	IN	942	188	283	377	471	565	659

\. Caution Do not apply a load that is 50% or more of the theoretical output.

Weight

Model	Standard stroke (mm)													$\begin{array}{\|c\|} \hline \text { End lock } \\ \text { additional weight } \end{array}$
	5	10	15	20	25	30	50	75	100	125	150	175	200	
MTS8	36	40	44	48	52	56	-	-	-	-	-	-	-	-
MTS12	-	-	-	-	138	-	157	175	194	-	-	-	-	29
MTS16	-	-	-	-	186	-	222	258	294	-	-	-	-	34
MTS20	-	-	-	-	350	-	400	450	500	549	599	649	699	42
MTS25	-	-	-	-	487	-	547	608	669	729	790	851	912	55
MTS32	-	-	-	-	918	-	1,000	1,083	1,165	1,247	1,330	1,412	1,495	90
MTS40	-	-	-	-	1,420	-	1,533	1,645	1,758	1,870	1,983	2,095	2,208	133

MTS Series

Construction

Basic type

ø8

$\varnothing 12$ to $\varnothing 40$

Rod cross section for $\varnothing 12, \varnothing 16, \varnothing 20$, and $\varnothing 25$

Rod cross section for $\varnothing 32$ and $\varnothing 40$

With end lock

\triangle Caution

Not able to disassemble.

A special tool is required when disassembling or reassembling the cylinder. When replacing the seal, this work needs to be carried out at SMC's factory. Please contact SMC sales representatives.

Component Parts

No.	Description	Material	Qty.	Note
$\mathbf{1 5}$	Bumper	Urethane	2	$\varnothing 8$
			1	$\varnothing 12$ to $\varnothing 40$
$\mathbf{1 6}$	Key	Carbon steel	1	
$\mathbf{1 7}$	Type C retaining ring for hole	Carbon tool steel	2	$\varnothing 8:$ Phosphate coated
			$\sigma 12$ to $\varnothing 40:$ Phosphate coated	
$\mathbf{1 8}$	Magnet	-	1	
$\mathbf{1 9}$	Plug	Alloy steel	3	Nickel plated
$\mathbf{2 0}$	Hexagon socket head set screw	Alloy steel	1	Black zinc chromate
$\mathbf{2 1}$	Piston seal	ABR	1	
$\mathbf{2 2}$	Spline seal	NR	1	Rod seal for $\varnothing 8$
$\mathbf{2 3}$	Collar gasket	ABR	1	
$\mathbf{2 4}$	Tube gasket	ABR	1	
		2	$\varnothing 8$	
$\mathbf{2 5}$	Piston gasket	ABR	1	
$\mathbf{2 6}$	Cushion seal	Urethane	2	
$\mathbf{2 7}$	Needle gasket	ABR	2	
$\mathbf{2 8}$	Piston seal for lock	NR	1	
$\mathbf{2 9}$	Cap gasket	ABR	1	

MTS8

Note) Spline rod's width across flats have nothing to do with the position of the body mounting face.

Basic type

Rod end male thread

Stud bolt part no.: MT-S8
Material: Chromium molybdenum steel (Nickel plated)

Rod end nut part no.: NTJ-006A Material: Carbon steel (Zinc chromated)

MTS Series

Dimensions: ø12

MTS12

Note) Spline rod's width across flats have nothing to do with the position of the body mounting face.

Basic type

Rod end male thread

Stud bolt part no.: MT-S12
Material: Chromium molybdenum steel (Nickel plated)

Rod end nut part no.: NTP-010
Material: Carbon steel (Zinc chromated)

With end lock

MTS16

Note) Spline rod's width across flats have nothing to do with the position of the body mounting face.

Basic type

Rod end male thread

Stud bolt part no.: MT-S16
Material: Chromium molybdenum steel (Nickel plated)

Rod end nut part no.: NTJ-015A Material: Carbon steel (Zinc chromated)

With end lock

MTS Series

Dimensions: ø20

MTS20

Note) Spline rod's width across flats have nothing to do with the position of the body mounting face.

Basic type

Rod end male thread

> Stud bolt part no.: MT-S20
> Material: Chromium molybdenum steel (Nickel plated)

> Rod end nut part no.: NT-015A Material: Carbon steel (Zinc chromated)

With end lock

MTS25

Note) Spline rod's width across flats have nothing to do with the position of the body mounting face.

Basic type

Rod end male thread

Rod end nut part no.: NT-02 Material: Carbon steel (Zinc chromated)

With end lock

MTS Series

Dimensions: ø32
Note) Spline rod's width across flats have nothing to do with the position of the body mounting face.

MTS32

Basic style

Rod end male thread

With end lock

MTS40

Basic type

MTS

Rod end male thread

With end lock

MTS Series

Auto Switch Mounting 1

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height
$\varnothing 8$

D-A9 \square
D-M9 \square
D-M9 \square W
D-M9 \square A

D-F8 \square

D-A9 \square V
D-M9 $\square V$
D-M9 \square WV
D-M9 \square AV

Operating Range (mm)

Auto switch model	Bore size							
	$\mathbf{8}$	$\mathbf{1 2}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	
D-A9 $\square / \mathbf{A 9} \square \mathbf{V}$	5	6	7.5	7.5	8	7	$\mathbf{8}$	
D-M9 $\square /$ M9 $\square \mathbf{V}$ D-M9 $\square \mathbf{W} / \mathbf{M 9} \square \mathbf{W V}$ D-M9 $\square \mathbf{A / M 9} \square \mathbf{A V}$	3.0	4.5	4	4.5	5	4.5	5.5	
D-F8 \square	2.5	4	4.5	4.5	4.5	4.5	5	

* Since this is a guideline including hysteresis, not meant to be guaranteed. (Assuming approximately 30\% dispersion.)
There may be the case it will vary substantially depending on an ambient environment.

Auto Switch Proper Mounting Position

$\begin{aligned} & \text { Bore } \\ & \text { size } \\ & (\mathrm{mm}) \end{aligned}$	Reed auto switch						Solid state auto switch									2-color indicator solid state auto switch					
	D-A9 \square			D-A9 \square V			D-M9 \square			D-M9■V			D-F8 \square			D-M9 \square W, D-M9 \square A			D-M9 \square WV, D-M9 \square AV		
	A	B	C	A	B	Hv	A	B	C	A	B	Hv	A	B	Hv	A	B	C	A	B	Hv
8	36	25	16	36	25	15	32	21	20	32	21	17.5	18	7	25	32	21	20	32	21	17.5

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.

Auto Switch Mounting Stroke for ø8

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height

$\varnothing 12$ to $\varnothing 40$

Auto Switch Proper Mounting Position
(mm)

Bore size (mm)	Reed auto switch							Solid state auto switch							2-color indicator solid state auto switch						
	D-A9 \square			D-A9 \square V				D-M9 \square			D-M9 $\square \mathbf{V}$				D-M9 \square W/D-M9 $\square \mathbf{A}$			D-M9 \square WV/D-M9 \square AV			
	A	B	C	A	B	Hs	Hv	A	B	C	A	B	Hs	Hv	A	B	C	A	B	Hs	Hv
12	42	15.5	35.5	42	15.5	13	18	46	19.5	31.5	46	19.5	15	20	46	19.5	31.5	46	19.5	15	20
16	43.5	17	37	43.5	17	15	20	47.5	21	33	47.5	21	17	22	47.5	21	33	47.5	21	17	22
20	59.5	23	43	59.5	23	17	22.5	63.5	27	39	63.5	27	19	24.5	63.5	27	39	63.5	27	19	24.5
25	63	26	46	63	26	20	23.5	67	30	42	67	30	22	25.5	67	30	42	67	30	22	25.5
32	84.5	32	52	84.5	32	23	26.5	88.5	36	48	88.5	36	25	28.5	88.5	36	48	88.5	36	25	28.5
40	98.5	32.5	52.5	98.5	32.5	28	28	102.5	36.5	48.5	102.5	36.5	30	30	102.5	36.5	48.5	102.5	36.5	30	30

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.

Other than the applicable auto switches listed in "How to Order", the following auto switches can
be mounted. For detailed specifications, refer to pages 1119 to 1245.

Auto switch type	Model	Electrical entry (Fetching direction)	Features	Applicable bore size (mm)
Solid state	D-F8N	Grommet (Perpendicular)	With indicator light	$ø 8$ to $ø 40$
	D-F8P			
	D-F8B			

[^1]
MTS Series

Auto Switch Mounting 2

Caution on Installing in Close Proximity to Each Other

\triangle Caution

1．When cylinders are used in close proximity to one another as in mounting patterns（1）through（4），the magnetic force of the auto switch magnets in cylinder B may have an effect on the operation of the auto switches on cylinder A．The mounting pitch of cylinders should be at least the values given in the table below．
When using cylinders with different orientations or bore sizes in proximity to one another，consult with SMC．

ø8

Mounting type（1）Mounting type（2）

Dimensions by Mounting Type

Bore size （mm）	Auto switch model	（1）		（2）	
		L	d	L	d
8	D－A9 \square ，D－A9 \square V	27 （37）	5 （15）	15	0
	D－M9 \square ，D－M9 \square V	27 （39）	5 （17）	15	0
	D－F8 \square	47	25	15	0
	$\begin{aligned} & \text { D-M9 } \square \text { W, D-M9 } \square \text { WV } \\ & \text { D-M9 } \square \mathrm{A}, \mathrm{D}-\mathrm{M} 9 \square \mathrm{AV} \end{aligned}$	27 （39）	5 （17）	15	0

（ ）：Denotes the values of D－A9■V，D－M9■V，D－M9 \square WV and D－M9 \square AV．

$\varnothing 12$ to $\varnothing 40$

Mounting type（1）

Mounting type（2）

Mounting type（4）

Dimensions by Mounting Type

Bore size （mm）	Auto switch model	（1）		（2）		（3）		（4）	
		L	d	L	d	L	d	L	d
12	D－A9口，D－A9 ${ }^{\text {V }}$	28	0	28 （43）	0 （15）	18	0	18 （33）	0 （15）
	D－M9 \square, D－M9 $\square V$ D－M9 \square W，D－M9 \square WV D－M9 \square A，D－M9 \square AV	28	0	33 （45）	5 （17）	18	0	28 （35）	10 （17）
16	D－A9口，D－A9 \square V	32	0	$32(47)$	0 （15）	22	0	22 （37）	0 （15）
	D－M9■，D－M9 $\square V$ D－M9 $\square W, D-M 9 \square W V$ D－M9 \square A，D－M9 \square AV	32	0	37 （49）	5 （17）	22	0	32 （39）	10 （17）
20	D－A9口，D－A9 $\mathrm{V}^{\text {V }}$	38	0	38 （53）	0 （15）	26	0	26 （41）	0 （15）
	D－M9ロ，D－M9 $\square V$ D－M9 $\square W, ~ D-M 9 \square W V$ D－M9 \square A，D－M9 \square AV	38	0	38 （55）	0 （17）	26	0	56 （63）	30 （37）
25	D－A9口，D－A9■V	40	0	40 （55）	0 （15）	32	0	32 （47）	0 （15）
	D－M9■，D－M9 $\square V$ D－M9 $\square W, ~ D-M 9 \square W V$ D－M9 \square A，D－M9 \square AV	40	0	$50(57)$	10 （17）	47	15	72 （74）	40 （42）
32	D－A9］，D－A9■V	50	0	50 （61）	0 （11）	38	0	38 （53）	0 （15）
	D－M9 \square, D－M9 $\square V$ D－M9 $\square W, ~ D-M 9 \square W V$ D－M9 \square A，D－M9 \square AV	50	0	55 （63）	5 （13）	38	0	48 （55）	10 （17）
	D－A9口，D－A9 \square V	54	0	54 （64）	0 （10）	48	0	48 （63）	0 （15）
40	D－M9ロ，D－M9■V D－M9 $\square W$, D－M9 \square WV D－M9 \square A，D－M9	54	0	59 （66）	5 （12）	48	0	63 （70）	15 （22）

（）：Denotes the values of D－A9 \square V，D－M9 \square V，D－M9 \square WV and D－M9 \square AV．
If cylinders are used with a mounting pitch less than shown above，they must be shielded with iron plates or the separately sold magnetic shielding plate（part no．：MU－S025）．Please contact SMC for further information．

2．Avoid wiring patterns in which bending stress and pulling force are repeatedly applied to the lead wires．
When a bending stress is repeatedly applied to the lead wires，be sure to secure the lead wire close to the switch and to maintain a bending radius of R40 to R80 or more as a guideline．
Applying a stress or pulling force to the connection part of a lead wire and an auto switch may cause broken wires，or a sheath to be dropped outs．Be sure that no force of any kind is applied to the connection part．

MTS Series

Caution on Using End Lock Type

Operating Precautions

\triangle Caution

1. Do not use 3 position solenoid valves.

Avoid use in combination with 3 position solenoid valves (especially closed center metal seal types). If pressure is trapped in the port on the lock mechanism side, the cylinder cannot be locked.
Furthermore, even after being locked, the lock may be released after some time, due to air leaking from the solenoid valve and entering the cylinder.
2. Back pressure is required when releasing the lock.
Before starting operation, be sure to control the system so that air is supplied to the side without the lock mechanism. There is a possibility that the lock may not be released. (Refer to the section on releasing the lock.)
3. Release the lock when mounting or adjusting the cylinder.
If mounting or other work is performed when the cylinder is locked, the lock unit may be damaged.
4. Operate with a load ratio of 50% or less.

If the load ratio exceeds 50%, this may cause problems such as failure of the lock to release, or damage to the lock unit.
5. Do not operate multiple cylinders in synchronization.
Avoid applications in which two or more end lock cylinders are synchronized to move one workpiece, as one of the cylinder locks may not be able to release when required.
6. Use a speed controller with meter-out control.

It may not be possible to release the lock with meter-in control.
7. Be sure to operate completely to the cylinder stroke end on the side with the lock.
If the cylinder piston does not reach the end of the stroke, locking and unlocking may not be possible.

Operating Pressure

\triangle Caution

1. Apply air pressure of at least that shown in the table below to the port on the lock mechanism side. This is necessary to release the lock.

Bore size (mm)	Operating pressure (MPa)
$\mathbf{1 2}, \mathbf{1 6}$	0.17
$\mathbf{2 0}, \mathbf{2 5}, \mathbf{3 2}, \mathbf{4 0}$	0.15

Exhaust Speed

\triangle Caution

1. Locking will occur automatically if the pressure applied to the port on the lock mechanism side falls to 0.05 MPa or less. In the cases where the piping on the lock mechanism side is long and thin, or the speed controller is separated at some distance from the cylinder port, the exhaust speed will be reduced. Take note that some time may be required for the lock to engage. In addition, clogging of a silencer mounted on the solenoid valve exhaust port can produce the same effect.

Relation to Cushion

Caution

1. When the cushion valve on the lock mechanism side is closed or nearly closed, the spline rod may not reach the stroke end, and consequently the lock may not engage. Moreover, if the lock does engage when the cushion valve is nearly closed, it may not be possible for the lock to release. Therefore, the cushion valve should be adjusted properly.
2. Before releasing the lock, be sure to supply air to the side without the lock mechanism, so that there is no load applied to the lock mechanism when it is released. If the lock is released when the port on the other side is in an exhaust state, and with a load applied to the lock unit, the lock unit may be subjected

MXO

MXF

MXW

MXJ
to an excessive force and may be damaged.
Furthermore, sudden movement of the spline rod is very dangerous.

Manual Release

© Caution

1. Insert the bolt, screw it into the lock piston, and then pull it to release the lock. If you stop pulling the bolt, the lock will return to an operational state. Thread sizes, pulling forces and strokes are as shown below.

Bore size (mm)	Thread size	Pulling force (N)	Stroke (mm)
$\mathbf{1 2 , 1 6}$	$\mathrm{M} 2 \times 0.4 \times 15 \mathrm{~L}$ or more	2	1.5
$\mathbf{2 0 , 2 5 , 3 2}$	$\mathrm{M} 3 \times 0.5 \times 30 \mathrm{~L}$ or more	3	2
$\mathbf{4 0}$	$\mathrm{M} 3 \times 0.5 \times 30 \mathrm{~L}$ or more	4	3

* Remove the bolt for normal operation. It can cause lock malfunction or faulty release.

[^0]: *1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance. Consult with SMC regarding water resistant types with the above model numbers.
 *2 1 m type lead wire is only applicable to D-A93.

 * Lead wire length symbols: $0.5 \mathrm{~m} \ldots \ldots . .$. Nil (Example) M9NW
 * Solid state auto switches marked with " \bigcirc " are produced upon receipt of order.

 | $1 \mathrm{~m} \cdots \cdots \cdots \cdot M$ | (Example) M9NWM |
 | :--- | :--- |
 | $3 \mathrm{~m} \cdots \cdots \cdots \cdot \mathrm{~L}$ | (Example) M9NWL |
 | $5 \mathrm{~m} \cdots \cdots \cdots$. | (Example) M9NWZ |

[^1]: * Normally closed ($\mathrm{NC}=\mathrm{b}$ contact), solid state auto switch (D-F9G/F9H type) are also available. For details, refer to page 1137.

