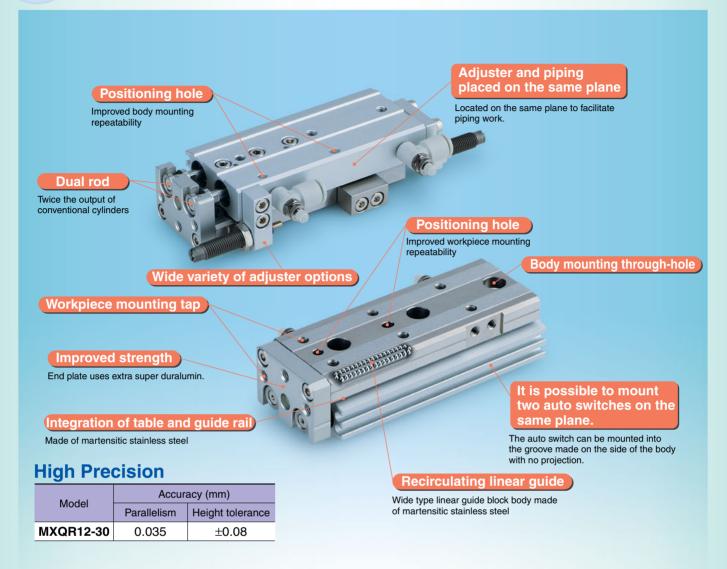
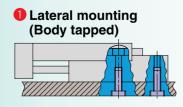

Air Slide Table Reversible Type ø6, ø8, ø12, ø16, ø20, ø25

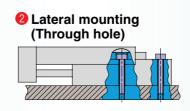
Series MXQR

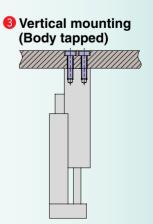
Piping and adjuster positions can be changed on site to suit the installation conditions.



Integration of the guide rail and the table


Uses a recirculating linear guide for high rigidity and high precision.




Air Slide Table/Interchangeable with the air slide table MXQ series.

The body and workpiece mounting dimensions are interchangeable with those of the MXQ series.

Three types of mounting. Wider choice of mounting variations facilitates installation.

∕∕SMC

Shock absorber (soft type/short stroke RJ) can be mounted. (ø8 to ø25)

Shock absorber (RB) can be mounted on ø6.

Improved cycle time, suitable for short strokes.

8

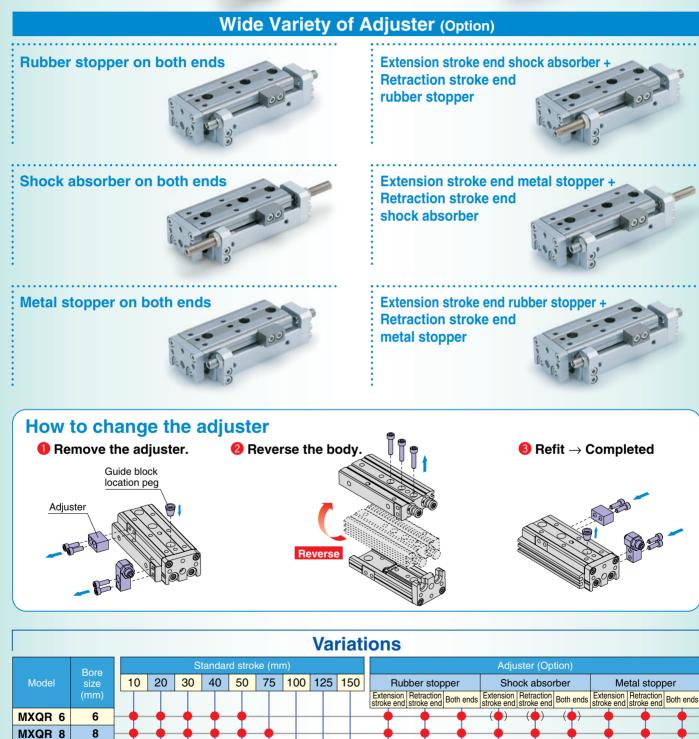
12

16

20

25

MXQR12


MXQR16

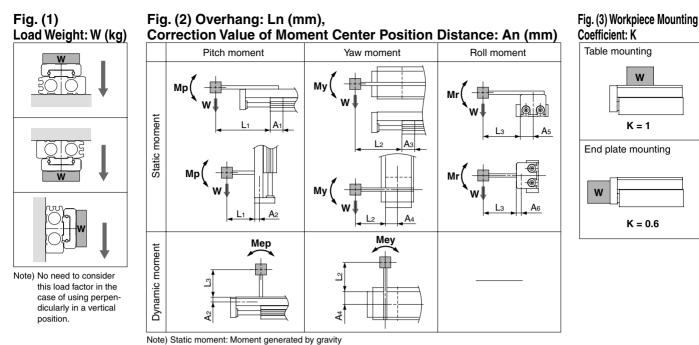
MXQR20

MXQR25

SMC

Series MXQR Model Selection

Enumerate the operating conditions considering the mounting position and workpiece mounting position and workpiece configuration. • Model to be used • Type of cushion • Workpiece mounting position • Mounting orientation • Average speed Va (mm/s) • Load weight W (kg): Fig. (1) • Overhang Ln (mm): Fig. (2) Kinetic Energy Find the kinetic energy E (J) of the load the load does not exceed the allowable kinetic energy (E) < Allowable kinetic energy (E) < Allowable kinetic energy (E) Load Factor Load Factor of Load Weight W a = K + β + Wmax Workpiece mounting coefficient K: Fig. (3) Allowable load weight Wa (kg). Note: No ened to consider this load find the load factor of the Static Moment W a = K + β + Wmax Workpiece mounting coefficient K: Fig. (3) Allowable load weight Wa (kg). Note: No need to consider this load weight Ct. Load Factor of the Static Moment W a = K + β + Wmax Workpiece mounting coefficient K: Fig. (3) Allowable load weight Wa (kg). Load Factor of the Static Moment W a = K + β + Wmax Workpiece mounting coefficient K: Fig. (3) Allowable load weight Wa (kg). Note: No need to consider this load weight Ct. Load Factor of the Static Moment W a = K + β + Wmax W a = 1 x 1 x 4 = 4 W ark 1 = 0.25 W ark 1 =		Formula/Data	Selectio	n Example				
Find the allowable kinetic energy $E(j)$ of the allowabl	Operating Conditions							
Find the kinetic energy E (J) of the load. $E = \frac{1}{2} \cdot W(\frac{V}{1000})^2$ Collision speed $V = 1.4$; $Va \to 1^{Orderson factor(Reference to the constitution)(Reference to the constitution of the lad weak institution energy (Ea)E = \frac{1}{2} \cdot 1(\frac{420}{1000})^2 = 0.088V = 1.4 \times 300 = 420E = 1 \times 0.11 = 0.11Can be used based on E = 0.088 \le Ea = 0.11(Ea = 1 × 0.11 = 0.11)Can be used based on E = 0.088 \le Ea = 0.11(Ea = 1 × 0.11 = 0.11)Can be used based on E = 0.088 \le Ea = 0.11Load FactorVa = K + \beta + WmaxWorkpiece mounting coefficient K: Fig. (3)Allowable is darkerjaht W(spiece mounting coefficient K: Fig. (3)Allowable is darkerjaht W(spiece mounting coefficient K: Fig. (3)Allowable is dark weight Winka: Table (2)(C = W/WaWa = 1 x 1 x 4 = 4K = 1Find the static moment M (N-m).M = K + \beta + WmaxWorkpiece mounting coefficient K: Fig. (3)Allowable is dark weight Winka: Table (2)Max = 1 × 1 x 1 x 4 = 4(Max allowable is darkerjaht W(spiece mounting coefficient K: Fig. (3)Allowable is darkerjaht W(spiece mounting coefficient K: Fig. (3)Allowable is darkerjaht W(spiece mounting coefficient K: Fig. (3)Allowable moment coefficient K: Fig. (3)Max = 1 × K × 9 & 8 \frac{(n + An)}{1000}Conders are all moment memonic moment Max: Table (4)K = 1Y = 1Ca =$	conditions considering the mounting position and workpiece	 Type of cushion Workpiece mounting position Mounting orientation Average speed Va (mm/s) Load weight W (kg): Fig. (1) 	Street - 20	Cushion: Rubber stopper Workpiece table mounting Mounting: Horizontal wall moun Average speed: Va = 300 [mm/s Load weight: W = 1 [kg] L1 = 10 mm L2 = 30 mm				
LoadCollision speed $V = 1.4 + Va + 1$ correction tator (Reformance (Reformance) $E = 2 - 1/1 + 10000 = 2.00 \text{ eV}$ Find the allowable kinetic energy fit allowable kinetic energy (Ea)Collision speed $V = 1.4 + Va + 1$ correction tator (Reformance) $V = 1.4 \times 300 = 420$ $E = 1 \times 0.11 = 0.11$ Can be used based on $E = 0.088 \le Ea = 0.11$ Load FactorLoad FactorVa = K + $\beta + W$ max Workpiece mounting coefficient K: Fig. (3) Allowable load weight VM (q). Note) No need to consider this load factor in the cased of using personicularly in a vertical personicularly in a vertical personicularly in a vertical morent.Wa = K + $\beta + W$ max Workpiece mounting coefficient K: Fig. (3) Allowable load weight Wmax: Table (2) (C = WMaWa = 1 x 1 x 4 = 4 K = 1 Wmax = 4 (C = WMaFind the static moment M (N m).M = W x 9.8 (Ln + An/1000 Conston value d noment corres position distans An: Table (3) Maximum allowable moment former to coefficient Y: Graph (2) Maximum allowable moment coefficient Y: Graph (2) Max	Kinetic Energy							
Find the allowable kinetic energy Ea = K - E max values) Contirm that the kinetic energy of the load sent exceed the allowable kinetic energy (Ea) the load does not exceed the allowable kinetic energy (Eb) Allowable kinetic energy (Ea) the load does not exceed the allowable kinetic energy (Eb) Allowable kinetic energy (Ea) the load does not exceed the allowable kinetic energy (Eb) Allowable kinetic energy (Ea) the load does not exceed the load weight (Can be used based on E = 0.088 < Ea = 0.11 Character of Load Weight (With the load sector of Load Weight (With the load heat or the load weight coefficient (K: Fig. (3) Allowable static moment Max. Table (2) Cardetor of the Static Moment (M: M). Find the allowable static moment (M: M). Find the allowable static moment (M: M). Find the load factor 0/2 of the static moment Max. Table (2) Maximum allowable moment Mmax. Table (3) Max = 1 × 9 × 18 × 9 × 10 × 18 × 9 × 10 × 18 × 9 × 10 × 18 × 9 × 10 × 18 × 9 × 10 × 18 × 9 × 10 × 18 × 9 × 10 × 18 × 9 × 10 × 18 × 9 × 10 × 18 × 9 × 10 × 18 × 9 × 10 × 18 × 9 × 10 × 18 × 9 × 10 × 18 × 18 × 18 × 18 × 18 × 18 × 18		Collision speed V = 1.4 • Va *) Correction factor						
Load Factor of Load Weight Find the allowable load weight Witkie Wa = X + β + Wmax Wa = X + β + Wmax Wa = X + β + Wmax Warkpiece mounting coefficient K: Fig. (3) Allowable load weight Wmax: Table (2) Wa = 1 x 1 x 4 = 4 Find the load factor of the load Wa = X + β + Wmax Wa = X + β + Wmax Wa = X + β + Wmax Find the load factor of the Static Moment M = W x 9.8 (Ln + An)/1000 M = W x 9.8 (Ln + An)/1000 Rolling Examine My. Examine Mr. Find the allowable static moment M = W x 9.8 (Ln + An)/1000 M = X + γ + Mmax Ma = X + γ + Mmax <	Ea (J). Confirm that the kinetic energy of the load does not exceed the	Ea = K • E max values) Workpiece mounting coefficient K: Fig. (3) Max. allowable kinetic energy Emax: Table (1)	Ea = 1 x 0.11 = 0.11					
Find the allowable food weight Warkign. Note) No need to consider this load actor in the case of using perpendicularly in a vertical position. (Define $\alpha: = 0.0$)Wa = K + β + Wmax Workpiece mounting coefficient K: Fig. (3) Allowable load weight Wmax: Table (2) $\alpha: = WWa$ Wa = K + β + Wmax Workpiece mounting coefficient K: Fig. (3) Allowable load weight Wmax: Table (2) $\alpha: = WWa$ Wa = 1 x 1 x 4 = 4 K = 1 $\beta = 1$ Wmax = 4 $\alpha: = 1/4 = 0.25$ Find the total factor of the Static MomentM = W x 9.8 (Ln + An)/1000 Correction value of moment deter position distance An: Table (3) Ma = K + γ + Mmax Workpiece mounting coefficient K: Fig. (3) Allowable moment coefficient Y: Graph (2) Maximum allowable moment Max: Table (4)YawingRolling Examine M: Mu = 1 x 3 8 (30 + 10.5)/100 = 0.39 = 0.39 	Load Factor							
Find the allowable load weight Wa (kg). Note) No need to consider this load factor in the case of using perpendicularly in a vertical position. (Define ($z = 0.1$) Find the load factor of the Static Moment Find the allowable static moment Max. allowable load weight Winax: Table (3) Find the allowable static moment Max. WWa Wa = K + γ + Wmax Wa = K + γ + Wmax Wa = K + γ + Wmax M = W x 9.8 (Ln + An)/1000 Correction value of moment coefficient K: Fig. (3) Allowable moment coefficient Y: Graph (2) Max. Blowable for the static moment. Find the allowable static moment Me (N-m). Find the allowable static moment Me (N-m). Find the allowable dynamic moment Mea (N-m). Find the load factor G of the find the load factor G	Load Factor of Load Weight							
Find the static moment M (N·m).M = W x 9.8 (Ln + An)/1000 Correction value of moment center position distance An Table (3)YawingFollingFind the allowable static moment Ma (N·m).M = K • Y • Mmax Workpiece mounting coefficient K: Fig. (3) Allowable moment coefficient Y: Graph (2) Maximum allowable moment Max: Table (4)M = 1 x 9.8 (10 + 30)/1000 = 0.39 As = 30 As = 10.5Mr = 1 x 9.8 (30 + 10.5)/101 = 0.39 As = 30 As = 30 As = 30 As = 10.5Find the load factor 02 of the static moment.Me = 1/3 • We x 9.8 (Ln + An) 1000Maximum allowable moment Mmax: Table (4)Mimax = 36 Mimax = 36 Mimax = 36 Mimax = 100 May = 1 x 1 x 18 = 18 Marmax = 36 Mimax = 36 Mimax = 36 Mimax = 100 Me = 1/3 × 18.8 × 9.8 x $\frac{(30 + 10.5)}{1000} = 2.2$ Find the dynamic moment Me (N·m).Me = 1/3 • We x 9.8 $\frac{(Ln + An)}{1000}$ Collision equivalent to impact We = $\delta • W • V$ δ : Bumper coefficient Rubber stopper without adjuster = 4/100 Shock absorber = 1/100 Metal stopper = 16/100 Correction value of moment demer positio distance An Table (3)Find the allowable dynamic Mea = K • Y • Mmax Workpiece mounting coefficient Y: Graph (2) Max. allowable moment Coefficient Y: Graph (2) Max. allowable moment Mmax: Table (4)Find the load factor 0/3 of the $0/3$ = Me/MeaPitchingExamine Mey. Mey = 1/3 x 16.8 x 9.8 x $\frac{(30 + 24.5)}{1000} = 3.0$ We = 168 A4 = 24.5 Meay = 12.6 (Same value as Meap)	Find the allowable load weight Wa (kg). Note) No need to consider this load factor in the case of using perpendicularly in a vertical position. (Define $\alpha_1 = 0$.) Find the load factor of the load weight α_1 .	Workpiece mounting coefficient K: Fig. (3) Allowable load weight coefficient β : Graph (1) Max. allowable load weight Wmax: Table (2) $\alpha_1 = W/Wa$						
Find the static moment M (N-m).M = W x 9.8 (Ln + An)/1000 Correction value of moment center position distance An: Table (3)My = 1 x 9.8 (10 + 30)/1000 B = 0.39Mr = 1 x 9.8 (30 + 10.5)/100 = 0.39Find the allowable static momentMa = K • Y • Mmax Workpiece mounting coefficient K: Fig. (3) Allowable moment coefficient Y: Graph (2) Maximum allowable moment Mmax: Table (4)My = 1 x 9.8 (10 + 30)/1000 B = 0.39Mr = 1 x 9.8 (30 + 10.5)/100 = 0.39Find the load factor C2 of the static moment.Ma = K • Y • Mmax Workpiece mounting coefficient Y: Graph (2) Maximum allowable moment Mmax: Table (4)My = 1 x 18 = 18 Ma = 36 Mymax = 18 K = 1 Y = 1Find the dynamic moment Me (N-m).Me = 1/3 • We x 9.8 (Ln + An) 1000 Collision equivalent to impact We = $\delta \cdot W \cdot V$ δ . Bumper coefficient Rubber stopper without adjuster = 4/100 Shock absorber = 1/100 Metal stopper = 16/100 Correction value of moment center position distance An: Table (3)PitchingExamine Mep.Find the allowable dynamic moment Mea (N-m).Mea = K • Y • Mmax Workpiece mounting coefficient K: Fig. (3) Allowable moment center position distance An: Table (3)PitchingExamine Mep.Find the load factor C4s of the dramin moment Mea (N-m).Mea = K • Y • Mmax Workpiece mounting coefficient K: Fig. (3) Allowable moment center position distance An: Table (4)PitchingExamine Mey. Mey = 1/3 x 16.8 x 9.8 x $\frac{(30 + 10.5)}{1000} = 2.4$ Meg = 1/3 x 16.8 x 9.8 x $\frac{(30 + 10.5)}{1000} = 2.4$ Meg = 1/3 x 16.8 x 9.8 x $\frac{(30 + 10.5)}{1000} = 3.0$ We = 168 Ma = 24.5 Meay = 12.6 (Same value as Meap)Same Allowable Meg = 3.0			Yawing	Rolling				
Find the load factor Ω_2 of the static moment. Load Factor of Dynamic Moment Find the dynamic moment Me (N-m). $Me = 1/3 \cdot We \times 9.8 \frac{(Ln + An)}{1000}$ Collision equivalent to impact We = $\delta \cdot W \cdot V$ δ : Bumper coefficient Rubber stopper without adjuster = 4/100 Shock absorber = 1/100 Metal stopper = 16/100 Correction value of moment center position distance An: Table (3) Find the allowable dynamic moment Mea (N-m). Find the load factor Ω_3 of the dynamic moment Δ_2 = M/Ma $Me = 1/3 \cdot We \times 9.8 \frac{(Ln + An)}{1000}$ Collision equivalent to impact We = $\delta \cdot W \cdot V$ δ : Bumper coefficient Rubber stopper without adjuster = 4/100 Shock absorber = 1/100 Metal stopper = 16/100 Correction value of moment center position distance An: Table (3) Find the load factor Ω_3 of the dynamic moment Δ_3 = Me/Mea Me = 168 Aa = 24.5 Meay = 12.6 (Same value as Meap)		Correction value of moment center position distance An: Table (3)	$My = 1 \times 9.8 (10 + 30)/1000$ = 0.39	Mr = 1 x 9.8 (30 + 10.5)/100 = 0.39				
Find the allowable dynamic moment Mea (N·m).Me = $1/3 \cdot We \ge 9.8 \frac{(Ln + An)}{1000}$ Collision equivalent to impact We = $\delta \cdot W \cdot V$ δ : Bumper coefficient Rubber stopper without adjuster = $4/100$ Shock absorber = $1/100$ Metal stopper = $16/100$ Correction value of moment center position distance An: Table (3)PitchingExamine Mep. Me = $1/3 \ge 16.8 \le 9.8 \ge \frac{(30 + 10.5)}{1000} = 2.2$ We = $4/100 \ge 1 \times 2.2 = 16.8$ Meap = $1 \ge 0.7 \ge 13 \ge 12.6 \le 1000$ Metal stopper = $16/100$ Correction value of moment center position distance An: Table (3)PitchingExamine Mep. Mep = $1/3 \ge 16.8 \le 9.8 \ge \frac{(30 + 10.5)}{1000} = 2.2$ Meap = $1 \ge 0.7 \ge 10.5 \le 10.7$ Mpmax = 18 CC = $2.2/12.6 = 0.17$ Find the allowable dynamic moment Mea (N·m).Mea = K · $\Upsilon \cdot Mmax$ Workpiece mounting coefficient K: Fig. (3) Allowable moment Coefficient Υ : Graph (2) Max. allowable moment Mmax: Table (4)YawingExamine Mey. Mey = $1/3 \ge 16.8 \ge 9.8 \ge \frac{(30 + 24.5)}{1000} = 3.0000 \le 10000 = 100000 = 10000 = 10000 =$		Workpiece mounting coefficient K: Fig. (3) Allowable moment coefficient γ : Graph (2)	May = 1 x 1 x 18 = 18 Mymax = 18 K = 1	Mrmax = 36 K = 1				
Find the dynamic moment Me (N·m).Me = $1/3 \cdot We \ge 9.8 \frac{(Ln + An)}{1000}$ Collision equivalent to impact We = $\delta \cdot W \cdot V$ δ : Bumper coefficient Rubber stopper without adjuster = $4/100$ Shock absorber = $1/100$ Metal stopper = $16/100$ Correction value of moment center position distance An: Table (3)PitchingExamine Mep. Me = $1/3 \times 16.8 \times 9.8 \times \frac{(30 + 10.5)}{1000} = 2.2$ We = $4/100 \ge 1 \times 2.2 \times 12.6 = 0.17$ Mean = $1 \times 0.7 \times 18 = 12.6$ Mean = $1 \times 0.7 \times 10.8 \times 0.8 \times \frac{(30 + 24.5)}{1000} = 3.0$ Mean = $1 \times 0.7 \times 10.8 \times 10.$	Ma (N·m). Find the load factor Ω_2 of the static	Workpiece mounting coefficient K: Fig. (3) Allowable moment coefficient γ : Graph (2) Maximum allowable moment Mmax: Table (4)	May = 1 x 1 x 18 = 18 Mymax = 18 K = 1 γ = 1	Mrmax = 36 K = 1 γ = 1				
Find the dynamic moment Me (N·m).Me = $1/3 \cdot We \ge 9.8 \frac{(Ln + An)}{1000}$ Mep = $1/3 \ge 16.8 \ge 9.8 \ge \frac{(30 + 10.5)}{1000} = 2.2$ We = $4/100 \ge 1 \ge 2.4 = 10.5$ We = $4/100 \ge 1 \ge 2.4 = 10.5$ We = $4/100 \ge 1 \ge 2.4 = 10.5$ We = $4/100 \ge 1 \ge 2.4 = 10.5$ We = $4/100 \ge 1 \ge 2.4 = 10.5$ We = $4/100 \ge 1 \ge 2.4 = 10.5$ We = $4/100 \ge 1 \ge 2.4 = 10.5$ We = $4/100 \ge 1 \ge 2.4 = 10.5$ Shock absorber = $1/100$ Shock absorber = $1/100$ Shock absorber = $1/100$ Metal stopper = $16/100$ Correction value of moment center position distance An: Table (3)Find the allowable dynamic moment Mea (N·m).Mea = K • $\gamma \cdot Mmax$ Workpiece mounting coefficient K: Fig. (3) Allowable moment coefficient γ : Graph (2) Max. allowable moment Mmax: Table (4)YawingFind the load factor Ω 's of the dynamic moment $\Omega_{3} = Me/Mea$ Find the load factor Ω 's of the dynamic moment $\Omega_{3} = Me/Mea$ Find the load factor Ω 's of the dynamic moment $\Omega_{3} = Me/Mea$ Find the load factor Ω 's of the dynamic moment $\Omega_{3} = Me/Mea$ Find the load factor Ω 's of the dynamic moment $\Omega_{3} = Me/Mea$ Find the load factor Ω 's of the dynamic moment $\Omega_{3} = Me/Mea$ Find the load factor Ω so the dynamic moment $\Omega_{3} = Me/Mea$ Mea = 12.6 (Same value as Meap)Mea = 12.6 (Same value as Meap)	Ma (N·m). Find the load factor Ω_2 of the static moment.	Workpiece mounting coefficient K: Fig. (3) Allowable moment coefficient γ : Graph (2) Maximum allowable moment Mmax: Table (4) $\Omega_{2} = M/Ma$	May = 1 x 1 x 18 = 18 Mymax = 18 K = 1 γ = 1	Mrmax = 36 K = 1 γ = 1				
moment Mea (N·m).Workpiece mounting coefficient K: Fig. (3) Allowable moment coefficient $\hat{\gamma}$: Graph (2) Max. allowable moment Mmax: Table (4)Mey = 1/3 x 16.8 x 9.8 x $\frac{(30 + 24.5)}{1000} = 3.0$ We = 168 A4 = 24.5 Meay = 12.6 (Same value as Meap)	Ma (N·m). Find the load factor Ω_2 of the static moment.	Workpiece mounting coefficient K: Fig. (3) Allowable moment coefficient γ : Graph (2) Maximum allowable moment Mmax: Table (4) $\Omega_{2} = M/Ma$	May = 1 x 1 x 18 = 18 Mymax = 18 K = 1 γ = 1 α_{2} = 0.39/18 = 0.022	Mrmax = 36 K = 1 γ = 1				
Find the load factor Ω_3 of the $\Omega_3 = Me/Mea$ Meay = 12.6 (Same value as Meap)	Ma (N·m). Find the load factor 0(2 of the static moment. Load Factor of Dynamic Mor Find the dynamic moment Me	Workpiece mounting coefficient K: Fig. (3) Allowable moment coefficient γ : Graph (2) Maximum allowable moment Mmax: Table (4) $\Omega_{2} = M/Ma$ ment Me = $1/3 \cdot We \times 9.8 \frac{(Ln + An)}{1000}$ Collision equivalent to impact We = $\delta \cdot W \cdot V$ δ : Bumper coefficient Rubber stopper without adjuster = $4/100$ Shock absorber = $1/100$ Metal stopper= $16/100$	$\begin{aligned} \text{May} &= 1 \times 1 \times 18 = 18 \\ \text{Mymax} &= 18 \\ \text{K} &= 1 \\ \gamma &= 1 \end{aligned}$ $\begin{aligned} &\qquad & & & & \\ && & & & \\ && & & \\ && & & \\ && & & & \\ && & & \\ && & & & \\ && & & \\ $	Mrmax = 36 K = 1 $\gamma = 1$ $\Omega'_2 = 0.39/36 = 0.011$ $8 \times 9.8 \times \frac{(30 + 10.5)}{1000} = 2.2$ x 1 × 420 = 16.8 x 18 = 12.6				
	Ma (N·m). Find the load factor 0/2 of the static moment. Load Factor of Dynamic Mor Find the dynamic moment Me (N·m). Find the allowable dynamic	Workpiece mounting coefficient K: Fig. (3) Allowable moment coefficient Υ : Graph (2) Maximum allowable moment Mmax: Table (4) $\Omega_2 = M/Ma$ ment Me = $1/3 \cdot We \times 9.8 \frac{(Ln + An)}{1000}$ Collision equivalent to impact We = $\delta \cdot W \cdot V$ δ : Bumper coefficient Rubber stopper without adjuster = $4/100$ Shock absorber = $1/100$ Metal stopper= $16/100$ Correction value of moment center position distance An: Table (3) Mea = K $\cdot \Upsilon \cdot Mmax$ Workpiece mounting coefficient K: Fig. (3) Allowable moment coefficient Υ : Graph (2)	May = 1 x 1 x 18 = 18 Mymax = 18 K = 1 γ = 1 α_2 = 0.39/18 = 0.022 Pitching Examine Mep. Mep = 1/3 x 16. We = 4/100 x A2 = 10.5 Meap = 1 x 0.7 K = 1 $\gamma = 0.7$ Mpmax = 18 α_3 = 2.2/12.6 = Yawing Examine Mey. Mey = 1/3 x 16. We = 168	Mrmax = 36 K = 1 $\gamma = 1$ Qt'2 = 0.39/36 = 0.011 (30 + 10.5) 1000 $(1 \times 420 = 16.8)$ $\times 18 = 12.6$ = 0.17				


Use is possible if the sum of the load factors does not exceed 1.

$$\begin{split} \Sigma & (\Lambda = \alpha_{1+} \alpha_{2+} \alpha_{2+} \alpha_{3+} \alpha_{3+} \alpha_{3}) \\ & = 0.25 + 0.022 + 0.011 + 0.17 + 0.24 = 0.693 \leq 1 \\ & \text{And it is possible to use.} \end{split}$$

SMC

 $\Sigma \alpha n = \alpha_1 + \alpha_2 + \dots + \alpha_n \leq 1$

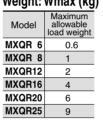
Air Slide Table/Reversible Type Series MXQR

Dynamic moment: Moment generated by impact when colliding with stopper

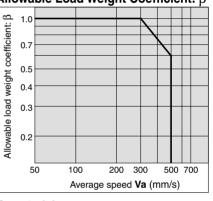
Table (1) Allowable Kinetic Energy: Emax (J)

		Allowable k	inetic energ	у								
Model	14/34	A	Adjuster option									
	Without adjuster	Rubber stopper	Shock absorber	Metal stopper								
MXQR 6	0.018	0.018	0.036	0.009								
MXQR 8	0.027	0.027	0.054	0.013								
MXQR12	0.055	0.055	0.11	0.027								
MXQR16	0.11	0.11	0.22	0.055								
MXQR20	0.16	0.16	0.32	0.080								
MXQR25	0.24	0.24	0.48	0.12								

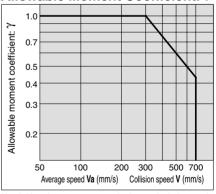
∧ Caution


• The maximum operating speed for the metal stopper type is 200 mm/s

· When the shock absorber type is mounted vertically, operate within the maximum allowable load weight range shown in Table (2). · The operating pressure range


of the MXQR6 with shock

absorber is 0.3 to 0.7 MPa.


Table (2) Maximum Allowable Load Weight: Wmax (kg)

Graph (1) Allowable Load Weight Coefficient: β

Graph (2) Allowable Moment Coefficient: Y

Note) Use the average speed when calculating static moment Use the collision speed when calculating

dynamic moment.

nit	Symbol	Definition	Unit
m	Va	Average speed	mm/s
J	W	Load weight	kg
J	Wa	Allowable load weight	kg
m	We	Weight equivalent to impact	kg
m	Wmax	Max. allowable load weight	kg
m	α	Load factor	—
m	β	Allowable load weight coefficient	
m	γ	Allowable moment coefficient	_
m	К	Workpiece mounting coefficient	—
n/s			

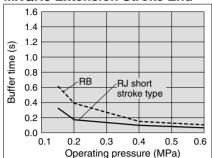
Table (3) Correction Value of Moment Center Position Distance: An (mm)

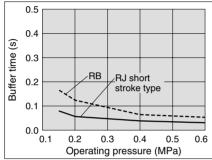
		U	orrection	n value	of mom	ent cent	er positi	on dista	ince (Re	eter to F	gure (2).)	
Model					A1, A3								
woder				St	roke (mr	n)	_			A2	A4	A5	A6
	10	20	30	150									
MXQR 6	14.5	14.5	14.5	18.5	18.5		_	—	—	6	13.5	13.5	6
MXQR 8	16.5	16.5	18.5	20.5	28	28.5	—	—	—	7	16	16	7
MXQR12	21	21	21	25	25	34	34	_	_	9	19.5	19.5	9
MXQR16	27	27	27	27	30	33	42.5	42.5	—	10.5	24.5	24.5	10.5
MXQR20	29.5	29.5	29.5	29.5	33.5	37.5	53.5	55	56.5	14	30	30	14
MXQR25	//XQR25 35.5 35.5 35.5 35.5 43 43 50 64 64 16.5 37 37 16.												16.5
	Note) For A2, A4, A5 and A6, there is no difference in the corrected values due to the stroke.												

Table (4) Maximum Allowable Moment: Mmax (N⋅m)

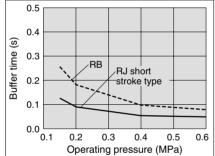
		Pitc	h/Yaw	/ mon	nent: N	Mpma	x/Myr	nax		Roll moment: Mrmax								
Model				Stro	oke (n	nm)				Stroke (mm)								
	10 20 30 40 50 75 100 125 150									10	20	30	40	50	75	100	125	150
MXQR 6	1.4	1.4	1.4	2.8	2.8	_	_	_	_	3.5	3.5	3.5	5.1	5.1	-	_	_	_
MXQR 8	2.0	2.0	2.8	3.7	7.9	7.9	_	—	—	5.1	5.1	6.0	6.9	7.4	7.4	—	_	
MXQR12	4.7	4.7	4.7	7.2	7.2	15	15	_	_	11	11	11	13	13	14	14	_	_
MXQR16	13	13	13	13	18	23	42	42	—	31	31	31	31	36	41	41	41	
MXQR20	19	19	19	19	27	36	84	84	84	47	47	47	47	57	66	75	75	75
MXQR25	32	32	32	32	52	52	78	140	140	81	81	81	81	110	110	130	130	130

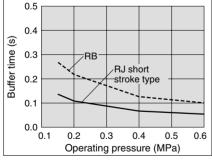
Symbol

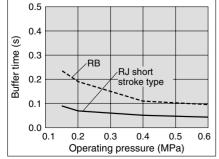

Symbol	Definition	Unit	Symbol	Definition	Unit
An (n = 1 to 6)	Correction value of moment center position distance	mm	Va	Average speed	mm/s
E	Kinetic energy	J	w	Load weight	kg
Emax	Allowable kinetic energy	J	Wa	Allowable load weight	kg
Ln (n = 1 to 3)	Overhang	mm	We	Weight equivalent to impact	kg
M (Mp, My, Mr)	Static moment (Pitch, Yaw, Roll)	N∙m	Wmax	Max. allowable load weight	kg
Ma (Map, May, Mar)	Allowable static moment (Pitch, Yaw, Roll)	N∙m	α	Load factor	—
Me (Mep, Mey)	Dynamic moment (Pitch, Yaw)	N∙m	β	Allowable load weight coefficient	—
Mea (Meap, Meay)	Allowable dynamic moment (Pitch, Yaw)	N∙m	γ	Allowable moment coefficient	—
Mmax (Mpmax, Mymax, Mrmax)	Maximum allowable moment (Pitch, Yaw, Roll)	N⋅m	к	Workpiece mounting coefficient	_
V	Collision speed	mm/s			

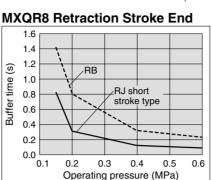

Adjuster Option: Shock Absorber Buffer Time (Reference Values)

* Buffer time: The time from when the product hits the rod end of the shock absorber to when the shock absorber reaches its retracted position.

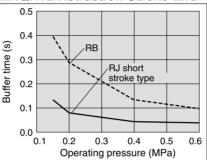

MXQR8 Extension Stroke End


MXQR12 Extension Stroke End

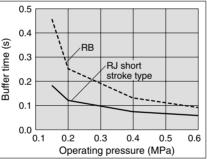

MXQR16 Extension Stroke End

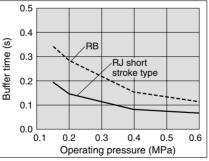


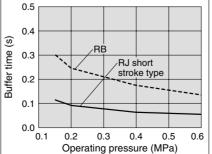
MXQR20 Extension Stroke End



MXQR25 Extension Stroke End




MXQR12 Retraction Stroke End


MXQR16 Retraction Stroke End

MXQR20 Retraction Stroke End

MXQR25 Retraction Stroke End

Selection

A Caution

1. Operate loads within the range of the operating limits.

Select the model considering maximum load weight and allowable moment. Refer to front matters 1 and 2 for the details. When actuator is used outside of operating limits, eccentric loads on guide will be in excess of this causing vibration on guide, inaccuracy, and shortened life.

2. If intermediate stops by external stopper is done, avoid ejection.

If lurching occurs damage can result. When making a stop with an external stopper to be followed by continued forward movement, first supply pressure to momentarily reverse the table, then retract the intermediate stopper, and finally apply pressure to the opposite port to operate the table again.

Operating Environment

ACaution

1. Do not use in the environment, where the product could be exposed to the liquid such as cutting oil, etc.

Using in the environment where the product could be exposed to cutting oil, coolant or oil, etc. could result in looseness, increased operating resistance, or air leakage, etc.

2. Do not use in the environment, where the product could be exposed directly to the foreign matters such as powder dust, blown dust, cutting chip, spatter, etc.

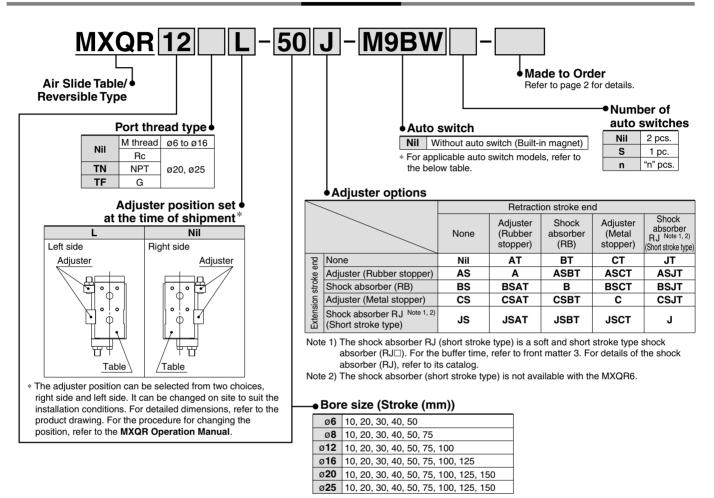
This could result in looseness and increased operating resistance, and air leakage, etc.

Please consult with SMC regarding use in this kind of environment.

3. Use caution for the anticorrosiveness of linear guide section.

Martensitic stainless steel is used for the table and guide block. But, use caution that anti-corrosiveness is inferior to the austenitic stainless steel. Especially, rust may be generated in an environment where waterdrops are likely to adhere due to condensation, etc.

Note) The buffer time depends on the operating conditions (maximum load weight, moment, piston speed and operating pressure and temperature).


Test conditions Workpiece weight: Approx. 70% of maximum load weight Speed : Average speed with the fitting directly

ed : Average speed with the fitting directly mounted (Approx. 300 to 500 mm/s depending on the bore size and operating pressure)

Air Slide Table/Reversible Type Series MXQR ø6, ø8, ø12, ø16, ø20, ø25

How to Order

Applicable Auto Switches/Refer to Best Pneumatics No. 3 for further information on auto switches

<u> </u>	Applicable Auto Switches/Relef to best Predminics No. 3 for further information on auto switches.																										
		The states of	light		L	oad volta	ige	Auto swit	ch model	Lead	wire I	engtl	า (m)	Pre-wired	Annli	aabla											
Туре	Special function	Electrical entry	Indicator light	Wiring (Output)	DC		AC	Perpendicular	In-line	0.5 (Nil)	1 (M)	3 (L)	5 (Z)	connector													
				3-wire (NPN)	E V 10 V	,	M9NV	M9N		-		0	0														
				3-wire (PNP)		5 V,12 V		M9PV	M9P		—	•	0	0	IC circuit												
ي ہ				2-wire		12 V		M9BV	M9B		-		0	0	_												
/itc	Diagnostic indication			3-wire (NPN)	5 V 10 V	,	M9NWV	M9NW				0	0	0	Delay												
~ ~ ~		Grommet	les	3-wire (PNP)	24 V	5 V,12 V	—	M9PWV	M9PW				0	0	IC circuit												
Solid auto s	(2-color indication)			2-wire 3-wire (NPN)		12 V		M9BWV	M9BW				0	0	_	PLC											
s. au		1			- 11 40 14	,	M9NAV*1	M9NA*1	0	0	•	0	0	10													
	Water resistant (2-color indication)			3-wire (PNP)		5 V,12 V		M9PAV*1	M9PA*1	0	0		0	0	IC circuit												
				2-wire		12 V		M9BAV*1	M9BA*1	0	0	•	0	0	_												
auto tch		Grommet		0.		0.		. a				0	0	és	3-wire (NPN equivalent)	_	5 V	_	A96V	A96	•	_	•	-	-	IC circuit	—
ed svi	Reed aut switch			Quuine	04.14	12 V	100 V	A93V*2	A93				—	-	—	Relay,											
Re						٩	2-wire	24 V	12 V	100 V or less	A90V	A90		—		—	—	IC circuit	PLČ								

*1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.

*2 1 m type lead wire is only applicable to D-A93.

* Lead wire length symbols: 0.5 m Nil (Example) M9NW

(Example) M9NWM 1 m M 3 m I

(Example) M9NWL 5 m Z (Example) M9NWZ

* Since there are other applicable auto switches than listed, refer to page 26 for details.

* For details about auto switches with pre-wired connector, refer to pages 1784 and 1785 of Best Pneumatics No. 3.

* Auto switches are shipped together, (but not assembled).

* Solid state auto switches marked with "O" are produced upon receipt of order.

	Made to Order For details, refer to pages 28 to 29.)
Symbol	Specifications
-X7	PTFE grease
-X9	Grease for food processing equipment
-X11	Long adjustment bolt (Adjustment range: 15 mm)
-X12	Long adjustment bolt (Adjustment range: 25 mm)
-X16	Heat treated metal stopper bolt (Adjustment range: 5 mm)
-X17	Heat treated metal stopper bolt (Adjustment range: 15 mm)
-X18	Heat treated metal stopper bolt (Adjustment range: 25 mm)
-X33	Without built-in auto switch magnet
-X39	Fluororubber seal
-X42	Anti-corrosive guide unit
-X45	EPDM seal

Specifications

Bore size (mm)	6	8	12	16	20	25						
Piping port size		M5	x 0.8		Rc1/8, NPT1/8, G1/8							
Fluid			A	vir								
Action			Double	e acting								
Operating pressure			0.15 to ().7 MPa*								
Proof pressure			1.05	MPa								
Ambient and fluid temperature	-10 to 60°C											
Piston speed			50 to 50 tion/Metal s nock absorb	•••		,						
Cushion		ock absor	Standard, A ber (Adjuste Adjuster op	option/Sh	ock absorb	•• /						
Lubrication			Not require	d (Non-lube	e)							
Auto switch	2-colo	Solid st	d auto switc ate auto sw n solid state	itch (2-wire,	, 3-wire)	3-wire)						
Stroke length tolerance	+1 mm											

* MXQR6 with shock absorber: Operating pressure 0.3 to 0.7 MPa

Standard Stroke

Model	Standard stroke (mm)
MXQR 6	10, 20, 30, 40, 50
MXQR 8	10, 20, 30, 40, 50, 75
MXQR12	10, 20, 30, 40, 50, 75, 100
MXQR16	10, 20, 30, 40, 50, 75, 100, 125
MXQR20	10, 20, 30, 40, 50, 75, 100, 125, 150
MXQR25	10, 20, 30, 40, 50, 75, 100, 125, 150

Theoretical Output

The dual rod er	nsures an out	put twice that	of existing c	linders				 ▶]	(N)		
Bore size	Rod size	Operating	Piston area	Operating pressure (MPa)							
(mm)	(mm)	direction	(mm²)	0.2	0.3	0.4	0.5	0.6	0.7		
6	3	OUT	57	11	17	23	29	34	40		
0	3	IN	42	8	13	17	21	25	29		
8	4	OUT	101	20	30	40	51	61	71		
0	4	IN	75	15	23	30	38	45	53		
12	6	OUT	226	45	68	90	113	136	158		
12	6	IN	170	34	51	68	85	102	119		
16	8	OUT	402	80	121	161	201	241	281		
10	8	IN	302	60	91	121	151	181	211		
	10	OUT	628	126	188	251	314	377	440		
20	10	IN	471	94	141	188	236	283	330		
05	10	OUT	982	196	295	393	491	589	687		
25	12	IN	756	151	227	302	378	454	529		
lote) Theoretical output (N) = Pressure (MPa) x Piston area (mm ²)											

(N) Pressure (MPa) x Piston area (m

Moisture **Control Tube** Series IDK

When operating an actuator with a small diameter and a short stroke at a high frequency, the dew condensation (water droplet) may occur inside the piping depending on the conditions.

Simply connecting the moisture control tube to the actuator will prevent dew condensation from occurring. For details, refer to Series IDK in the WEB catalog.

Weight

															(g)		
				Stand	ard stroke	e (mm)				Additional weight of adjuster option							
Model									Rubber	stopper	Shock a	absorber	Metal s	stopper			
	10	20	30	40	50	75	100	125	150	Extension stroke end		Extension stroke end	Retraction stroke end		Retraction stroke end		
MXQR 6	100	120	140	180	200			—	_	6	5	14	10	10	5		
MXQR 8	140	170	210	250	315	385	_	_	_	10	10	30	23	23	10		
MXQR12	335	340	380	450	490	655	745	_	_	25	23	47	30	35	23		
MXQR16	605	610	670	735	835	1000	1250	1400	_	45	40	75	53	60	40		
MXQR20	1100	1100	1100	1200	1400	1750	2350	2650	2900	80	65	170	120	115	65		
MXQR25	1750	1750	1750	1950	2400	2750	3450	4300	4700	130	110	220	140	180	110		

Optional Specifications

Adjusters

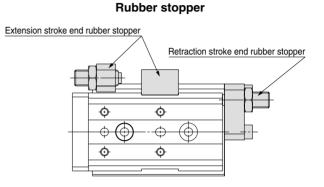
Three different types of adjusting bolt have been standardized for extension stroke end, retraction stroke end and both ends adjuster and cushion mechanisms.

Rubber stopper

Standard stroke adjuster

Shock absorber

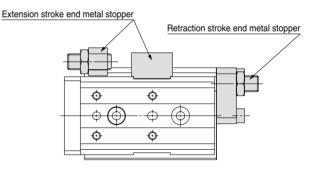
Absorbs the impact at the stroke end for smooth stopping. Improved stopping accuracy.

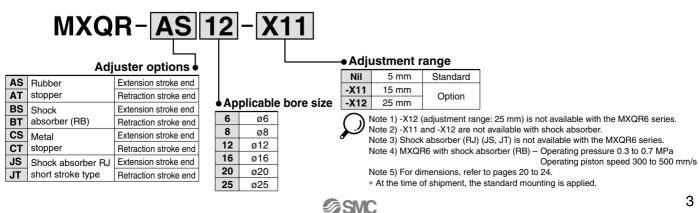

Metal stopper

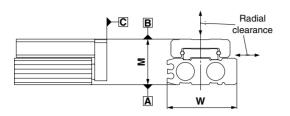
Improved stopping accuracy. Without cushioning function for use with light loads and low speeds.


Stroke Adjustment Range

Туре	Description	Stroke adjustment range	
	Extension stroke end (AS)		
Rubber stopper	Retraction stroke end (AT)	0 to 5 mm	
	Both ends (A)		
	Extension stroke end (BS, JS)		
Shock absorber	Retraction stroke end (BT, JT)	Refer to "Dimensions".	
	Both ends (B, J)		
	Extension stroke end (CS)		
Metal stopper	Retraction stroke end (CT)	0 to 5 mm	
	Both ends (C)		

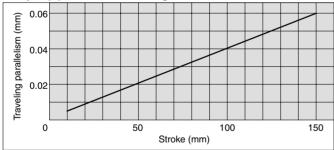

* Adjusters with wide adjustable range are available as option with rubber stopper and metal stopper. For detailed specifications, refer to "How to Order Stroke Adjuster (Accessories)" below.

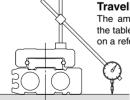

Shock absorber


Metal stopper

How to Order Stroke Adjuster (Accessories)

Table Accuracy




Model	MXQR6	MXQR8	MXQR12	MXQR16	MXQR20	MXQR25
B side parallelism to A side		Refer to Table (1).				
B side traveling parallelism to A side	Refer to Graph (1).					
C side perpendicularity to A side	0.05 mm					
M dimension tolerance	±0.08 mm (±0.1 mm)*					
W dimension tolerance	±0.1 mm					
Radial clearance (µm)	-4 to 0	-4 to 0	–6 to 0	–10 to 0	–12 to 0	–14 to 0

* ±0.1 mm for 75 mm or longer stroke

Model	Stroke (mm)								
Model	10	20	30	40	50	75	100	125	150
MXQR 6	0.025	0.03	0.035	0.04	0.045		_	—	
MXQR 8	0.025	0.03	0.035	0.04	0.055	0.065	—	—	
MXQR12	0.03	0.03	0.035	0.04	0.045	0.065	0.075	—	
MXQR16	0.035	0.035	0.04	0.045	0.05	0.065	0.08	0.095	
MXQR20	0.04	0.04	0.04	0.045	0.055	0.07	0.095	0.105	0.125
MXQR25	0.045	0.045	0.045	0.05	0.06	0.07	0.09	0.115	0.125

Graph (1) B Side Traveling Parallelism to A Side (mm)

Traveling parallelism:

The amount of deflection on a dial gauge when the table travels a full stroke with the body secured on a reference base surface.

Shock Absorber Specifications

Shock abso	rber model	RB0604 -X2062	RB0805	RB0806	RB1007	RB1411	RB1412
Applicable	slide table	MXQR6	MXQR8	MXQR12	MXQR16	MXQR20	MXQR25
Max. absorbe	ed energy (J)	0.5	0.98	2.94	5.88	14.7	19.6
Stroke absorption (mm)		4	5	6	7	11	12
Collision sp	300 to 500	50 to 500					
Max. operating free	quency (cycle/min)	_	80	80	70	45	45
Max. allowab	le thrust (N)	150	245	245	422	814	814
Ambient temper	ature range (°C)			-10 t	o 60		
Spring	Extended	1.34	1.96	1.96	4.22	6.86	6.86
force (N)	Retracted	3.89	3.83	4.22	6.86	15.3	15.98
Weight (g)		5.5	15	15	25	65	65

RJ Short Stroke Type Specifications

Shock absorber model		—	RJ0805		RJ1006	RJ1	410
Applicable slide table		MXQR6	MXQR8	MXQR12	MXQR16	MXQR20	MXQR25
Max. absorb	ed energy (J)		0	.5	1.5	3	8.7
Stroke absorption (mm)			5		6	10)
Collision speed (mm/s)			50 to 500				
Max. operating frequency (cycle/min)			8	30	70	4	15
Max. allowat	ole thrust (N)	—	24	45	422	8	14
Ambient temper	ature range (°C)			-10 to 6	0°C (No∶	freezing)	
Spring	Extended		2	2.8	5.4	6	6.4
force (N)	Retracted		۷	l.9	8.0	14	.6
Weight (g)			15	5	23	65	;

Note) The shock absorber service life is different from that of the MXQR cylinder depending on the operating conditions. Refer to the RB/RJ series Specific Product Precautions for the replacement period.

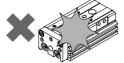
Service Life and Replacement Period of Shock Absorber

(mm)

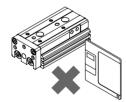
1. Allowable operating cycle under the specifications set in this catalog is shown below.

1.2 million cycles	RB0604-X2062, RB08□□
2 million cycles	RB10□□ to RB14□□
3 million cycles	RJ0805 to RJ1410

Note) Specified service life (suitable replacement period) is the value at room temperature (20 to 25°C). The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above.


Applicable size	Shock absorber model		
MXQR 6	RB0604-X2062	—	
MXQR 8	RB0805	BJ0805	
MXQR12	RB0806	HJ0605	
MXQR16	RB1007	RJ1006	
MXQR20	RB1411	BJ1410	
MXQR25	RB1412	nj1410	

≜Caution

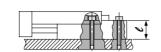

1. Do not scratch or dent the mounting side of the body, table or end plate.

This can cause loss of parallelism in the mounting surfaces, vibration in the guide unit and increased operating resistance, etc.

2. Do not scratch or dent on the forward side of the rail or guide. This could result in looseness and increased operating resistance, etc.

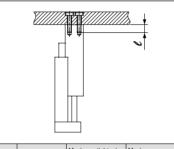
- 3. Do not apply excessive power and load when a workpiece is mounted. If the external force more than the allowable moment were applied, looseness of the guide unit or increased operating resistance could take place.
- 4. Flatness of mounting surface should be 0.02 mm or less. Poor parallelism of the workpiece mounted on the body, base and other parts can cause vibration in the guide unit and increased operating resistance, etc.
- 5. Keep away from objects which are influenced by magnets. As the body magnets are built-in, do not allow close contact with magnetic disks, magnetic cards or magnetic tapes. Data may be erased.

6. Do not touch a magnet to the table section.

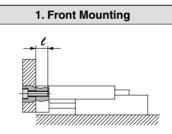

Since the table is made from the magnetic substance, it could turn to be magnetized if it stuck by a magnet, etc. That could cause auto switches, etc. to malfunction.

7. When mounting the body, use screws with appropriate length and do not exceed the maximum tightening torque. Tightening with a torque above the limit could malfunction. Whereas, tightening insufficiently could result in misalignment or come to a drop.

1. Lateral Mounting (Body tapped) Maximum tightening Maximum screw-in Model Bolt torque (N·m) depth (*t* mm) MXQR 6 M4 x 0.7 2.1 8 MXQR 8 M4 x 0.7 2.1 8 MXQR12 M5 x 0.8 10 4.4 **MXQR16** | M6 x 1 7.4 12 MXQR20 M6 x 1 7.4 12 MXQR25 M8 x 1.25 18.0 16


2. Lateral Mounting (Through hole)

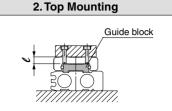
Mounting



Model	Bolt	Maximum tightening torque (N⋅m)	Maximum screw-in depth (<i>t</i> mm)			
MXQR 6	M3 x 0.5	1.2	11.5			
MXQR 8	M3 x 0.5	1.2	13.5			
MXQR12	M4 x 0.7	2.8	17.4			
MXQR16	M5 x 0.8	5.7	22.4			
MXQR20	M5 x 0.8	5.7	27.4			
MXQR25	M6 x 1	10.0	33.4			

3. Vertical Mounting (Body tapped)

Model	Bolt	Maximum tightening torque (N·m)	Maximum screw-in depth (<i>t</i> mm)
MXQR 6	M2.5 x 0.45	0.5	4
MXQR 8	M3 x 0.5	0.9	4
MXQR12	M4 x 0.7	2.1	6
MXQR16	M5 x 0.8	4.4	7
MXQR20	M5 x 0.8	4.4	8
MXQR25	M6 x 1	7.4	10



▲ Caution

To prevent the workpiece fixing bolts from touching the end plate, use bolts that are 0.5 mm or shorter than the maximum screw-in depth. If long bolts are used, they can touch the end plate and cause malfunction, etc.

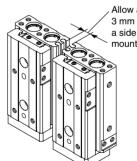
Model	Bolt	Maximum tightening torque (N·m)	Maximum screw-in depth (<i>t</i> mm)
MXQR 6	M3 x 0.5	0.9	5
MXQR 8	M4 x 0.7	2.1	6
MXQR12	M5 x 0.8	4.4	8
MXQR16	M6 x 1	7.4	10
MXQR20	M6 x 1	7.4	13
MXQR25	M8 x 1.25	18.0	15

多SMC

▲ Caution

To prevent the workpiece holding bolts from touching the guide block, use bolts that are 0.5 mm or shorter than the maximum screw-in depth. If long bolts are used, they can touch the guide block and cause malfunction, etc.

Model	Bolt	Maximum tightening torque (N·m)	Maximum screw-in depth (<i>t</i> mm)
MXQR 6	M3 x 0.5	1.2	4
MXQR 8	M3 x 0.5	1.2	4.8
MXQR12	M4 x 0.7	2.8	6
MXQR16	M5 x 0.8	5.7	7
MXQR20	M5 x 0.8	5.7	9.5
MXQR25	M6 x 1	10.0	11.5

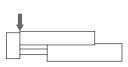

8. The positioning hole on the table and the positioning hole at the bottom of the body do not have the same center. Use these holes during reinstallation after the table has been removed for the maintenance of an identical product.

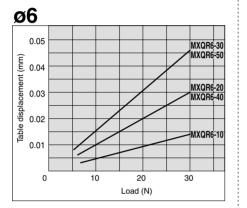
Handling of Adjuster when Mounted on the Left

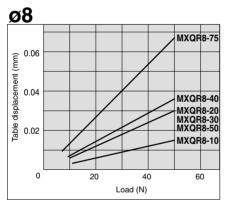
≜Caution

1. Keep at least 3 mm between adjusters mounted on the right and left when they are side by side.

Otherwise, this could cause auto switches to malfunction.




Allow a space of 3 mm or more for a side by side mounting.


Table Deflection (Reference Values)

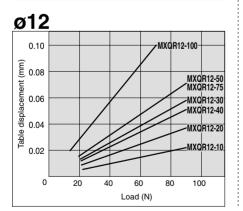
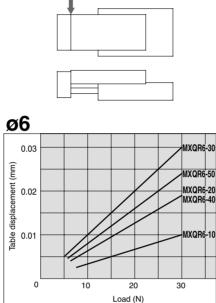
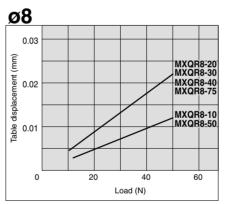

Table displacement due to pitch moment load

Table displacement when loads are applied to the section marked with the arrow at the full stroke.





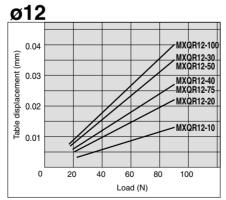
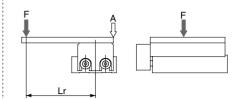
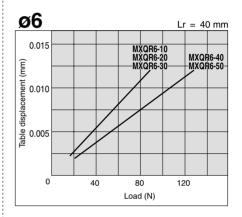
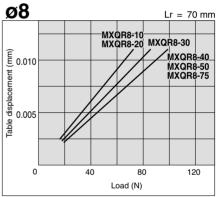


Table displacement due to yaw moment load

Table displacement when loads are applied to the section marked with the arrow at the full stroke.







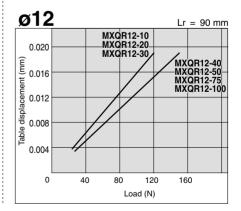
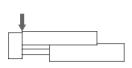
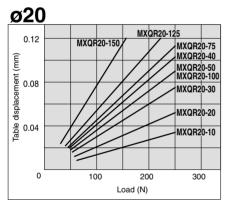

Table displacement due to roll moment load

Table displacement of section A when loads are applied to the section F with the slide table retracted.



Air Slide Table/Reversible Type Series MXQR


The below graphs show the table displacement when the static moment load is applied to the table. The graphs do not show the loadable weight. Refer to Model Selection for the loadable weight.

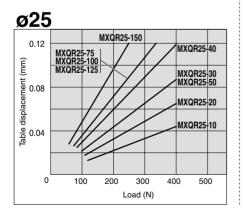
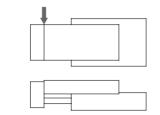
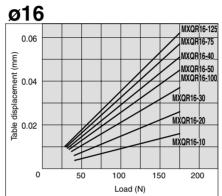
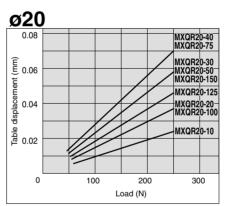

Table displacement due to pitch moment load

Table displacement when loads are applied to the section marked with the arrow at the full stroke.






Table displacement due to

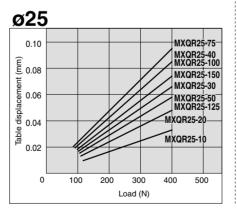
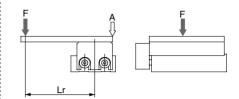
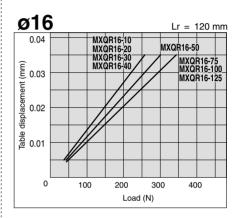
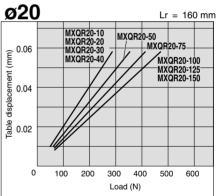

yaw moment load

Table displacement when loads are applied to the section marked with the arrow at the full stroke.







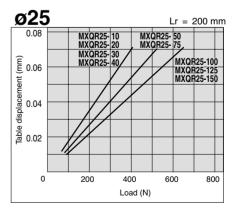
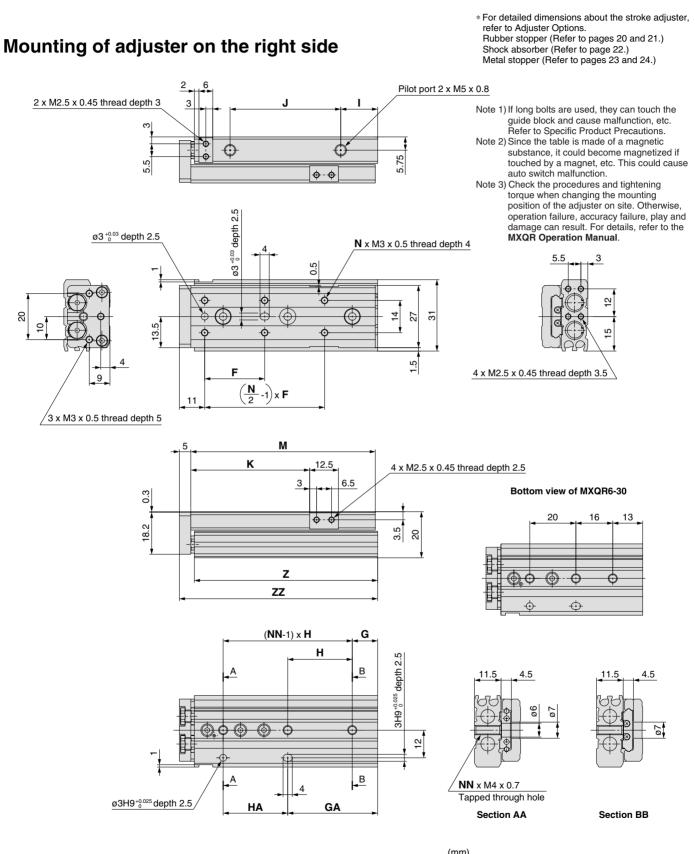
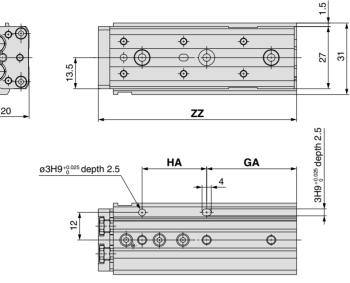

Table displacement due to roll moment load

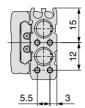
Table displacement of section A when loads are applied to the section F with the slide table retracted.



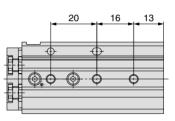
Dimensions: MXQR 6

													(mm)
Model	F	N	G	Н	NN	GA	HA	I	J	K	Μ	Z	ZZ
MXQR6-10	22	4	6	23	2	13	16	9	17	21.5	42	41.5	48
MXQR6-20	25	4	13	26	2	13	26	9	27	31.5	52	51.5	58
MXQR6-30	21	6	_Note)	_Note)	3	29	20	9	37	41.5	62	61.5	68
MXQR6-40	MXQR6-40 26 6 11 28 3 39 28 16 48 51.5 80 79.5 86												
MXQR6-50	27	6	21	28	3	49	28	9	65	61.5	90	89.5	96
Noto) Refer to the	Note) Befor to the bottom view of the MYORE 20												

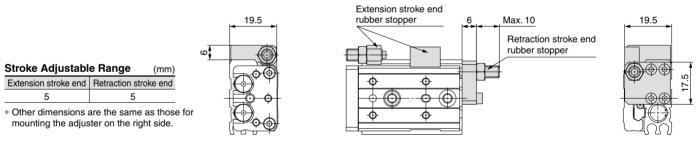

Note) Refer to the bottom view of the MXQR6-30.

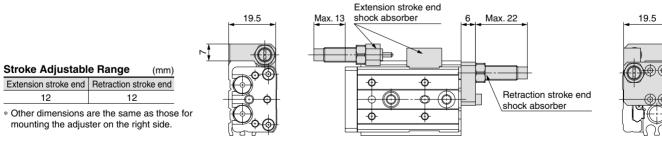

Mounting of adjuster on the left side

Note 1) If long bolts are used, they can touch the guide block and cause malfunction, etc. Refer to Specific Product Precautions.


* Other dimensions are the same as those for mounting the adjuster on the right side.

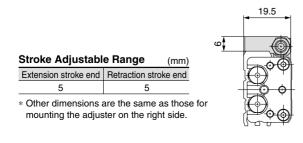
Note 2) Since the table is made of a magnetic substance, it could become magnetized if touched by a magnet, etc. This could cause auto switch malfunction. Note 3) Check the procedures and tightening torque when changing the mounting position of the adjuster on site. Otherwise, operation failure, accuracy failure, play and damage can result. For details, refer to the MXQR Operation Manual.

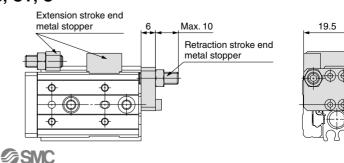

Bottom view of MXQR6-30


Bottom view

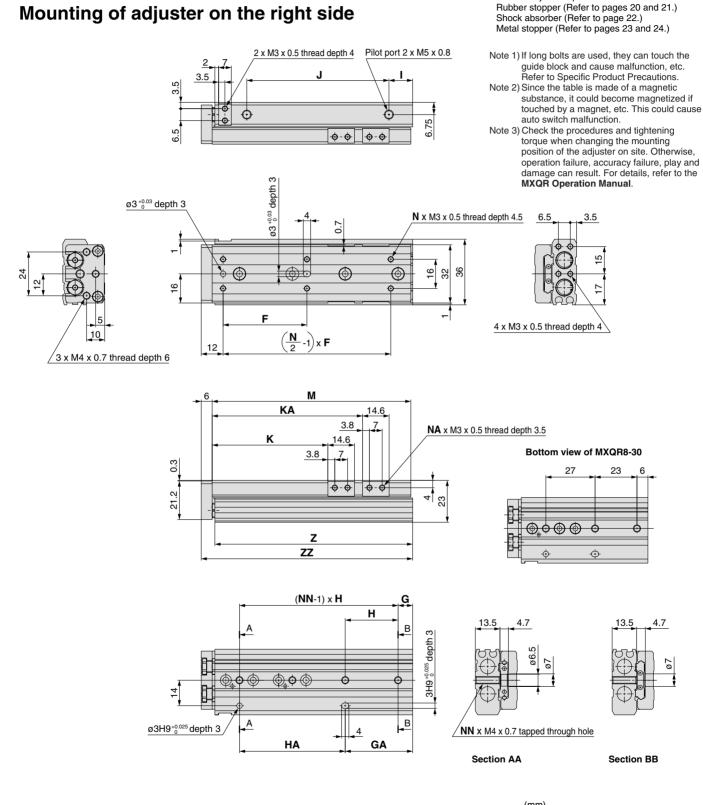
Adjuster Options

With rubber stopper (ø6): MXQR6(L)-□□AS, AT, A




With shock absorber (ø6): MXQR6(L)-□□BS, BT, B

✐€ α


With metal stopper (ø6): MXQR6(L)-□□CS, CT, C

Dimensions: MXQR 8

Mounting of adjuster on the right side

* For detailed dimensions about the stroke adjuster,

refer to Adjuster Options.

															(mm)
Model	F	Ν	G	Н	NN	GA	HA		J	K	KA	NA	М	Z	ZZ
MXQR8-10	25	4	7	25	2	13	19	11	17	23.5	_	4	46	45.5	53
MXQR8-20	25	4	14	28	2	14	28	10	28	33.5	_	4	56	55.5	63
MXQR8-30	26	6	<u>N</u> ote)	_Note)	3	29	27	12	40	43.5	_	4	70	69.5	77
MXQR8-40	32	6	8	31	3	39	31	14	52	53.5	—	4	84	83.5	91
MXQR8-50	46	6	8	29	4	37	58	13	78	63.5	82.5	8	109	108.5	116
MXQR8-75	50	6	31	30	4	61	60	12	105	88.5	112.5	8	135	134.5	142
Nete) Defended	Nete) Defente the bettern down of the MYODO 00														

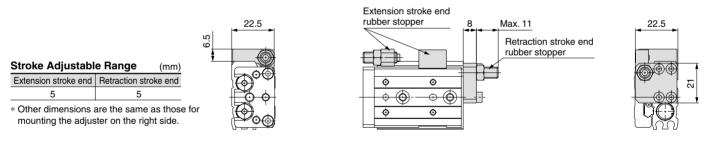
Note) Refer to the bottom view of the MXQR8-30.

A 10

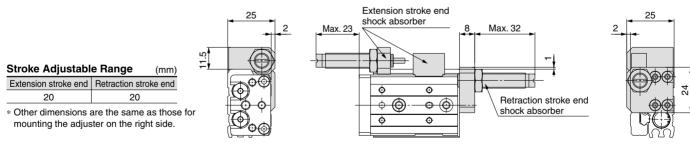
Mounting of adjuster on the left side

Note 1) If long bolts are used, they can touch the guide block and cause malfunction, etc. Refer to Specific Product Precautions.

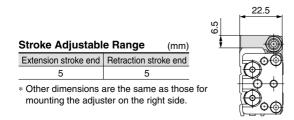
* Other dimensions are the same as those for mounting the adjuster on the right side. Note 2) Since the table is made of a magnetic substance, it could become magnetized if touched by a magnet, etc. This could cause auto switch malfunction. Note 3) Check the procedures and tightening torque when changing the mounting position of the adjuster on site. Otherwise, operation failure, accuracy failure,

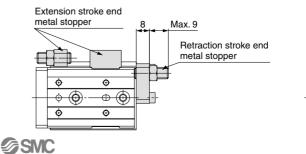

play and damage can result. For details, refer to the MXQR Operation Manual.

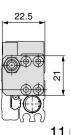
¢ Ð œ (b) (c) \$ (†) ٢ ۲ ß ജ 10 ¢ Ð Ð ΖZ 6.5 3.5 ø3H9 ^{+0.025} depth HA GA Bottom view of MXQR8-30 4 ø3H9+0.025 depth 3 27 23 6 ₽ 4 •• **@ \$ \$ \$** Ð Ð φ Ċ 륕

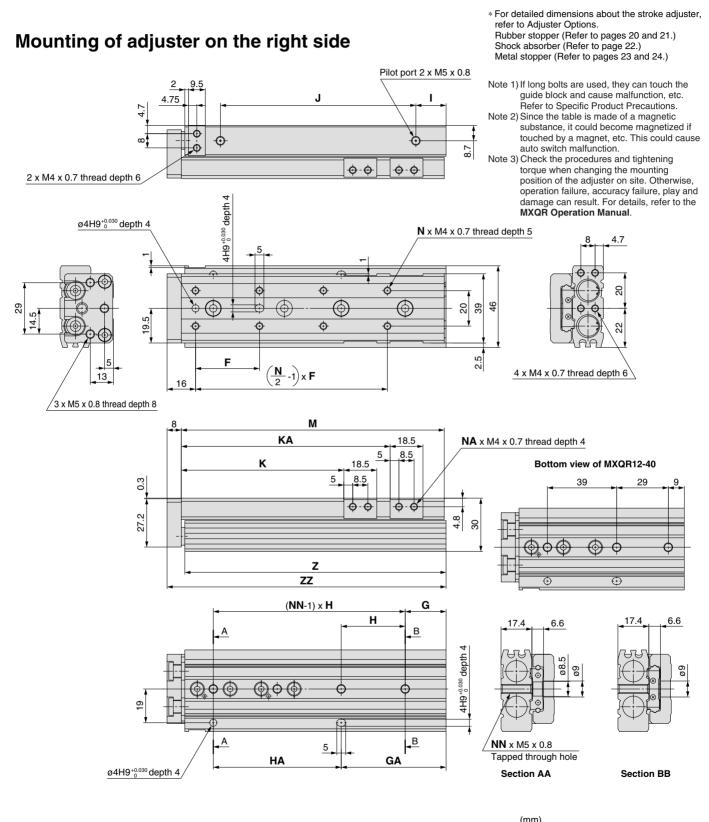

Bottom view

Adjuster Options


With rubber stopper (ø8): MXQR8(L)-□□AS, AT, A



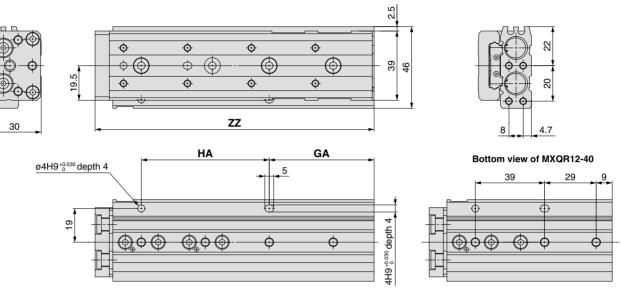

With shock absorber (ø8): MXQR8(L)-□□BS, BT, B, JS, JT, J


With metal stopper (ø8): MXQR8(L)-□□CS, CT, C

Dimensions: MXQR 12

															(((((((((((((((((((((((((((((((((((((((
Model	F	Ν	G	Н	NN	GA	HA	I	J	K	KA	NA	М	Z	ZZ
MXQR12- 10	28	4	18	32	2	18	32	12	34	26.5	_	4	67	66	76
MXQR12- 20	28	4	18	32	2	18	32	12	34	36.5	—	4	67	66	76
MXQR12- 30	38	4	20	40	2	20	40	14	42	46.5	_	4	77	76	86
MXQR12- 40	34	6	<u>N</u> ote)	<u>Note</u>)	3	38	39	15	58	56.5	_	4	94	93	103
MXQR12- 50	34	6	9	39	3	48	39	13	70	66.5	_	4	104	103	113
MXQR12- 75	36	8	23	36	4	59	72	17	110	91.5	117.5	8	148	147	157
MXQR12-100	36	10	12	36	5	84	72	17	135	116.5	142.5	8	173	172	182
Note) Defer to the	Note: Defer to the better view of the MXOD10.40														

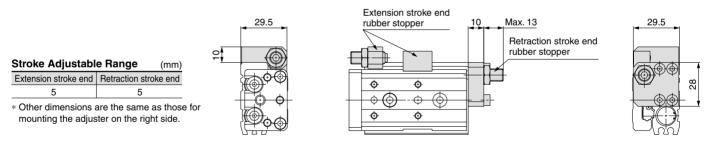
Note) Refer to the bottom view of the MXQR12-40.

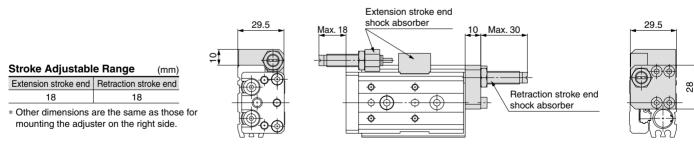

Mounting of adjuster on the left side

Note 1) If long bolts are used, they can touch the guide block and cause malfunction, etc. Refer to Specific Product Precautions.

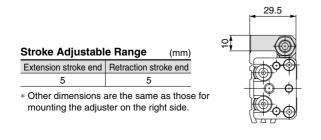
* Other dimensions are the same as those for

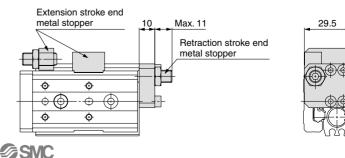
mounting the adjuster on the right side.


Note 2) Since the table is made of a magnetic substance, it could become magnetized if touched by a magnet, etc. This could cause auto switch malfunction.
 Note 3) Check the procedures and tightening torque when changing the mounting position of the adjuster on site. Otherwise, operation failure, accuracy failure, play and damage can result. For details, refer to the MXQR Operation Manual.

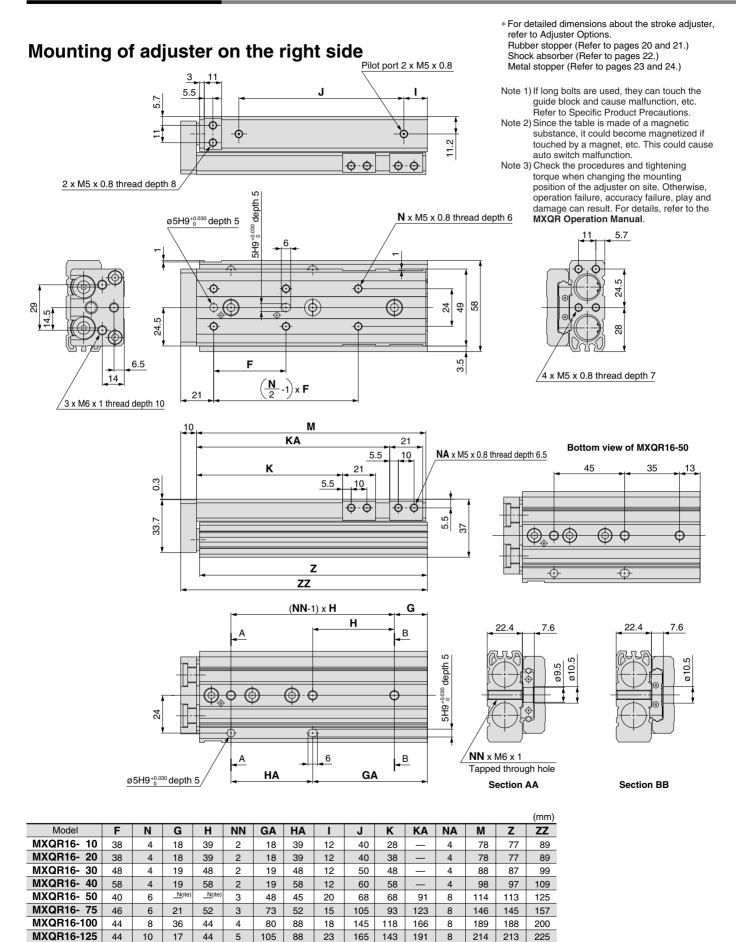

Bottom view

Adjuster Options


With rubber stopper (ø12): MXQR12(L)-□□AS, AT, A



With shock absorber (ø12): MXQR12(L)-□□BS, BT, B, JS, JT, J

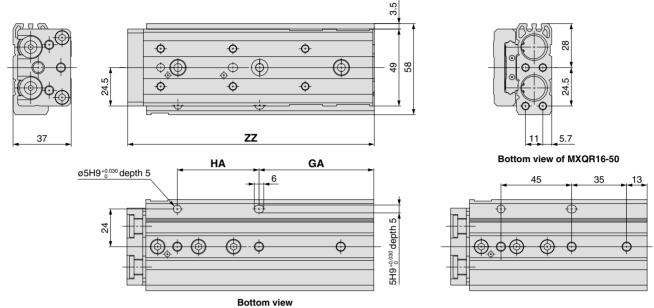

With metal stopper (ø12): MXQR12(L)-□□CS, CT, C

8

Dimensions: MXQR 16

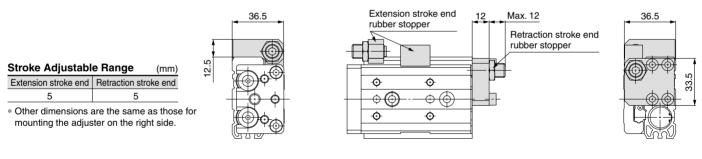
SMC

Note) Refer to the bottom view of the MXQR16-50.

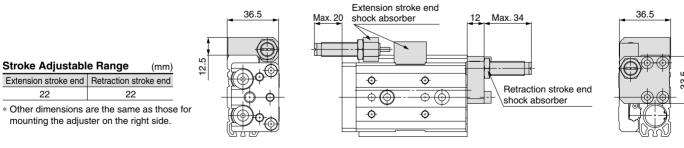

Mounting of adjuster on the left side

Note 1) If long bolts are used, they can touch the guide block and cause malfunction, etc. Refer to Specific Product Precautions. Note 2) Since the table is made of a magnetic substance, it could become magnetized

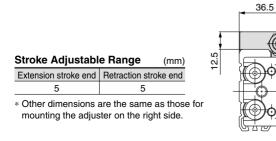
* Other dimensions are the same as those for

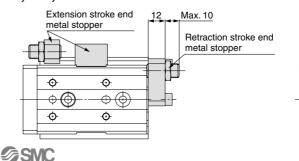

mounting the adjuster on the right side.

if touched by a magnet, etc. This could cause auto switch malfunction. Note 3) Check the procedures and tightening torque when changing the mounting position of the adjuster on site. Otherwise, operation failure, accuracy failure, play and damage can result. For details, refer to the MXQR Operation Manual.



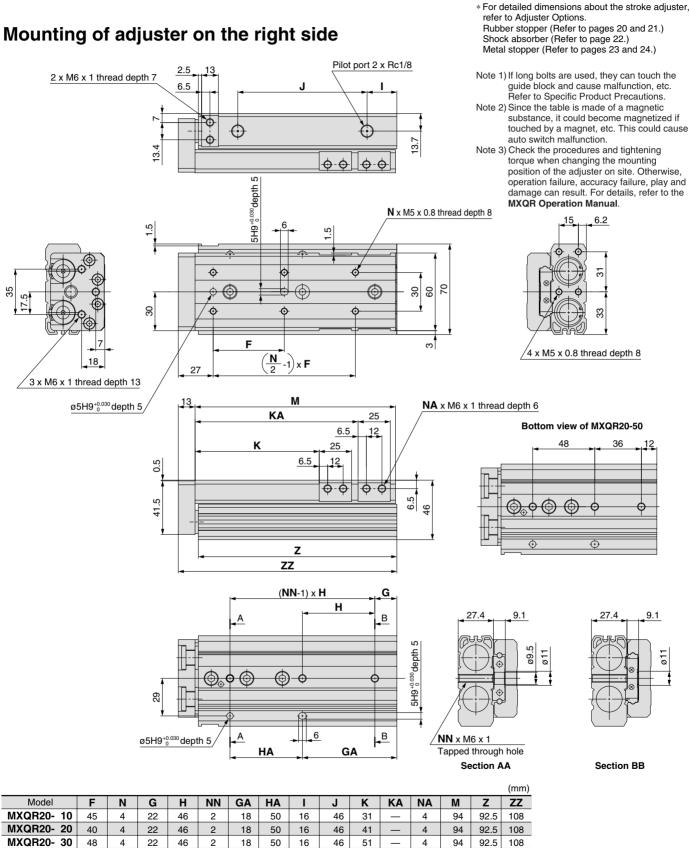
Adjuster Options


With rubber stopper (ø16): MXQR16(L)-□□AS, AT, A



With shock absorber (ø16): MXQR16(L)-□□BS, BT, B, JS, JT, J

With metal stopper (ø16): MXQR16(L)-□□CS, CT, C

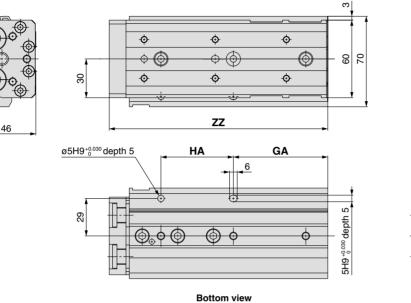


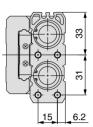
ж.

Dimensions: MXQR 20

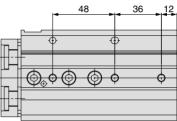
					-		00						•••	02.0	£
MXQR20- 30	48	4	22	46	2	18	50	16	46	51		4	94	92.5	
MXQR20- 40	58	4	22	56	2	22	56	16	56	61	_	4	104	102.5	
MXQR20- 50	42	6	_Note)	_Note)	3	48	48	18	72	71		4	122	120.5	
MXQR20- 75	55	6	17	56	3	73	56	23	100	96	126	8	155	153.5	
MXQR20-100	50	8	18	56	4	74	112	25	155	121	183	8	212	210.5	
MXQR20-125	55	8	37	59	4	96	118	18	190	146	211	8	240	238.5	
MXQR20-150	62	8	56	62	4	118	124	21	215	171	239	8	268	266.5	

Note) Refer to the bottom view of the MXQR20-50.

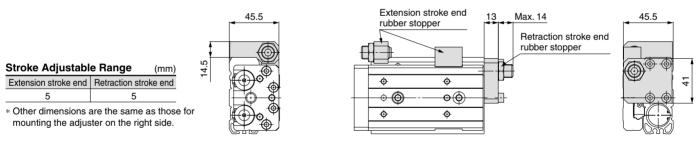

Mounting of adjuster on the left side


Note 1) If long bolts are used, they can touch the guide block and cause malfunction, etc. Refer to Specific Product Precautions. Note 2) Since the table is made of a magnetic substance, it could become magnetized

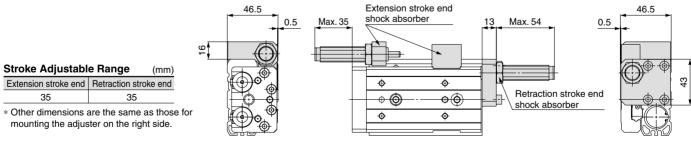
* Other dimensions are the same as those for


mounting the adjuster on the right side.

if touched by a magnet, etc. This could cause auto switch malfunction. Note 3) Check the procedures and tightening torque when changing the mounting position of the adjuster on site. Otherwise, operation failure, accuracy failure, play and damage can result. For details, refer to the **MXQR Operation Manual**.

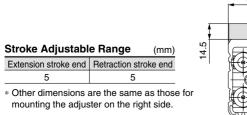


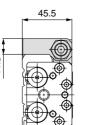
Bottom view of MXQR20-50

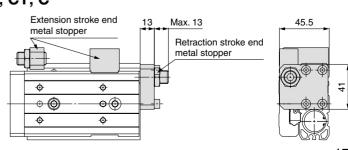


Adjuster Options

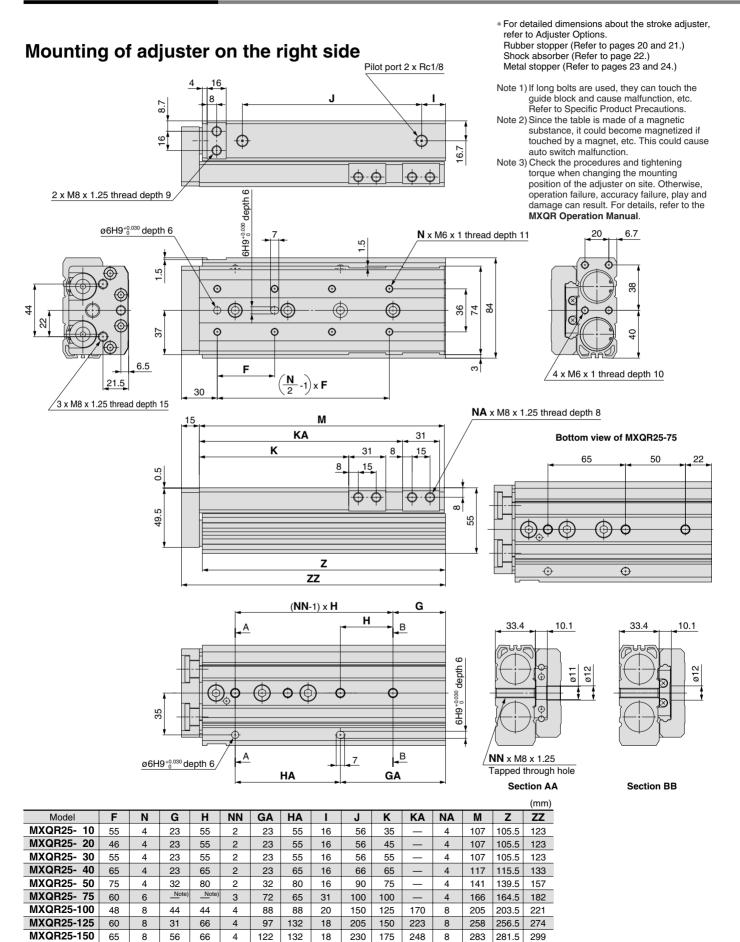
With rubber stopper (ø20): MXQR20(L)-□□AS, AT, A




With shock absorber (ø20): MXQR20(L)-□□BS, BT, B, JS, JT, J

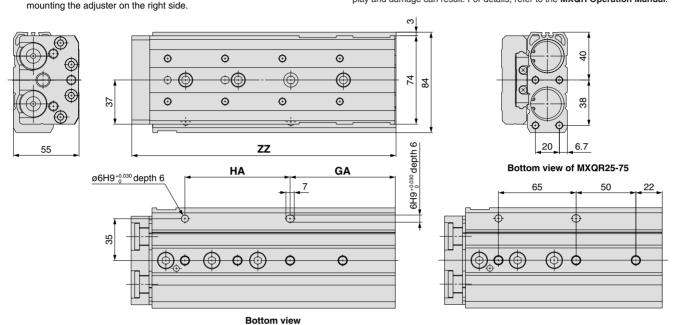


SMC


With metal stopper (ø20): MXQR20(L)-□□CS, CT, C

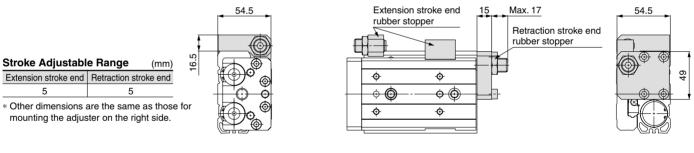
Dimensions: MXQR 25

Note) Refer to the bottom view of the MXQR25-75.

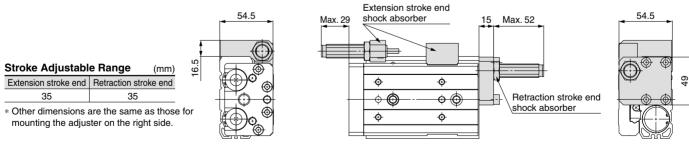


Mounting of adjuster on the left side

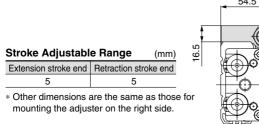
Note 1) If long bolts are used, they can touch the guide block and cause malfunction, etc. Refer to Specific Product Precautions

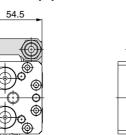

* Other dimensions are the same as those for

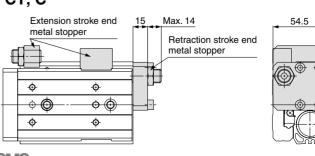
Note 2) Since the table is made of a magnetic substance, it could become magnetized if touched by a magnet, etc. This could cause auto switch malfunction. Note 3) Check the procedures and tightening torque when changing the mounting position of the adjuster on site. Otherwise, operation failure, accuracy failure, play and damage can result. For details, refer to the MXQR Operation Manual.

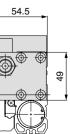


Adjuster Options


With rubber stopper (ø25): MXQR25(L)-□□AS, AT, A




With shock absorber (ø25): MXQR25(L)-□□BS, BT, B, JS, JT, J



With metal stopper (ø25): MXQR25(L)-□□CS, CT, C

Dimensions: Adjuster

Rubber stopper (AS, AT)

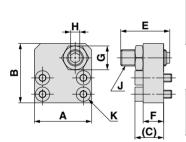
Extension stroke end

Body mounting parts С

Table mounting parts

κ

Applicable	Model	Stroke	Body mounting parts									Та	ble m	ountir	ng parts
size	woder	adjustment range (mm)	Α	В	С	D	Е	F	G	М	P *1)	н	J	K	Q *1)
MXQR 6	MXQR-AS 6	5	6	19	8	7	16.5	7	2.5	M5 x 0.8	M2.5 x 6	12.5	6	8.3	M2.5 x 8
	MXQR-AS 6-X11	15	0	19	0	1	26.5	1	2.5	0.0 X CIVI	IVI2.5 X 0	12.5	0	0.3	IVI2.5 X 8
	MXQR-AS 8	5					19.5								
MXQR 8	MXQR-AS 8-X11	15	7	22	9	7.5	29.5	8	3	M6 x 1	M3 x 8	14.6	7	9.8	M3 x 10
	MXQR-AS 8-X12	25					39.5								
	MXQR-AS12	5					23.5								
MXQR12	MXQR-AS12-X11	15	9.5	29	14	11	33.5	12	4	M8 x 1	M4 x 12	18.5	10.5	12.7	M4 x 12
	MXQR-AS12-X12	25					43.5								
	MXQR-AS16	5					24.5								
MXQR16	MXQR-AS16-X11	15	11	36	17	13.5	34.5	14	5	M10 x 1	M5 x 16	21	13	15	M5 x 16
	MXQR-AS16-X12	25					44.5								
	MXQR-AS20	5					27.5								
MXQR20	MXQR-AS20-X11	15	13	45	20	16	37.5	17	6	M12 x 1.25	M6 x 16	25	16	18	M6 x 16
	MXQR-AS20-X12	25					47.5								
	MXQR-AS25	5					32.5								
MXQR25	MXQR-AS25-X11	15	16	54	22	18	42.5	19	6	M14 x 1.5	M8 x 18	31	17	20	M8 x 18
	MXQR-AS25-X12	25					52.5								


*1) Size of hexagon socket head bolt

*2) Mounting the adjuster on the left side is also available.

For "How to Order", refer to page 3.

The outer dimensions are the same as those for mounting the adjuster on the right side.

Retraction stroke end

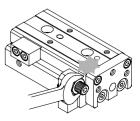
Applicable size	Model	Stroke adjustment range (mm)	A	в	с	Е	F	G	н	J	K *1)
MXQR 6	MXQR-AT 6	5	17.5	19	8.5	16.5	6	7	2.5	M5 x 0.8	M2.5 x 9
	MXQR-AT 6-X11	15	17.5	19	0.5	26.5	0	/	2.5	IVIS X 0.0	1012.5 X 9
	MXQR-AT 8	5				19.5					
MXQR 8	MXQR-AT 8-X11	15	21	22	11	29.5	8	8	3	M6 x 1	M3 x 11
	MXQR-AT 8-X12	25				39.5					
	MXQR-AT12	5				23.5					
MXQR12	MXQR-AT12-X11	15	28	29	14	33.5	10	12	4	M8 x 1	M4 x 14
	MXQR-AT12-X12	25				43.5					
	MXQR-AT16	5				24.5					
MXQR16	MXQR-AT16-X11	15	33.5	35.5	17	34.5	12	14	5	M10 x 1	M5 x 18
	MXQR-AT16-X12	25				44.5					
	MXQR-AT20	5				27.5					
MXQR20	MXQR-AT20-X11	15	41	44.5	18	37.5	13	17	6	M12 x 1.25	M5 x 18
	MXQR-AT20-X12	25				47.5					
	MXQR-AT25	5				32.5					
MXQR25	MXQR-AT25-X11	15	49	53.5	21	42.5	15	19	6	M14 x 1.5	M6 x 22
	MXQR-AT25-X12	25				52.5					
*1) Size of	hexagon socket	head bol	t	*2) N	lounting	the adju	ster on t	he left si	de is als	o available	

For "How to Order", refer to page 3.

The outer dimensions are the same as those for mounting the adjuster on the right side.

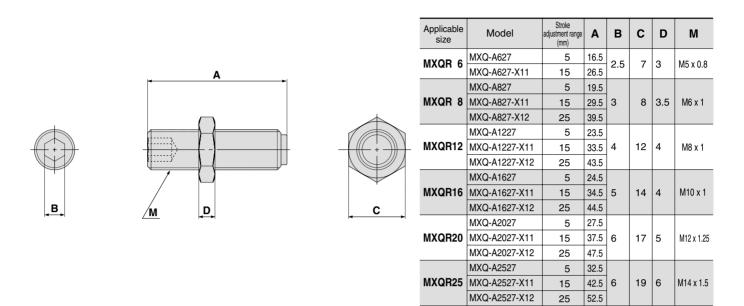
Caution for Adjuster Options

∧ Caution

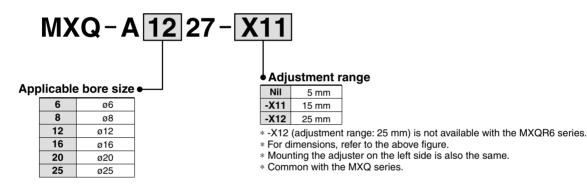

1. Do not replace with the bolt the other than original adjustment bolt.

This could result in looseness and damage due to impact forces, etc.

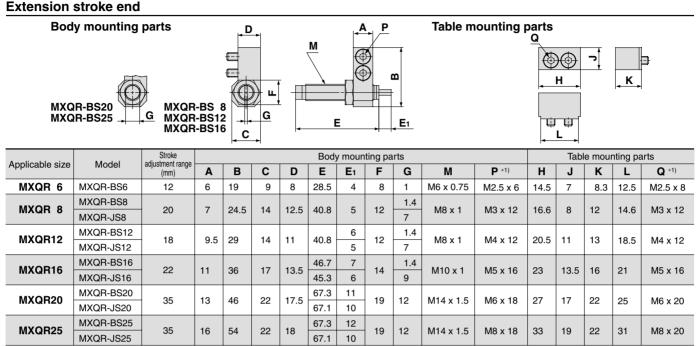
2. Follow the table on the right for tightening torque of lock nuts. Insufficient torque will cause a decrease in the positioning accuracy.


3. When stroke adjuster is adjusted, do not hit the table with the wrench. This could result in looseness.

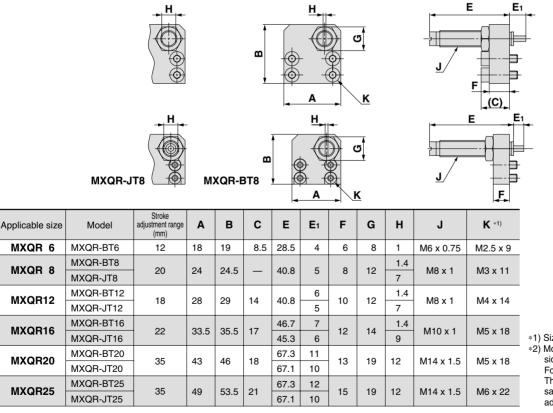
Refer to the MXQR Operation Manual for details.



Dimensions: Adjustment Bolt/Rubber Stopper



How to Order Adjustment Bolt/Rubber Stopper


Dimensions: Adjuster

Shock absorber (BS, JS, BT, JT)

*1) Size of hexagon socket head bolt *2) Mounting the adjuster on the left side is also available. For "How to Order", refer to page 3. The outer dimensions are the same as those for mounting the adjuster on the right side.

Retraction stroke end

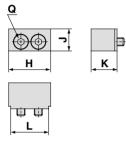
*1) Size of hexagon socket head bolt
*2) Mounting the adjuster on the left side is also available.
For "How to Order", refer to page 3. The outer dimensions are the same as those for mounting the adjuster on the right side.

Caution for Adjuster Options

A Caution

- 1. Follow the table on the right for lock nut tightening torque of shock absorber.
- 2. For the details of handling the shock absorber, refer to the catalog and Operation Manual of the shock absorber.

Model	Tightening torque (N·m)	Model	Tightening torque (N·m)
MXQR 6	0.85	MXQR16	3.14
MXQR 8	1.07	MXQR20	10.0
MXQR12	1.67	MXQR25	10.8


Dimensions: Adjuster

Metal stopper (CS, CT)

Extension stroke end

Body mountin	ig parts
	M m m
	M

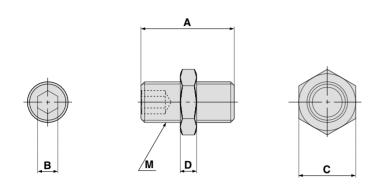
Table mounting parts

Retraction stroke end

Applicable		Stroke				Bod	y mou	Inting	g part	s		Table mounting parts			parts	
size	Model	adjustment range (mm)	Α	В	С	D	Ε	F	G	М	P *1)	Н	J	Κ	L	Q *1)
MXQR 6	MXQR-CS 6	5	6	19	8	7	15.5	7	2.5	M5 x 0.8	M2.5 x 6	14 5	7	8.3	12.5	M2.5 x 8
	MXQR-CS 6-X11	15	0	19	0	'	25.5	1	2.5	1015 X 0.0	WI2.5 X 0	14.5	<i>'</i>	0.3	12.5	112.5 X 0
	MXQR-CS 8	5					18									
MXQR 8	MXQR-CS 8-X11	15	7	22	9	7.5	28	8	3	M6 x 1	M3 x 8	16.6	8	9.8	14.6	M3 x 10
	MXQR-CS 8-X12	25					38									
	MXQR-CS12	5					22									
MXQR12	MXQR-CS12-X11	15	9.5	29	14	11	32	12	4	M8 x 1	M4 x 12	20.5	11	13	18.5	M4 x 12
	MXQR-CS12-X12	25					42									
	MXQR-CS16	5					23									
MXQR16	MXQR-CS16-X11	15	11	36	17	13.5	33	14	5	M10 x 1	M5 x 16	23	13.5	16	21	M5 x 16
	MXQR-CS16-X12	25					43									
	MXQR-CS20	5					27									
MXQR20	MXQR-CS20-X11	15	13	45	20	16	37	17	6	M12 x 1.25	M6 x 16	27	17	22	25	M6 x 20
	MXQR-CS20-X12	25					47									
	MXQR-CS25	5					30									
MXQR25	MXQR-CS25-X11	15	16	54	22	2 18	40	19	9 6	M14 x 1.5	1.5 M8 x 18	33	19	22	31	M8 x 20
	MXQR-CS25-X12	25					50									

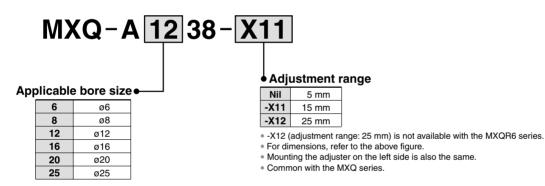
*1) Size of hexagon socket head bolt
 *2) Mounting the adjuster on the left side is also available. For "How to Order", refer to page 3. The outer dimensions are the same as those for mounting the adjuster on the right side.

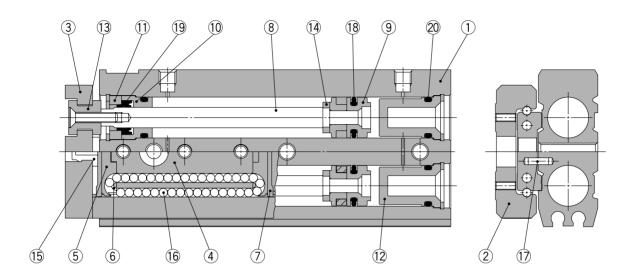
Е ш


Applicable size	Model	adjustment range (mm)	Α	В	С	E	F	G	н	J	K *1)
MXQR 6	MXQR-CT 6	5	17.5	19	8.5	15.5	6	7	2.5	M5 x 0.8	M2.5 x 9
	MXQR-CT 6-X11	15	17.5	19	8.5	25.5	0	/	2.5	1VI5 X U.8	IVI2.5 X 9
	MXQR-CT 8	5				18					
MXQR 8	MXQR-CT 8-X11	15	21	22	11	28	8	8	3	M6 x 1	M3 x 11
	MXQR-CT 8-X12	25				38					
	MXQR-CT12	5				22					
MXQR12	MXQR-CT12-X11	15	28	29	14	32	10	12	4	M8 x 1	M4 x 14
	MXQR-CT12-X12	25				42					
	MXQR-CT16	5				23					
MXQR16	MXQR-CT16-X11	15	33.5	35.5	17	33	12	14	5	M10 x 1	M5 x 18
	MXQR-CT16-X12	25				43					
	MXQR-CT20	5				27					
MXQR20	MXQR-CT20-X11	15	41	44.5	18	37	13	17	6	M12 x 1.25	M5 x 18
	MXQR-CT20-X12	25				47					
	MXQR-CT25	5				30					
MXQR25	MXQR-CT25-X11	15	49	53.5	21	40	15	19	6	M14 x 1.5	M6 x 22
	MXQR-CT25-X12	25				50					

*1) Size of hexagon socket head bolt
*2) Mounting the adjuster on the left side is also available. For "How to Order", refer to page 3. The outer dimensions are the same as those for

mounting the adjuster on the right side.


SMC

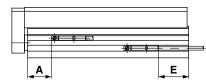

Dimensions: Adjustment Bolt/Metal Stopper

Applicable size	Model	Stroke adjustment range (mm)	A	в	с	D	м
MXQR 6	MXQ-A638	5	15.5	2.5	7	3	M5 x 0.8
	MXQ-A638-X11	15	25.5	2.5		3	0.0 X CIVI
	MXQ-A838	5	18				
MXQR 8	MXQ-A838-X11	15	28	3	8	3.5	M6 x 1
	MXQ-A838-X12	25	38]			
	MXQ-A1238	5	22	4			
MXQR12	MXQ-A1238-X11	15	32	4	12	4	M8 x 1
	MXQ-A1238-X12	25	42	-			
	MXQ-A1638	5	23				
MXQR16	MXQ-A1638-X11	15	33	5	14	4	M10 x 1
	MXQ-A1638-X12	25	43]			
	MXQ-A2038	5	27				
MXQR20	MXQ-A2038-X11	15	37	6	17	5	M12 x 1.25
	MXQ-A2038-X12	25	47	1			
	MXQ-A2538	5	30				
MXQR25	MXQ-A2538-X11	15	40	6	19	6	M14 x 1.5
	MXQ-A2538-X12	25	50	1			

How to Order Adjustment Bolt/Metal Stopper

Component Parts

No.	Description	Material	Note
1	Body	Aluminum alloy	Hard anodized
2	Table	Stainless steel	Heat treated
3	End plate	Aluminum alloy	Hard anodized
4	Guide block	Stainless steel	Heat treated
5	Cover	Synthetic resin	
6	Return guide	Synthetic resin	
7	Scraper	Stainless steel, NBR	
8	Rod	Stainless steel	
9	Piston assembly	_	With magnet on single side
10	Rod cover	Aluminum alloy	Anodized
11	Seal support	Brass	Electroless nickel plated
12	Head cap	Synthetic resin	
13	Floating bushing	Stainless steel	
14	Rod bumper	Polyurethane	
15	End bumper	Polyurethane	
16	Steel ball	High carbon chrome bearing steel	
17	Spring pin	Stainless steel	
18	Piston seal	NBR	
19	Rod seal	NBR	
20	O-ring	NBR	


Replacement Parts/Seal Kit

	1								
Bore size (mm)	Kit no.	Contents							
6	MXQ 6-PS								
8	MXQ 8-PS								
12	MXQ12-PS	Set of nos. above 18 to 20 (1 set)							
16	MXQ16-PS								
20	MXQ20-PS								
25 MXQ25-PS									
Seal kit includes these seals to provide as a set. Order the seal kit, based on each bore size.									

Replacement Parts/Grease Pack

Applied part	Grease pack part no.
Guide unit	GR-S-010 (10 g) GR-S-020 (20 g)
Cylinder unit	GR-L-005 (5 g) GR-L-010 (10 g)

Auto Switch Proper Mounting Position (Detection at Stroke End)

Solid State Auto Switch: D-M9B, D-M9N, D-M9P, D-M9BW, D-M9NW, D-M9PW, D-M9DA

						В									Е								E ([D-M9	□A)			
Model	Α				5	Stroke	ə					Stroke							Stroke									
		10	20	30	40	50	75	100	125	150	10	20	30	40	50	75	100	125	150	10	20	30	40	50	75	100	125	150
MXQR6	10	9.5	9.5	9.5	17.5	17.5	-	—	_	—	-0.5	-0.5	-0.5	7.5	7.5	—	-	-	_	-2.5	-2.5	-2.5	5.5	5.5	_	-	-	-
MXQR8	11.5	12	12	16	20	35	36	—	_	—	2	2	6	10	25	26	_	-	_	0	0	4	8	23	24	-	—	—
MXQR12	15.5	28.5	18.5	18.5	25.5	25.5	44.5	44.5	—	—	18.5	8.5	8.5	15.5	15.5	34.5	34.5	—	—	16.5	6.5	6.5	13.5	13.5	32.5	32.5	—	-
MXQR16	20.5	34.5	24.5	24.5	24.5	30.5	37.5	55.5	55.5	—	24.5	14.5	14.5	14.5	20.5	27.5	45.5	45.5	—	22.5	12.5	12.5	12.5	18.5	25.5	43.5	43.5	-
MXQR20	23	47.5	37.5	27.5	37.5	35.5	43.5	75.5	78.5	81.5	37.5	27.5	17.5	27.5	25.5	33.5	65.5	68.5	73.5	35.5	25.5	15.5	25.5	23.5	31.5	63.5	66.5	71.5
MXQR25	27	56.5	46.5	36.5	36.5	50.5	50.5	64.5	92.5	92.5	46.5	36.5	26.5	26.5	40.5	40.5	54.5	82.5	73.5	44.5	34.5	24.5	24.5	38.5	38.5	52.5	80.5	71.5

Solid State Auto Switch: D-M9BV, D-M9NV, D-M9PV, D-M9BWV, D-M9NWV, D-M9PWV, D-M9DAV

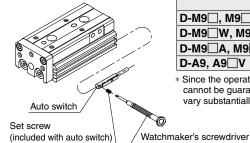
						В									Е								E (D	-M9□	∃AV)			
Model	Α		Stroke				Stroke								Stroke													
		10	20	30	40	50	75	100	125	150	10	20	30	40	50	75	100	125	150	10	20	30	40	50	75	100	125	150
MXQR6	10	9.5	9.5	9.5	17.5	17.5	_	_	—	—	1.5	1.5	1.5	9.5	9.5	—	-	-	-	-0.5	-0.5	-0.5	7.5	7.5	_	—	—	—
MXQR8	11.5	12	12	16	20	35	36	_	_	—	4	4	8	12	27	28	_	-	_	2	2	6	10	25	26	_	_	-
MXQR12	15.5	28.5	18.5	18.5	25.5	25.5	44.5	44.5	_	_	20.5	10.5	10.5	17.5	17.5	36.5	36.5	-	-	18.5	8.5	8.5	15.5	15.5	34.5	34.5	_	—
MXQR16	20.5	34.5	24.5	24.5	24.5	30.5	37.5	55.5	55.5	—	26.5	16.5	16.5	16.5	22.5	29.5	47.5	47.5	_	24.5	14.5	14.5	14.5	20.5	27.5	45.5	45.5	—
MXQR20	23	47.5	37.5	27.5	37.5	35.5	43.5	75.5	78.5	81.5	39.5	29.5	19.5	19.5	27.5	35.5	67.5	70.5	75.5	37.5	27.5	17.5	17.5	25.5	33.5	65.5	68.5	73.5
MXQR25	27	56.5	46.5	36.5	36.5	50.5	50.5	64.5	92.5	92.5	48.5	38.5	28.5	28.5	42.5	42.5	56.5	84.5	75.5	46.5	36.5	26.5	26.5	40.5	40.5	54.5	82.5	73.5

Reed Auto Switch: D-A90, D-A93, D-A96, D-A90V, D-A93V, D-A96V

						В									Е						
Model	Α				5	Stroke	Э				Stroke										
		10	20	30	40	50	75	100	125	150	10	20	30	40	50	75	100	125	150		
MXQR6	6	5.5	5.5	5.5	13.5	13.5	-	_	—	-	3.5 (1)	3.5 (1)	3.5 (1)	11.5 (9)	11.5 (9)	-	-	-	_		
MXQR8	7.5	8	8	12	16	31	32	—	—	—	6 (3.5)	6 (3.5)	10 (7.5)	14 (11.5)	29 (26.5)	30 (27.5)	—	—	—		
MXQR12	11.5	24.5	14.5	14.5	21.5	21.5	40.5	40.5	-	_	22.5 (20)	12.5 (10)	12.5 (10)	19.5 (17)	19.5 (17)	38.5 (36)	38.5 (36)	_	—		
MXQR16	16.5	30.5	20.5	20.5	20.5	26.5	33.5	51.5	51.5	—	28.5 (26)	18.5 (16)	18.5 (16)	18.5 (16)	24.5 (22)	31.5 (29)	49.5 (47)	49.5 (47)	—		
MXQR20	19	43.5	33.5	23.5	33.5	31.5	39.5	71.5	74.5	77.5	41.5 (39)	31.5 (29)	21.5 (19)	31.5 (29)	29.5 (27)	37.5 (35)	69.5 (67)	72.5 (70)	77.5 (75)		
MXQR25	22	52.5	42.5	32.5	32.5	46.5	46.5	60.5	88.5	88.5	50.5 (48)	40.5 (38)	30.5 (28)	30.5 (28)	44.5 (42)	44.5 (42)	58.5 (56)	86.5 (84)	77.5 (75)		

Note) Adjust the auto switch after confirming the operating conditions in the actual setting. (): D-A93

Auto Switch Mounting


A Caution

Auto switch mounting tool

 When tightening the set screw (included with auto switch), use a watchmaker's screwdriver with a handle about 5 to 6 mm in diameter.

Tightening torque

Tightening Torque of Auto Switch Mounting Screw (N·m)								
Auto switch model	Tightening torque							
D-A9[](V)	0.10 to 0.20							
D-M9⊡(V) D-M9⊡W(V)	0.05 to 0.15							
D-M9□A(V)	0.05 to 0.10							

Operating Range

Operating Range

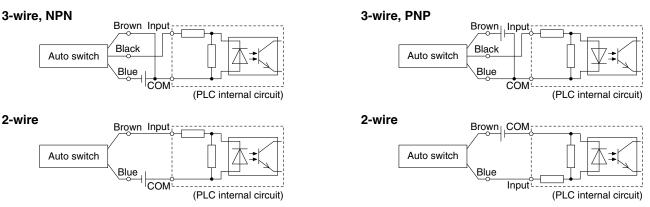
Auto switch model		Ap	oplicable	bore si	ze	
Auto switch model	6	8	12	16	20	25
D-M9_, M9_V						
D-M9_W, M9_WV	3	3	3.5	4.5	4.5	5.5
D-M9 A, M9 AV						
D-A9, A9	4.5	5	6	7	8	9

(mm)

I

I

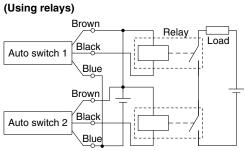
 \ast Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approximately $\pm 30\%$ dispersion). It may vary substantially depending on the ambient environment.


Other than the applicable auto switches listed in "How to Order", the following auto switches can be mounted. * Normally closed (NC = b contact) solid state auto switches (D-F9G/F9H) and solid state auto switch (D-F8) are also available. Refer to Best Pneumatics No. 3 for details.

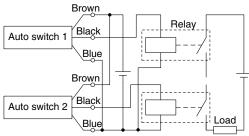
Prior to Use Auto Switch Connection and Example

Source Input Specifications

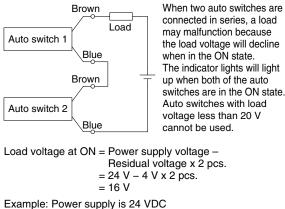
Sink Input Specifications



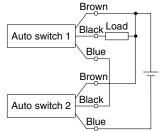
Connect according to the applicable PLC input specifications, as the connection method will vary depending on the PLC input specifications.

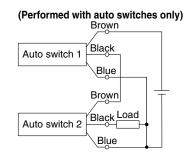

Example of AND (Series) and OR (Parallel) Connection

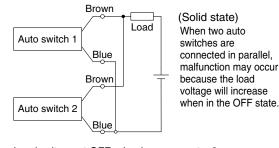
* When using solid state auto switches, ensure the application is set up so the signals for the first 50 ms are invalid.


3-wire AND connection for NPN output

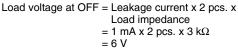
3-wire AND connection for PNP output (Using relays)



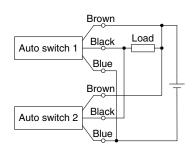

2-wire AND connection


Example: Power supply is 24 VDC Internal voltage drop in auto switch is 4 V.

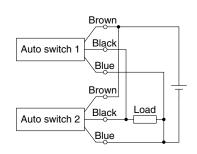
(Performed with auto switches only)



2-wire OR connection

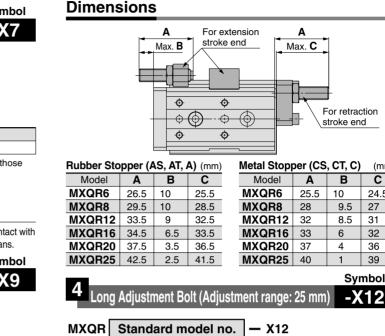


SMC



Example: Load impedance is 3 k Ω . Leakage current from auto switch is 1 mA.

3-wire OR connection for NPN output


3-wire OR connection for PNP output

(Reed)

Because there is no current leakage, the load voltage will not increase when turned OFF. However, depending on the number of auto switches in the ON state, the indicator lights may sometimes grow dim or not light up, due to the dispersion and reduction of the current flowing to the auto switches.

Made to Order Individual Specifications: Air Slide Table/Reversible Type Please contact SMC for Made to detailed dimensions, specifications, Order Series MXQR and lead times.

Long adjustment bolt

(mm)

С

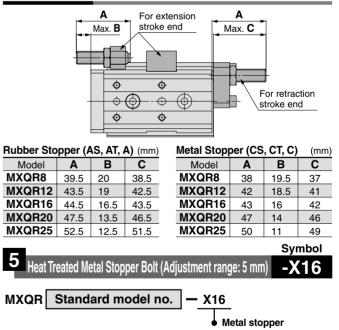
24.5

27

31

32

36


39

(Adjustment range: 25 mm)

*-X12 is not available with the MXQR6. *-X12 is not available with those with a shock absorber (JS, JT, J, BS, BT, B).

The stroke adjustment range was extended from 5 mm to 25 mm with a long adjustment bolt.

Dimensions

Heat treated chrome-molybdenum steel (SCM435) stroke adjusting thread is used to reduce wearing of metal stopper.

Specifications

opecifications	
Туре	Heat treated metal stopper bolt
Bore size (mm)	6, 8, 12, 16, 20, 25
Piston speed	50 to 200 mm/s
Cushion	None
Stroke adjustment range	0 to 5 mm
	•

* Specifications and dimensions other than the above are the same as those for mounting the adjuster on the right side.

Symbol

MXQR Standard model no.

PTFE grease

¥7

PTFE grease is used for all parts that grease is applied.

Specifications

Туре	PTFE grease					
Bore size (mm) 6, 8, 12, 16, 20, 25						

* Specifications and dimensions other than the above are the same as those for mounting the adjuster on the right side.

Marning Warning **Precautions**

Be aware that smoking cigarettes, etc. after your hands have come into contact with the grease used in this cylinder can create a gas that is hazardous to humans.

Sy	ymbol
or Food Processing Equipment	-X9
ndard model no. – X9	
	Λ3

Grease for food processing equipment

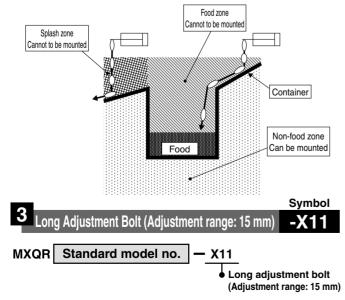
Grease for food processing equipment is used for all parts that grease is applied.

Specifications

Туре	Grease for food processing machines (NSF-H1 certified)/ Aluminum complex soap base grease
Bore size (mm)	6, 8, 12, 16, 20, 25

* Specifications and dimensions other than the above are the same as those for mounting the adjuster on the right side.

A Caution


Do not use this cylinder in a food-related environment. <Cannot be mounted>

Food zone Food may directly contact with this cylinder, and is treated as food products.

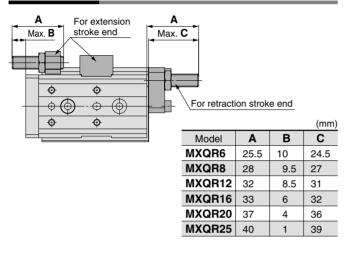
Splash zone ·Food may directly contact with this cylinder, but is not treated as food products.

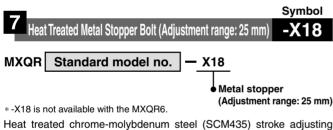
<Can be mounted>

Non-food zone This cylinder do not directly contact food.

*-X11 is not available with those with a shock absorber (JS, JT, J, BS, BT, B).

The stroke adjustment range was extended from 5 mm to 15 mm with a long adjustment bolt.


Made to Order Individual Specifications: Air Slide Table/Reversible Type Please contact SMC for Made to detailed dimensions, specifications, Series MXQR and lead times.



Metal stopper (Adjustment range: 15 mm)

Heat treated chrome-molybdenum steel (SCM435) stroke adjusting thread is used to reduce wearing of metal stopper. The stroke adjustment range was extended from 5 mm to 15 mm with a long adjustment bolt.

Dimensions



thread is used to reduce wearing of metal stopper. The stroke adjustment range was extended from 5 mm to 25 mm with

a long adjustment bolt.

Dimensions

MXQR Standard model no. - X33

Without built-in auto switch magnet

This product does not have a magnet for an auto switch. It is suitable for applications where magnetic force is not acceptable.

Specifications

Туре	Without built-in auto switch magnet
Bore size (mm)	6, 8, 12, 16, 20, 25
Auto switch	Not mountable

* Specifications and dimensions other than the above are the same as those for mounting the adjuster on the right side.

Fluororubber seal

Change the materials for the piston seal, rod seal, O-rings and scrapers (rubber lined parts) to fluororubber.

Specifications

Туре	Fluororubber seal
Bore size (mm)	6, 8, 12, 16, 20, 25
Seal material	Fluororubber

* Specifications and dimensions other than the above are the same as those for mounting the adjuster on the right side.

10	Symbol
10 Anti-corrosive Guide Unit	-X42
MXQR Standard model no. – X42	

Anti-corrosive guide unit

Martensitic stainless steel is used for table and guide block. Use this treatment if more effective anti-corrosiveness is necessary. Table and guide block are given anti-corrosive treatment.

Specifications

Туре	Anti-corrosive guide unit	
Bore size (mm)	6, 8, 12, 16, 20, 25	
Surface treatment	Surface treatment Special anti-corrosive treatment *2	

Specifications and dimensions other than the above are the same as those for mounting the adjuster on the right side.

*2 Special anti-corrosive treatment makes the table and the guide block black.

	Symbol
EPDM Seal	-X45

Standard model no. MXQR

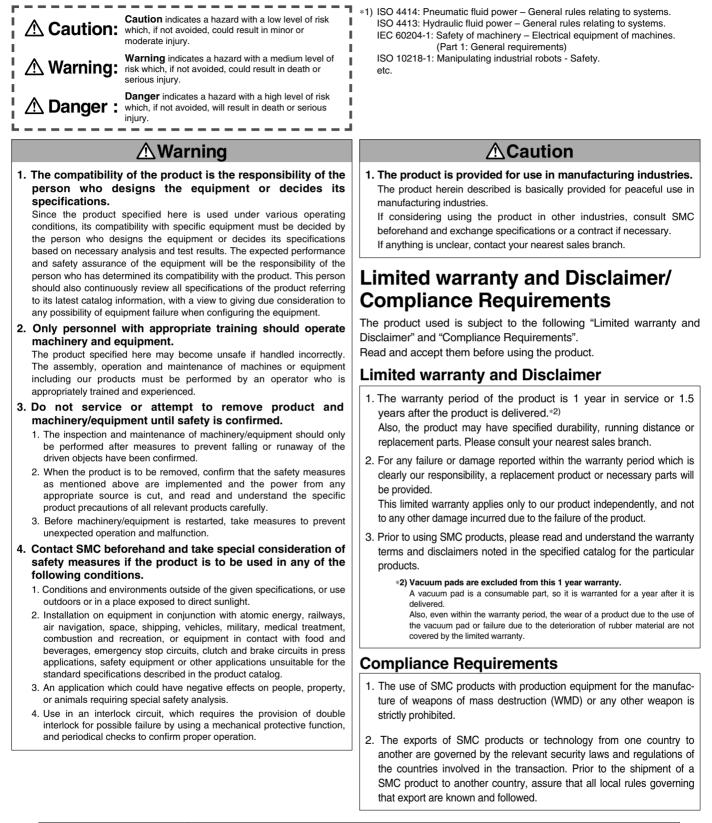
- X45

Change the materials for the piston seal, rod seal, O-rings and scrapers (rubber lined parts) to EPDM.

Specifications

Туре	EPDM seal
Bore size (mm)	6, 8, 12, 16, 20, 25
Seal material	EPDM
Grease	PTFE grease

* Specifications and dimensions other than the above are the same as those for mounting the adjuster on the right side.


\land Warning Precautions

Be aware that smoking cigarettes, etc. after your hands have come into contact with the grease used in this cylinder can create a gas that is hazardous to humans.

▲ Safety Instructions

These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "**Caution**," "**Warning**" or "**Danger**." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)^{*1}, and other safety regulations.

A Safety Instructions Be sure to read "Handling Precautions for SMC Products" (M-E03-3) before using.