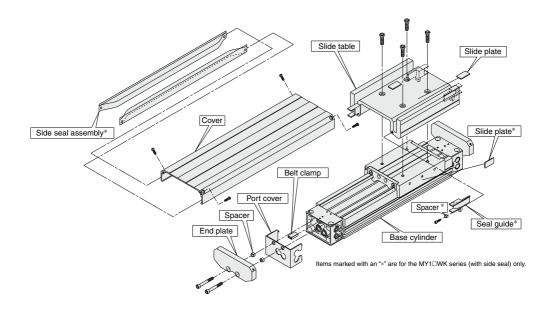
Mechanically Jointed Rodless Cylinder with Protective Cover

MY1□W Series

Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63

Protective cover offers excellent dust and water resistance


Series	Guide type	Cover				size		Option		
Series	Guide type	Cover	16	20	25	32	40	50	63	Орион
MY1MW	Slide bearing	With protective cover								
MY1MWK	guide	With protective cover With side seal								Centralized piping Stroke adjusting unit
MY1CW	Cam follower	With protective cover				•				Side support
MY1CWK	guide	With protective cover With side seal	0	0	0	0	0			

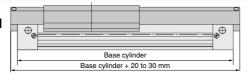
D-□

MY1□W Series

Dustproof and water resistant features are improved for using in locations where the cylinder is exposed to powder dust and water drop or splash.

Side seals provide greater lateral dustproof

and water resistance.


The cover in no way interferes with the installation of base cylinder option.

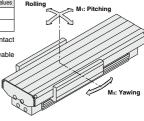
Cover units and side seal units can be installed on the already current MY1M/MY1C series.

Protective cover only minimally adds to overall length.

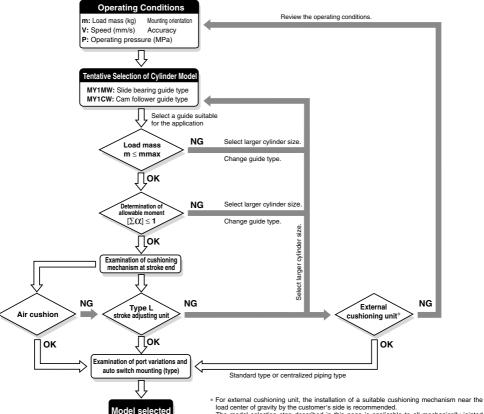
Water-resistant solid state switches can be mounted.

MY1□W Series **Model Selection 1**

This section illustrates the standard model selection procedure to help you choose the most suitable cylinders from the MY1MW/MY1CW series for your application needs.


Standards for Tentative Model Selection

Cylinder model	Guide type	Standards for guide selection	Graphs for related allowable values
MY1MW	Slide bearing guide type	Slide table (2) accuracy approx. ±0.12 mm	P.1344
MY1CW	Cam follower guide type	Slide table (2) accuracy approx. ±0.05 mm	P.1345


Note 1) These accuracy values for each guide should be used only as a guide during selection. Please contact SMC when guaranteed accuracy for MY1CW is required.

Note 2) "Accuracy" here means displacement of the slide table (at stroke end) when 50% of the allowable

moment shown in the catalog is applied. (reference value).

Selection Flow Chart

load center of gravity by the customer's side is recommended. The model selection step described in this page is applicable to all mechanically jointed

rodless cylinders. Refer to the separate operation manual for further details. If you have any questions, please contact SMC.

D-□ -X□ Technical

MY1B

MY1H MY1B

MY1M

MY1C MY1H

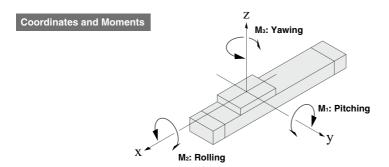
MY1

MY1

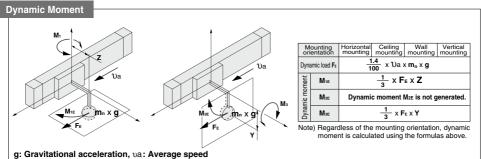
 $\square W$

MY2C

MY2


H/HT MY3A


MY3B MY3M


нт

Types of Moment Applied to Rodless Cylinders

Multiple moments may be generated depending on the mounting orientation, load, and position of the center of gravity.

Maximum Allowable Moment/Maximum Load Mass

Mandal	Bore size	Maximum a	allowable mo	ment (N·m)	Maxim	um load ma	ass (kg)
Model	(mm)	M1	M2	Мз	m1	m2	тз
	16	6.0	3.0	1.0	18	7	2.1
	20	10	5.2	1.7	26	10.4	3
	25	15	9.0	2.4	38	15	4.5
MY1MW	32	30	15	5.0	57	23	6.6
	40	59	24	8.0	84	33	10
	50	115	38	15	120	48	14
	63	140	60	19	180	72	21
	16	6.0	3.0	2.0	18	7	2.1
	20	10	5.0	3.0	25	10	3
	25	15	8.5	5.0	35	14	4.2
MY1CW	32	30	14	10	49	21	6
	40	60	23	20	68	30	8.2
	50	115	35	35	93	42	11.5
	63	150	50	50	130	60	16

The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum allowable load for a particular piston speed.

Maximum Allowable Moment

Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions

> MY1B MY1H

MY1B

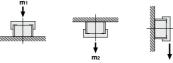
MY1M

MY1C

MY1H MY1

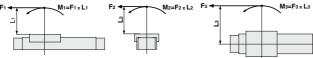
ΗТ

MY2C MY2


H/HT MY3A MY3B

MY3M

Maximum Load Mass


Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.

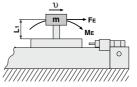
Load mass (kg)

· The cylinder should be mounted in m1 orientation if maximum dustproofing is required.

Moment (N·m)

<Calculation of guide load factor>

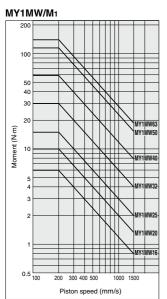
- 1. Three factors must be considered when computing calculations for selection: (1) Maximum load mass, (2) Static moment, (3) Dynamic moment (at the time of impact with stopper).
 - * To evaluate, use ${\mathfrak V}{\mathfrak a}$ (average speed) for (1) and (2), and ${\mathfrak V}$ (collision speed ${\mathfrak V}$ = 1.4 ${\mathfrak V}{\mathfrak a}$) for (3). Calculate mmax for (1) from the maximum allowable load graph (m1, m2, and m3), and Mmax for (2) and (3) from the maximum allowable moment graph (M1, M2, and M3).

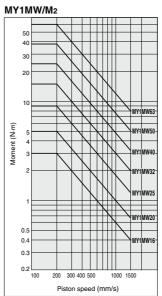

- Note 1) Moment caused by the load, etc., with cylinder in resting condition.
- Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper).
- Note 3) Depending on the shape of the workpiece, multiple moments may occur. When this happens, the sum of the load factors ($\Sigma \alpha$) is the total of all such moments.
- 2. Reference formula [Dynamic moment at impact]
- Use the following formulae to calculate dynamic moment when taking stopper impact into consideration. Li:
- m: Load mass (kg) Load (N)
- υ: Collision speed (mm/s) Distance to the load's center of gravity (m)
- FE: Load equivalent to impact (at impact with stopper) (N)
 - ME: Dynamic moment (N-m) Gravitational acceleration (9.8 m/s2) q:
- Va: Average speed (mm/s) M: Static moment (N-m)

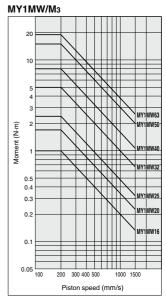
$$\begin{split} & \upsilon = 1.4 \upsilon a \; (mm/s) \qquad F_E = \frac{1.4}{100} \upsilon a \cdot g \cdot m^{Note \; 4)} \\ & \mathrel{\therefore} M_E = \frac{1}{3} \overset{Note \; 5)}{F_E \cdot L_1} = 0.05 \upsilon a \; m \; L_1 \; (N \cdot m) \end{split}$$

Note 4) $\frac{1.4}{100}$ Va is a dimensionless coefficient for calculating impact force.

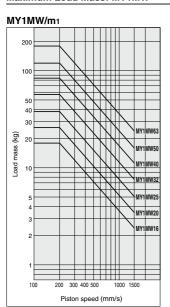
Note 5) Average load coefficient (= $\frac{1}{3}$): This coefficient is for averaging the maximum load moment at the time of stopper impact according to service life calculations.

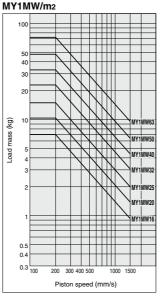

3. For detailed selection procedures, refer to pages 1348 and 1349

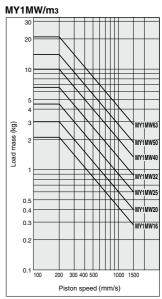


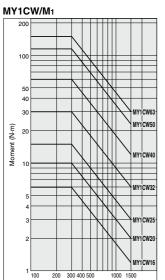

MY1□W Series

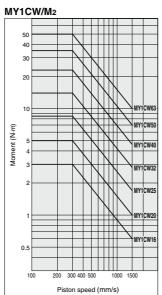
Maximum Allowable Moment/Maximum Load Mass

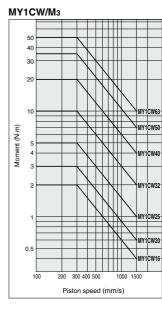

Maximum Allowable Moment: MY1MW






Maximum Load Mass: MY1MW





Maximum Allowable Moment: MY1CW

MY1B

MY1H

MY1B

MY1M

MY1C

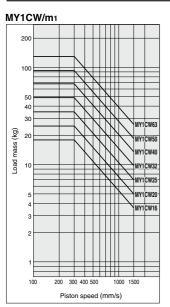
MY1H

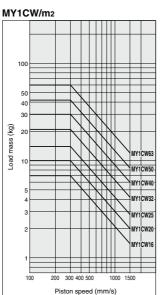
MY1

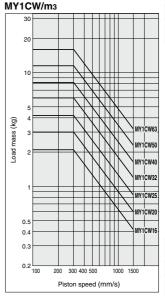
нт

MY1 □W

MY2C


MY2 H/HT


MY3A MY3B


MY3M

Maximum Load Mass: MY1CW

Piston speed (mm/s)

1345

D-□

-X□

Technical Data

SMC

Cushion Capacity

Cushion Selection

<Air cushion>

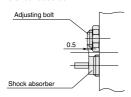
Air cushions are a standard feature on mechanically jointed rodless cylinders.

The air cushion mechanism is incorporated to prevent excessive impact of the piston at the stroke end during high speed operation. The purpose of air cushion, thus, is not to decelerate the piston near the stroke end.

The ranges of load and speed that air cushions can absorb are within the air cushion limit lines shown in the graphs.

<Stroke adjusting unit with shock absorber>

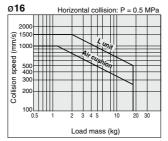
Use this unit when operating with a load or speed exceeding the air cushion limit line, or when cushioning is required outside of the effective air cushion stroke range due to stroke adjustment.

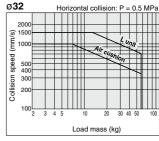

L unit

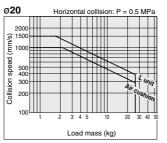
Use this unit when the cylinder stroke is outside of the effective air cushion range even if the load and speed are within the air cushion limit line, or when the cylinder is operated in a load and speed range above the air cushion limit line or below the L unit limit line.

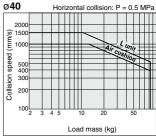
⚠ Caution

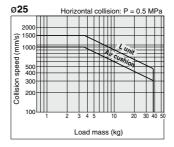
 Refer to the figure below when using the adjusting bolt to perform stroke adjustment.

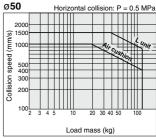

When the effective stroke of the shock absorber decreases as a result of stroke adjustment, the absorption capacity decreases dramatically. Secure the adjusting bolt at the position where it protrudes approximately 0.5 mm from the shock absorber.

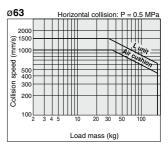



Do not use a shock absorber together with air cushion.


Air Cushion Stroke (mm) Bore size (mm) Cushion stroke 16 12 20 15 25 15 32 19 40 24 50 30 63 37


Absorption Capacity of Air Cushion and Stroke Adjusting Units





Tightening Torque for Stroke Adjusting Unit Holding Bolts (N·m)

		()			
Bore size (mm)	Unit	Tightening torque			
16	Α	0.7			
10	L	0.7			
20	Α	1.8			
20	L	1.0			
25	Α	3.5			
25	L	3.5			
32	Α	5.8			
32	L	5.6			
40	Α	13.8			
40	L	13.0			
50	Α	13.8			
30	L	13.0			
63	Α	27.5			
	L	27.5			

Tightening Torque for Stroke Adjusting Unit Lock Plate Holding Bolts (N-m)

Bore size (mm)	Unit	Tightening torque				
25	L	1.2				
32	L	3.3				
40	L	3.3				

Calculation of Absorbed Energy for Stroke Adjusting Unit with Shock Absorber (N-m)

	Horizontal collision	Vertical (Downward)	Vertical (Upward)		
Type of impact	<u>m</u> s	D H S	<u>s</u> <u>E</u> <u>-2</u> -2		
Kinetic energy E ₁		$\frac{1}{2} \ m {\cdot} {\upsilon}^2$			
Thrust energy E ₂	F⋅s	F·s + m·g·s	F-s – m-g-s		
Absorbed energy E		E1 + E2			

Symbol

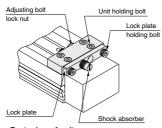
Speed of impact object (m/s)
 m: Mass of impact object (kg)

F: Cylinder thrust (N)

g: Gravitational acceleration (9.8 m/s²)

: Shock absorber stroke (m)

Note) The speed of the impact object is measured at the moment of impact with the shock absorber.


⚠Precautions

Be sure to read this before handling the products.Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Use caution not to get your hands caught in the unit.

 When using a product with stroke adjusting unit, the space between the slide table (slider) and the stroke adjusting unit becomes narrow at the stroke end, causing a danger of hands getting caught. When operating with the protective cover removed (in the case of installation, etc.), be careful not to get your hands caught in the unit.

<Fastening of unit>

The unit can be secured by evenly tightening the four unit holding bolts.

↑ Caution

Do not operate with the stroke adjusting unit fixed in an intermediate position.

When the stroke adjusting unit is fixed in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In such cases, the use of the adjusting bolt mounting brackets, available per made-to-order specifications -X416 and -X417, is recommended.

For other lengths, please consult with SMC (Refer to the "Tightening Torque for Stroke Adjusting Unit Holding Bolts" values in the chart at the upper left corner of this page.)

<Stroke adjustment with adjusting bolt>

Loosen the adjusting bolt lock nut, and adjust the stroke from the lock plate side using a hexagon wrench. Retighten the lock nut.

<Stroke adjustment with shock absorber>

Loosen the two lock plate holding bolts, turn the shock absorber and adjust the stroke. Then, uniformly tighten the lock plate holding bolts to secure the shock absorber.

Avoid excessive tightening of the holding bolts (except for ø16, ø20, ø50, and ø63). (Refer to "Tightening Torque for Stroke Adjusting Unit Lock Plate Holding Bolts" above left.)

Note

Although the lock plate may slightly bend due to tightening of the lock plate holding bolt, this does not a affect the shock absorber and locking function.

MY1B MY1M

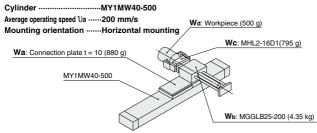
MY1C

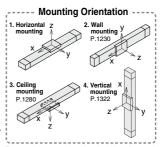
MY1H

MY1 HT MY1

MY2C MY2 H/HT MY3A

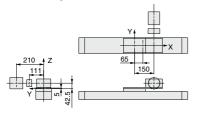
MY3B MY3M




MY1□W Series Model Selection 2

This section illustrates the standard model selection procedure using the actual operating conditions as one of the examples.

Calculation of Guide Load Factor


1 Operating Conditions

For actual examples of calculation for each orientation, refer to the pages above.

2 Load Blocking

Mass and Center of Gravity for Each Workpiece

Workpiece no.	Mass	С	enter of gravi	ty		
Wn Wn	m _n	X-axis Xn	Y-axis Yn	Z-axis Zn		
Wa	0.88 kg	65 mm	0 mm	5 mm		
Wb	4.35 kg	150 mm	0 mm	42.5 mm		
Wc	0.795 kg	150 mm	111 mm	42.5 mm		
Wd	0. 5kg	150 mm	210 mm	42.5 mm		

n = a, b, c, d

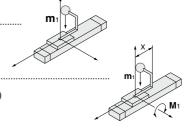
3 Composite Center of Gravity Calculation

$$\begin{array}{l} \textbf{m}_1 &= \Sigma \textbf{m} \textbf{n} \\ &= 0.88 + 4.35 + 0.795 + 0.5 = \textbf{6.525 kg} \\ \textbf{X} &= \frac{1}{\textbf{m}_1} \times \Sigma (\textbf{m}_1 \times \textbf{x}_1) \\ &= \frac{1}{6.525} \left(0.88 \times 65 + 4.35 \times 150 + 0.795 \times 150 + 0.5 \times 150 \right) = \textbf{138.5 mm} \\ \textbf{Y} &= \frac{1}{\textbf{m}_1} \times \Sigma (\textbf{m}_1 \times \textbf{y}_1) \\ &= \frac{1}{6.525} \left(0.88 \times 0 + 4.35 \times 0 + 0.795 \times 111 + 0.5 \times 210 \right) = \textbf{29.6 mm} \\ \textbf{Z} &= \frac{1}{\textbf{m}_1} \times \Sigma (\textbf{m}_1 \times \textbf{z}_1) \\ &= \frac{1}{6.525} \left(0.88 \times 5 + 4.35 \times 42.5 + 0.795 \times 42.5 + 0.5 \times 42.5 \right) = \textbf{37.4 mm} \end{array}$$

4 Calculation of Load Factor for Static Load -

m1: Mass

 \mathbf{m}_1 max (from 1 of graph MY1MW/ \mathbf{m}_1) = 84 (kg)

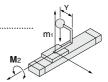

Load factor $\alpha_1 = m_1/m_1 max = 6.525/84 = 0.08$

M₁: Moment

 M_1 max (from (2) of graph MY1MW/ M_1) = 59 (N·m)

 $\mathbf{M}_1 = \mathbf{m}_1 \times \mathbf{g} \times \mathbf{X} = 6.525 \times 9.8 \times 138.5 \times 10^{-3} = 8.86 \text{ (N·m)}$

Load factor $\alpha_2 = M_1/M_1 max = 8.86/59 = 0.15$


Calculation of Guide Load Factor

M₂: Moment

 M_2 max (from 3 of graph MY1MW: M_2) = 24 (N·m) ······

 $M_3 = m_1 \times g \times Y = 6.525 \times 9.8 \times 29.6 \times 10^{-3} = 1.89 (N \cdot m)$

Load factor $\Omega_3 = M_2/M_2 max = 1.89/24 = 0.08$

5 Calculation of Load Factor for Dynamic Moment

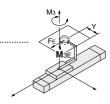
Equivalent load FE at impact

$$F_E = \frac{1.4}{100} \text{ x } \text{ Va x g x m} = \frac{1.4}{100} \text{ x 200 x 9.8 x 6.525} = 179.1 \text{ (N)}$$

M_{1E}: Moment

 $M_{1E}max$ (from 4 of graph MY1MW: M_{1} where 1.4 va = 280 mm/s) = 42.1 (N·m) ········

$$\mathbf{M}_{1E} = \frac{1}{3} \mathbf{x} \; \mathbf{F}_{E} \; \mathbf{x} \; \mathbf{Z} = \frac{1}{3} \mathbf{x} \; 179.1 \; \mathbf{x} \; 37.4 \; \mathbf{x} \; 10^{-3} = 2.23 \; (\text{N} \cdot \text{m})$$


Load factor $OL_4 = M_{1E}/M_{1E}max = 2.23/42.1 = 0.05$

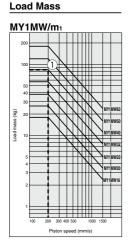
M₃E: Moment

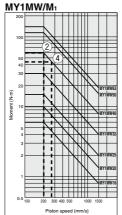
 M_{3E} max (from 5 of graph MY1MW: M_{3} where 1.4Va = 280 mm/s) = 5.7 (N·m).....

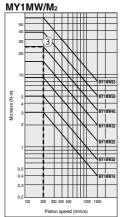
$$\mathbf{M}_{3E} = \frac{1}{3} \mathbf{x} \ \mathbf{F}_{E} \ \mathbf{x} \ \mathbf{Y} = \frac{1}{3} \mathbf{x} \ 179.1 \ \mathbf{x} \ 29.6 \ \mathbf{x} \ 10^{-3} = 1.77 \ (\text{N} \cdot \text{m})$$

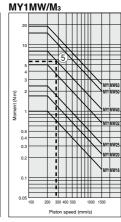
Load factor $CL_5 = M_3 = M_3 = M_3 = 1.77/5.7 = 0.31$

6 Sum and Examination of Guide Load Factors


 $\sum \alpha = \Omega_1 + \Omega_2 + \Omega_3 + \Omega_4 + \Omega_5 = 0.67 \le 1$


The above calculation is within the allowable value, and therefore the selected model can be used.


Select a shock absorber separately.


In an actual calculation, when the total sum of guide load factors $\Sigma \alpha$ in the formula above is more than 1, consider either decreasing the speed, increasing the bore size, or changing the product series. This calculation can be easily made using the "SMC Pneumatics CAD System".

Allowable Moment

MY1B MY1H

MY1B

MY1M MY1C

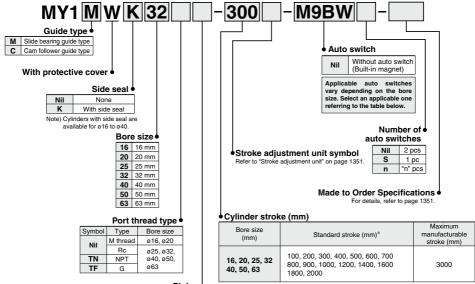
MY1H

MY1

MY2C

H/HT MY3A MY3B

MY3M


D-□ -X□

Mechanically Jointed Rodless Cylinder with Protective Cover Slide Bearing Guide Type, Cam Follower Guide Type

MY1□W Series

Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63

How to Order

Piping

Nil Standard type

G Centralized piping type

• The stroke can be manufactured up to the maximum stroke from 1 mm stroke in 1 mm increments. However, when the stroke is 49 mm or less, the air cushion capability lowers and multiple auto switches cannot be mounted. Pay special attention to this point. Also when exceeding a 2000 ms troke, specify "XB11" at the end of the model number. For details, refer to the "Made to Order Specifications".

Applicable Auto Switches/Refer to pages 1575 to 1701 for further information on auto switches

	0	Electrical	<u>ة</u>	Wiring	I	oad vol	Load voltage Auto switch model I							ead wire length (m)							
Type	Special function	entry	ndicator	(Output)		DC .	AC	P	erpendicul	ar	In-	line	0.5	1	3	5	connector	Applicable load			
	lunction	Citiy	≧_	(Output)		JC	AC AC	ø16, ø20	ø25 to ø40	ø 50 , ø 63	ø16, ø20 ø25 to ø63		(Nil)	(M)	(L)	(Z)	CONTINUE				
_				3-wire (NPN)		5 V. 12 V		_	M9NV	_	Ms	9N	•	•	•	0	0	10			
switch				3-wire (PNP)		5 V, 12 V		_	M9PV	_	Ms	9P	•	•	•	0	0	IC circuit			
				2-wire		12 V		_	M9BV	_	Ms	9B	•	•	•	0	0	_			
anto	Diagnostic			3-wire (NPN)	. , 5 V, 12 V	1			0.1	_	M9NWV	_	M9	NW	•	•	•	0	0	IC circuit	Delevi
	indication (2-color	Grommet		3-wire (PNP)	24 V	5 V, 12 V		_	M9PWV	' — M9	M9	PW	•	•	•	0	0		Relay, PLC		
state	indicator)			2-wire		12 V		_	M9BWV	_	M9	BW	•	•	•	0	0	_	1 LO		
15	Water			3-wire (NPN)		5 V. 12 V		_	M9NAV*1	_	M9N	IA*1	0		•	0	0	IC circuit			
Solid	resistant (2-color			3-wire (PNP)		5 V, 12 V			_	M9PAV*1	_	M9F	PA*1	0		•	0	0	IC CIRCUIT		
	indicator)			2-wire		12 V		_	M9BAV*1	_	M9E	3A*1	0		•	0	0	_			
ਰ ਤੁ			Yes	3-wire (NPN equivalent)	_	5 V	_	_	_	_	A96	Z76	•	-	•	-	_	IC circuit	_		
Reed auto switch		Grommet	res	2-wire	24 V	12 V	100 V	_	_	_	A93	Z73 *2	•	•	•	•	_	_	Relay,		
불			No	∠-wire	24 V	12 V	100 V or less	_	_	_	A90	Z80	•	<u> -</u>	•	-	_	IC circuit	PLC		

- *1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.
- * Lead wire length symbols: 0.5 m······Nil (Example) M9NW

 * Solid state auto switches marked with "O" are produced upon receipt of order.
 - 1 m······M (Example) M9NWM 3 m·······L (Example) M9NWL 5 m······Z (Example) M9NWZ
- Solid state auto switches marked with O are produced upon receipt of order.
 Separate switch spacers (BMG2-012) are required to retrofit auto switches (M9 type) on cylinders ø25 to ø63.
- *2 1 m type lead wire is only applicable to D-A93.
- * Refer to page 1360 for details on other applicable auto switches than listed above.
- * For details about auto switches with pre-wired connector, refer to pages 1648 and 1649.
- * Auto switches are shipped together (not assembled). (Refer to pages 1359 to 1361 for the details of auto switch mounting.)

Mechanically Jointed Rodless Cylinder With Protective Cover MY1 W Series

Made to Order Specifications Click here for details

Symbol	Specifications							
-XB11	ong stroke							
-XB22	Shock absorber soft type RJ series type							
-XC67	NBR rubber lining in dust seal band							

Specifications

Bore s	size (mm)	16	20	25	32	40	50	63			
Fluid				Α	ir						
Action		Double acting									
Operating p	ressure range	MY1MW: 0.15 to 0.8 MPa; MY1CW: 0.1 to 0.8 MPa									
Proof pres	sure			1.2	ИРа						
Ambient and	fluid temperature	5 to 60°C									
Cushion		Air cushion									
Lubricatio	n	Non-lube									
Stroke len	gth tolerance	1000 or less +1.8 1001 to 3000 +2.8									
Piping	Piping Front/Side port M5			0.8 Rc 1/8 Rc 1/4 R							
port size	Bottom port	ø4		Ø	6	ø8	ø.	10			

Piston Speed

Bore size (mm)		16 to 63					
Without stroke adjustment unit		100 to 1000 mm/s					
Chuelra adimatmant unit	A unit	100 to 1000 mm/s (1)					
troke adjustment unit	L unit	100 to 1500 mm/s (2)					

Note 1) Be aware that when the stroke adjustment range is increased by manipulating the adjustment bolt, the air cushion capacity decreases. Also, when exceeding the air cushion stroke ranges on page 1346, the piston speed should be 100 to 200 mm per second.

Note 2) The piston speed is 100 to 1000 mm/s for centralized piping.

Note 3) Use at a speed within the absorption capacity range. Refer to page 1346

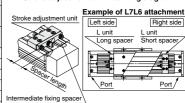
Stroke Adjustment Unit Specifications

Bore size (mm)	1	6	2	0	25		32		40		50		63		
Unit symbol Configuration Shock absorber model		Α	L	Α	L	Α	L	Α	L	Α	L	Α	L	Α	L
		With adjustment bolt	RB 0806 + with adjustment bolt	With adjustment bolt	RB 0806 + with adjustment bolt	With adjustment bolt	RB 1007 + with adjustment bolt	With adjustment bolt	RB 1412 + with adjustment bolt	With adjustment bolt	RB 1412 + with adjustment bolt	With adjustment bolt	RB 2015 + with adjustment bolt	With adjustment bolt	RB 2015 + with adjustment bolt
Stroke adjustment	Without spacer	0 to	-5.6	0 to	0 to -6		0 to -11.5		-12	0 to -16		0 to -20		0 to -25	
range by intermediate	With short spacer	-5.6 to	-11.2	−6 to	-12	-11.5	to -23	-12 to -24		-16 to -32		-20 t	o -4 0	-25 to	o –50
fixing spacer (mm)	With long spacer	-11.2 t	0 –16.8	-12 to -18		-23 to -34.5		−24 to −36		-32 to -48		-40 to −60		-50 to -75	

^{*} Stroke adjustment range is applicable for one side when mounted on a cylinder.

Stroke Adjustment Unit Symbol

				Rig	ght side s	troke adj	ustment i	unit	
			Without	A: With	adjustm	ent bolt	L: With lov + Adjustm	v load shoc ent bolt	k absorber
			unit		With short spacer	With long spacer		With short spacer	With long spacer
		thout unit	Nil	SA	SA6	SA7	SL	SL6	SL7
oke	A: With a	adjustment bolt	AS	Α	AA6	AA7	AL	AL6	AL7
stroke nt unit		With short spacer	A6S	A6A	A6	A6A7	A6L	A6L6	A6L7
side str stment		With long spacer	A7S	A7A	A7A6	A7	A7L	A7L6	A7L7
_ 3		oad shock absorber +	LS	LA	LA6	LA7	L	LL6	LL7
Left	Adjustment	With short spacer	L6S	L6A	L6A6	L6A7	L6L	L6	L6L7
	DOIL	With long spacer	L7S	L7A	L7A6	L7A7	L7L	L7L6	L7


^{*} Spacers are used to fix the stroke adjustment unit at an intermediate stroke position.

Shock Absorbers for L Unit

Type	Stroke adjustment			Bore siz	ze (mn	n)		
туре	unit	16	20	25	32	40	50	63
Standard (Shock absorber/RB series)	L	RBC	806	RB1007	RB1	412	RB2	015
Shock absorber/soft type RJ series mounted (-XB22)	L	RJ08	306H	RJ1007H	RJ14	112H	-	-

^{*} The shock absorber service life is different from that of the MY1□W cylinder depending on operating conditions. Refer to the RB Series Specific Product Precautions for the replacement period.

Stroke adjustment unit mounting diagram

Shock Absorber Specifications

Mod	lel	RB 0806	RB 1007	RB 1412	RB 2015
Max. energy al	sorption (J)	2.9	5.9	19.6	58.8
Stroke absor	ption (mm)	6	7	12	15
Max. collision s	peed (mm/s)		15	00	
Max. operating frequ	ency (cycle/min)	80	70	45	25
Spring	Extended	1.96	4.22	6.86	8.34
force (N)	Retracted	4.22	6.86	15.98	20.50
Operating tempera	ture range (°C)		5 to	60	

^{*} The shock absorber service life is different from that of the MY1□W cylinder depending on operating conditions. Refer to the RB Series Specific Product Precautions for the replacement period.

SMC

1351 A

D-□ -X□

Technical

MY1B MY1H

MY1B

MY1M MY1C

MY1H

MY1 HT MY1 ■W

MY2C

H/HT MY3A MY3B

MY3M

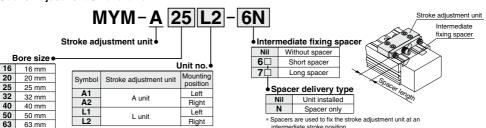
Mounted shock absorber soft type RJ series (-XB22) is made to order specifications. For details, refer to page 1752.

MY1 W Series

Theoretical Output

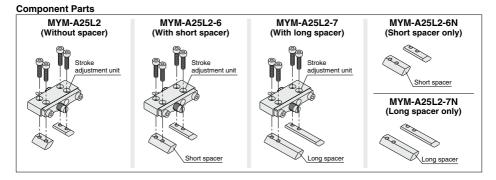
								(N)
Bore size	Piston area		Ol	perating	pressi	ıre (MF	a)	
(mm)	(mm ²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8
16	200	40	60	80	100	120	140	160
20	314	62	94	125	157	188	219	251
25	490	98	147	196	245	294	343	392
32	804	161	241	322	402	483	563	643
40	1256	251	377	502	628	754	879	1005
50	1962	392 588 784		981	1177	1373	1569	
63	3115	623	934	1246	1557	1869	2180	2492

Weight


									(kg)
Bore size		MY1MW	1		MY1CW	ı	Side support bracket weight (per set)	Stro adjustm weight (ent unit
(mm)	Basic weight	Additional weight per each 50 mm of stroke	Weight of moving parts	Basic weight	Additional weight per each 50 mm of stroke	Weight of moving parts	Type A and B	A unit weight	
16	1.25	0.16	0.54	1.25	0.16	0.57	0.01	0.03	0.04
20	1.25 0.16 1.90 0.19		0.75	1.85	0.18	0.78	0.02	0.04	0.05
25	2.56	0.28	1.00	2.50	0.28	1.02	0.02	0.07	0.11
32	4.75	0.43	1.71	4.62	0.42	1.76	0.04	0.14	0.23
40	7.79	0.61	2.56	7.51	0.57	2.64	0.08	0.25	0.34
50	13.53	0.83	5.19	13.61 0.82 5.27		0.08	0.36	0.51	
63	21.84	1.18	8.23	21.94	1.17	8.50	0.17	0.68	0.83

Calculation: (Example) MY1MW25-300A

- Additional weight 0.28/50 stroke
 2.56 + 0.28 x 300/50 + 0.07 x 2 ≅ 4.38 kg
 Weight of A unit 0.07 kg


Option

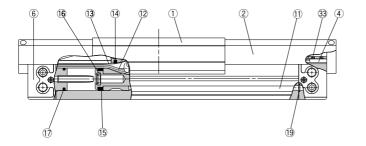
Stroke Adjustment Unit Part No.

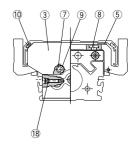
Note) Refer to page 1351 for details about adjustment range. intermediate stroke position.

* Spacers are shipped for a set of two.

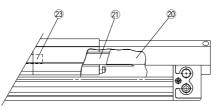
Side Support Part No.

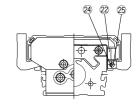
Bore size (mm)	16	20	25	32	40	50	63
Side support A	MY-S16A	MY-S20A	MY-S25A	MY-S32A	MY-S	S40A	MY-S63A
Side support B	MY-S16B	MY-S20B	MY-S25B	MY-S32B	MY-S	S40B	MY-S63B


For details about dimensions, etc., refer to page 1358.


A set of side supports consists of a left support and a right support.

Mechanically Jointed Rodless Cylinder With Protective Cover MY1 W Series


Construction


MY1□W

MY1□WK with side seal

Component Parts

No.		Description	Material	Note	ø16	ø20	ø25	ø32	ø40	ø50	ø63
1		Slide table	Aluminum alloy	Hard anodized							
2		Cover	Aluminum alloy	Hard anodized							
3		End plate	Aluminum alloy	Hard anodized							
4		Belt clamp	Special resin								
5		Slide plate	Special resin		MYMW-16-	MYMW-20-	MYMW-25-	MYMW-32-	MYMW-40-	MYMW-50-	MYMW-63-
6	unit	Port cover	Special resin	(ø25 to ø40)	Stroke	Stroke	Stroke	Stroke	Stroke	Stroke	Stroke
7		Spacer	Stainless steel	(ø25 to ø40)							
8		Hexagon socket button head screw	Chromium molybdenum steel	Chromated							
9		Hexagon socket head cap screw	Chromium molybdenum steel	Chromated							
10		Hexagon socket button head screw	Chromium molybdenum steel	Chromated							
11	Rodles	s cylinder	_	MY1M/MY1C	_	_	_	_	_	_	_
21		Seal guide A	Special resin								
22	Side	Seal guide B	Special resin								
23	seal	Slide plate	Special resin		MYMK-16-A	MYMK-16-A	MYMK-25-A	MYMK-25-A	MYMK-25-A	_	_
24	unit	Spacer	Stainless steel								
25		Hexagon socket head cap screw	Chromium molybdenum steel	Chromated							

Replacement Parts: Seal Kit

	naocincin i arts. oc	ui ix							
No.	Description	Qty.	ø16	ø 20	ø 25	ø32	ø 40	ø 50	ø 63
12	Seal belt	1	MY16-16A-Stroke	MY20-16A-Stroke	MY25-16A-Stroke	MY32-16A-Stroke	MY40-16A-Stroke	MY50-16A-Stroke	MY63-16A-Stroke
13	Dust seal band Note)	1	MY16-16B-Stroke	MY20-16B-Stroke	MY25-16B-Stroke	MY32-16B-Stroke	MY40-16B-Stroke	MY50-16B-Stroke	MY63-16B-Stroke
18	0		KA00309	KA00311	KA00311	KA00320	KA00402	KA00777	KA00777
18	O-ring	2	(ø4 x ø1.8 x ø1.1)	(ø5.1 x ø3 x ø1.05)	(ø5.1 x ø3 x ø1.05)	(ø7.15 x ø3.75 x ø1.7)	(ø8.3 x ø4.5 x ø1.9)	_	_
20	Side seal assembly	2	MYMK-16-Stroke	MYMK-20-Stroke	MYMK-25-Stroke	MYMK-32-Stroke	MYMK-40-Stroke	_	_
14	Scraper	2							
15	Piston seal	2							
16	Cushion seal	2	MY1M16-PS	MY1M20-PS	MY1M25-PS	MY1M32-PS	MY1M40-PS	MY1M50-PS	MY1M63-PS
17	Tube gasket	2							
19	O-ring	4							

Note) Two kinds of dust seal bands are available. Verify the type to use, since the part number varies depending on the treatment of the hexagon socket head set screw 3 (Refer to the Construction of MY1M on pages 1268 and 1269.).

A Black zinc chromated \rightarrow MY \square -16B-Stroke B Nickel plated \rightarrow MY \square -16BW-Stroke

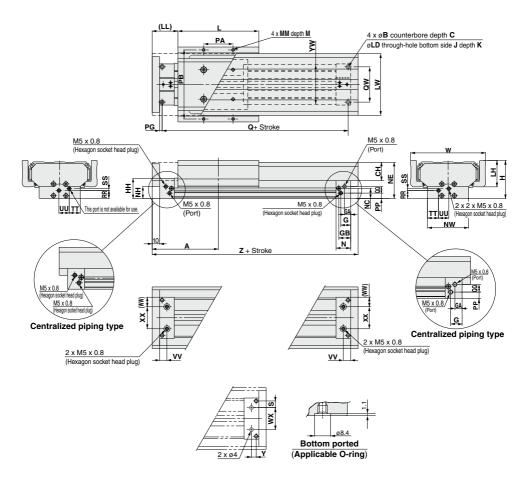
* Seal kit includes a grease pack (10 g).

When ② and ③ are shipped as single units, a grease pack (10 g per 1000 strokes) is included. Order with the following part number when only the grease pack is needed. **GR-S-010** (10 g), **GR-S-020** (20 g)

D-□

MY1B MY1H

MY1B MY1M MY1C MY1H MY1 HT

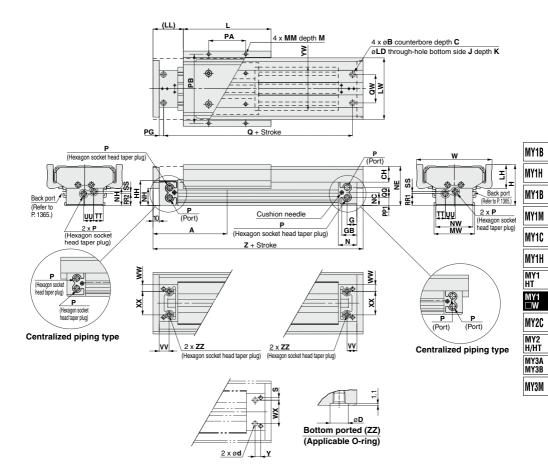

MY2C MY2C MY2 H/HT MY3A MY3M

-X 🗆 Technical Data

^{*} Seal kit includes (4, (5, (6, (7) and (9). Order the seal kit based on each bore size.

MY1 W Series

Dimensions: Ø16, Ø20


Bore size (mm)	Α	В	С	СН	G	GA	GB	Н	НН	J		K	L	LD	LH	l LL	. LV	V M	MM	N	NC	NE	NH
16	90	6	3.5	25	13.5	8.5	16.2	52	27.7	M5 x 0	.8	10	110	3.6	38	35	84	6	M4 x 0.7	20	14	49.5	16.5
20	110	7.5	4.5	26	12.5	12.5	20	58	33.7	M6 x	1	12	130	4.8	39	45	88	7.	M5 x 0.8	25	17	55.5	21.7
Bore size (mm)	NW	PA	PB	PG	PP	Q	QQ	QW	RR	SS	TT	U	U V	/V	W	ww	YW	Z	XX				
16	56	40	94	3.5	7.5	153	9	48	11	2.5	15	1-	4 1	0	102	13	54	180	30				
20	60	50	100	4.5	11.5	191	10	45	14.5	5	18	1:	2 1:	2.5	110	14	58	220	32				

Hole Size for Centralized Piping on the Bottom (Mounting side should be machined to these dimensions.)

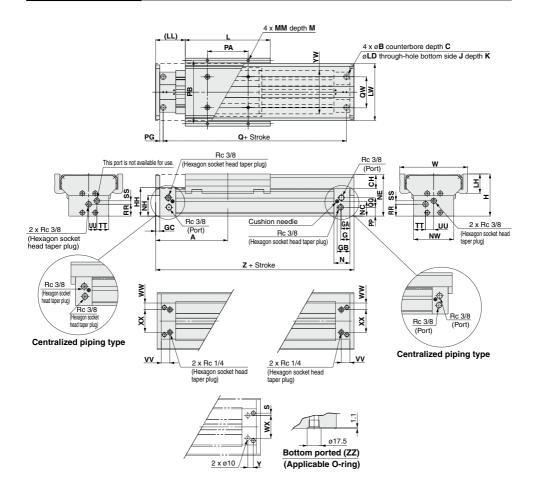
Bore size (mm)	S	WX	Y	Applicable O-ring
16	9	30	6.5	C6
20	6.5	32	8	C6

Mechanically Jointed Rodless Cylinder With Protective Cover MY1 W Series

Dimensions: Ø25, Ø32, Ø40

Bore size (mm)	Α	В	С	CH	G	GB	Н	HH	J	K	L	LI	DL	H L	L	LW	M	M	M	MW	N	NC	NE	NH
25	120	9	5.5	25.7	17	24.5	66	40.5	M6 x 1	9.	5 14	2 5.	6 38	1.7	49	100	10	M5 x	c 0.8	66	30	21	64	28
32	150	11	6.5	31.5	19	30	82	50	M8 x 1.2	5 16	17	2 6.8	8 44	.2	64	122	13	M6	x 1	80	37	26	80	37
40	180	14	8.5	34.8	23	36.5	98	63.5	M10 x 1.	5 15	20	2 8.	6 47	.2 7	79	138	13	M6	x 1	96	45	32	96	48
Rora ciza (mm)	NW	P	РΔ	PR	PG	PP1	PP2	O	OO.	OW	RR1	RR2	SS	TT	111	ΠĪV	v	w	ww	vw	7	77	X)	7
Bore size (mm)	NW	Р	PA	PB	PG	PP1	PP2					RR2	SS	TT	U	-	-		ww	YW	Z	ZZ	XX	
Bore size (mm) 25	NW	P Rc1/8	PA 60	PB 112	PG 7	PP1 12.7	PP2 12.7	Q 206	QQ 16		RR1 18.9	RR2 17.9	SS 5.1	TT 15.5	16	-	-	W 122	WW	YW 70	Z 240		_	
					PG 7 8					46	18.9			TT 15.5 21	-	6 1	6		WW 11 13		240 300	Rc1/1	6 38	_

Hole Size for Centralized Piping on the Bottom

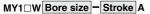

(Woulding side	SHOUN	a be ii	acimi	su io i	11636	innensions.)
Bore size (mm)	D	d	WX	Υ	S	Applicable O-ring
25	11.4	6	38	9	4	C9
32	11.4	6	48	11	6	C9
40	13.4	8	54	14	9	C11.2

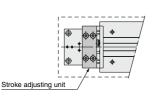
MY1 W Series

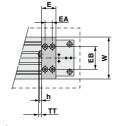
Dimensions: Ø50, Ø63

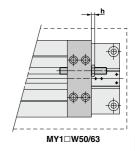
Bore size (mm)	Α	В	С	СН	G	GA	GB	GC	Н	НН	J	K	L	L	D L	H.	LL	LW	M	MM	N	NC	NE
50	212	17	10.5	41.5	27	25	37.5	12	124	83.5	M14 x 2	2 28	250	0 1	1 5	7	87	168	15	M8 x 1.25	47	44	122
63	245	19	12.5	47	29.5	27.5	39.5	15	149	105	M16 x 2	2 32	290	0 1	4 6	55	100	200	16	M10 x 1.5	50	60	147
Bore size (mm)	NH	NW	PA	PB	PG	PP	Q	QQ	QW	RR	SS	TT	UU	VV	W	W۷	/ Y	W	Z	XX			
50	60	118	120	186	10	26	380	28	90	35	10	35	24	28	200	22	12	28 4	24	74			
63	70	142	140	220	12	42	436	30	110	49	13	43	28	30	236	25	15	2 4	90	92			

Hole Size for Centralized Piping on the Bottom

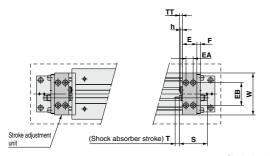

(Mounting side should be machined to these dimensions.)

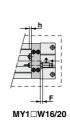

Bore size (mm)	S	WX	Υ	Applicable O-ring
50	8	74	18	C15
63	9	92	18	C15

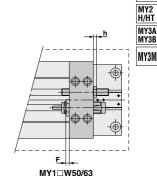

Mechanically Jointed Rodless Cylinder With Protective Cover MY1 W Series


Stroke Adjusting Unit

MY1B MY1H MY1B MY1M MY1C MY1H MY1 HT MY1 □W


MY2C

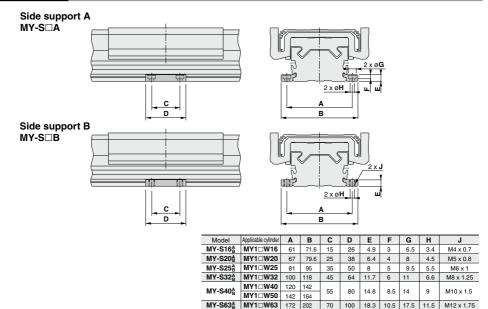



'	h	TT	w	
5	3.6	5.4 (Max.11)	58	
5	3.6	5 (Max.11)	58	
5	3.5	5 (Max.16.5)	70	

Model	E	ΕA	FB	EC	EY	n	11	W
MY1□W16	14.6	7	30	5.8	39.5	3.6	5.4 (Max.11)	58
MY1□W20	20	10	32	5.8	45.5	3.6	5 (Max.11)	58
MY1□W25	24	12	38	6.5	53.5	3.5	5 (Max.16.5)	70
MY1□W32	29	14	50	8.5	67	4.5	8 (Max.20)	88
MY1□W40	35	17	57	10	83	4.5	9 (Max.25)	104
MY1□W50	40	20	66	14	106	5.5	13 (Max.33)	128
MY1□W63	52	26	77	14	129	5.5	13 (Max.38)	152

With low load shock absorber + Adjusting bolt MY1□W Bore size - Stroke L

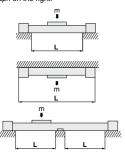
(mm)



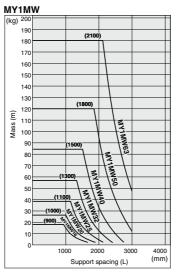
Model	Е	EA	EB	EC	EY	F	h	S	Т	TT	W	Shock absorber model
MY1□W16	14.6	7	30	5.8	39.5	4	3.6	40.8	6	5.4 (Max.11)	58	RB0806
MY1□W20	20	10	32	5.8	45.5	4	3.6	40.8	6	5 (Max.11)	58	RB0806
MY1□W25	24	12	38	6.5	53.5	6	3.5	46.7	7	5 (Max.16.5)	70	RB1007
MY1□W32	29	14	50	8.5	67	6	4.5	67.3	12	8 (Max.20)	88	RB1412
MY1□W40	35	17	57	10	83	6	4.5	67.3	12	9 (Max.25)	104	RB1412
MY1□W50	40	20	66	14	106	6	5.5	73.2	15	13 (Max.33)	128	RB2015
MY1□W63	52	26	77	14	129	6	5.5	73.2	15	13 (Max.38)	152	RB2015

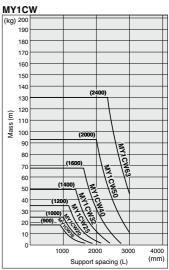
D-□ -X□ Technical Data

MY1 W Series


Side Support

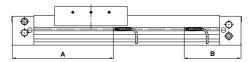
* A set of side supports consists of a left support and a right support.


Guide for Side Support Application


For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load. In such a case, use a side support in the middle section. The spacing (L) of the support must be no more than the values shown in the graph on the right.

⚠ Caution

- 1. If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.
- 2. Support brackets are not for mounting; use them solely for providing support.


MY1 W Series

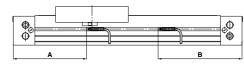
Auto Switch Mounting 1

Proper Auto Switch Mounting Position (Detection at stroke end)

MY1MW (Slide bearing guide type) ø16, ø20

Ø25, Ø32, Ø40, Ø50, Ø63

Proper Auto Switch Mounting Position


1 Topel Auto Cwitch mounting 1 Column										
Bore size (mm)	D-M9□ D-M9□W D-M9□A		D-M9□V D-M9□WV D-M9□AV		D-A9□		D-Y69[D-Y7□]/Y7PV WV	D-Z7□/Z80 D-Y59□/Y7P D-Y7□W D-Y7BA	
	Α	В	Α	В	Α	В	Α	В	Α	В
16	74	86	_	_	70	90	_	_	_	_
20	94	106	_	-	90	110	_	_	_	_
25	144.5	75.5	144.5	75.5	_	_	139.5	80.5	139.5	80.5
32	189.5	90.5	189.5	90.5	_	_	184.5	95.5	184.5	95.5
40	234.5	105.5	234.5	105.5	_	_	229.5	110.5	229.5	110.5
50	283.5	116.5	_	_	_	_	_	_	278.5	121.5
63	328.5	131.5	_	_	_	_	_	_	323.5	136.5

Note 1) Perpendicular electrical entry type and D-Y7BA cannot be mounted on ø16, 20, 50 and 63. Consider using the in-line electrical entry type. Note 2) Adjust the auto switch after confirming the operating conditions in the actual setting.

MY1CW (Cam follower guide type) ø16, ø20

Ø25, Ø32, Ø40, Ø50, Ø63

Proper .	Proper Auto Switch Mounting Position (mm)											
Bore size (mm)	D-M9□ D-M9□W D-M9□A		D-M9□V D-M9□WV D-M9□AV		D-A9□		D-Y69□/Y7PV D-Y7□WV		D-Z7□/Z80 D-Y59□/Y7P D-Y7□W D-Y7BA			
	Α	В	Α	В	Α	В	Α	В	Α	В		
16	74	86	_	_	70	90	_	_	_	_		
20	94	106	_	_	90	110	_	_	_	_		
25	102	118	102	118	_	_	97	123	97	123		
32	132	148	132	148	_	_	127	153	127	153		
40	162.5	177.5	162.5	177.5	_	_	157.5	182.5	157.5	182.5		
50	283.5	116.5	_	_	_	_	_	_	278.5	121.5		
63	328.5	131.5	_	_	_	_	_	_	323.5	136.5		

Note 1) Perpendicular electrical entry type and D-Y7BA cannot be mounted on ø16, 20, 50 and 63. Consider using the in-line electrical entry type. Note 2) Adjust the auto switch after confirming the operating conditions in the actual setting.

D-□ -X□

MY1B MY1H MY1B MY1M MY1C MY1H

MY1

MY2C

MY2 H/HT MY3A MY3B MY3M

HT

Technical Data

MY1 □ W Series

Auto Switch Mounting 2

(mm)

Operating range

Note) Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed. (Assuming approximately ±30% dispersion.) It may vary substantially depending on an ambient environment.

MY1MW (Slide bearing guide type)

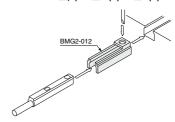
			E	Bore size	е		
Auto switch model	16	20	25	32	40	50	63
D-A9	11	7.5	_	_	_	_	_
D-M9_J/M9_JV D-M9_JW/M9_JWV D-M9_JA/M9_JAV	7.5	7.5	8.5	8.5	9.5	7	6
D-Z7□/Z80	_	_	12	12	12	11.5	11.5
D-Y59□/Y69□ D-Y7P/Y7PV D-Y7□W/Y7□WV D-Y7BA	_	-	5	5	5	5.5	5.5

Perpendicular electrical entry type and D-Y7BAL cannot be mounted on \emptyset 16, 20, 50 and 63. Consider using the in-line electrical entry type.

MY1CW (Cam follower guide type)

A 1 2 . 1 1 . 1			E	Bore siz	е		
Auto switch model	16	20	25	32	40	50	63
D-A9	11	7.5	_	_	_	_	_
D-M9_/M9_V D-M9_W/M9_WV D-M9_A/M9_AV	7.5	7.5	7	8	8.5	7	6
D-Z7□/Z80	_	_	12	12	12	11.5	11.5
D-Y59□/Y69□ D-Y7P/Y7PV D-Y7□W/Y7□WV D-Y7BA	-	-	5	5	5	5.5	5.5

(mm)


ı

Perpendicular electrical entry type and D-Y7BAL cannot be mounted on ø16, 20, 50 and 63. Consider using the in-line electrical entry type.

Switch Mounting Bracket: Part No.

Auto switch model	Bore siz	ze (mm)
Auto switch model	ø16, ø20	ø25 to ø63
D-M9_/M9_V D-M9_W/M9_WV D-M9_A/M9_AV	_	BMG2-012

ø25 to ø63: M9□(V)/M9□W(V)/M9□A(V)

Besides the models listed in How to Order, the following auto switches are applicable. Refer to pages 1263 and 1371 for details. For detailed specifications, refer to pages 1575 to 1701.

	, is pulger it.				
Туре	Model	Electrical entry (Fetching direction)	Features	Applicable bore size	
	D-Y69A, Y69B, Y7PV	Grommet (Perpendicular)	_	ø25 to ø40	
Solid state auto switch	D-Y7NWV, Y7PWV, Y7BWV	Grommet (Perpendicular)	Diagnostic indication (2-color indicator)	025 10 040	
Solid State auto Switch	D-Y59A, Y59B, Y7P	Grommet (In-line)	_	ø25 to ø63	
	D-Y7NW, Y7PW, Y7BW	Grommer (m-ine)	Diagnostic indication (2-color indicator)	025 10 005	

* For solid state auto switches, auto switches with a pre-wired connector are also available. Refer to pages 1648 and 1649 for details.

* Normally closed (NC = b contact) solid state auto switches (D-F9G/F9H/Y7G/Y7H types) are also available. Refer to pages 1593 and 1595 for details.

Mounting of Auto Switch & Installation of Lead Wire Cover (Ø50, Ø63)

↑ Caution

Be sure to install a lead wire cover on the auto switches for size $\varnothing 50$ and $\varnothing 63$ cylinders.

Install a lead wire cover following the procedures provided below to prevent the lead wire from interfering with the slider.

Lead wire cover is packaged together with size ø50 and ø63 cylinders equipped with auto switches.

For ordering the lead wire cover separately, use the following part number: ${\bf MYM63GAR6386\text{-}1640}$ (Length: 2 m)

1. Auto switch mounting position

Up to 4 auto switches can be mounted on one side of the cylinder (total of 8 switches on both sides).

When multiple auto switches are used, be sure to use the lead wire groove and pull the lead wires out from the edge of the cylinder. (Bold lines in Fig. (1) indicate lead wires.)

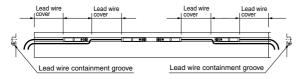


Fig. (1) Auto switch mounting position

2. How to mount auto switch/install lead wire cover

- Insert and slide in the auto switch from the side of the cylinder and secure it with the screw provided. (Refer to Fig. (2).)
- Cut the lead wire cover to the desired length using a cutter or tube cutter. (Refer to Fig. (1).)
- First place the lead wires into the lead wire cover. Then, install a lead wire cover onto a cylinder body. (Refer to Fig. (3).)
- Make sure that the lead wires do not interfere with the slide table at any stroke range.

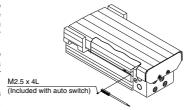


Fig. (2) Auto switch mounting

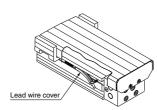


Fig. (3) Installation of lead wire cover

MY1H
MY1B
MY1B
MY1C
MY1C
MY1H
HT
MY1
HT
MY1
HT
MY2
HY2
H/HT
MY3A
MY3B

MY3M

MY1B

MY1□W Series Specific Product Precautions 1

Be sure to read this before handling the products.

Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Selection

- 1. When using a cylinder with long strokes, implement an intermediate support.
 - When using a cylinder with long strokes, implement an intermediate support to prevent the tube from sagging and being deflected by vibration or an external load.
 - Refer to the Guide for Side Support Application on page 1358.
- 2. For intermediate stops, use a dual-side pressure control circuit.
 - Since the mechanically jointed rodless cylinders have a unique seal structure, slight external leakage may occur. Controlling intermediate stops with a 3 position valve cannot hold the stopping position of the slide table (slider). The speed at the restarting state also may not be controllable. Use the dual-side pressure control circuit with a PABconnected 3 position valve for intermediate stops.

3. Constant speed

 Since the mechanically jointed rodless cylinders have a unique seal structure, a slight speed change may occur. For applications that require constant speed, select an applicable equipment for the level of demand.

4. Load factor of 0.5 or less

 When the load factor is high against the cylinder output, it may adversely affect the cylinder (condensation, etc.) and cause malfunctions. Select a cylinder to make the load factor less than 0.5. (Mainly when using an external guide)

5. Cautions on less frequent operation

- When the cylinder is used extremely infrequently, operation may be interrupted in order for anchoring and a change lubrication to be performed or service life may be reduced.
- 6. Consider uncalculated loads such as piping, cableveyor, etc., when selecting a load moment
 - Calculation does not include the external acting force of piping, cableveyor, etc. Select load factors taking into account the external acting force of piping, cableveyor, etc.

7. Accuracy

 The mechanical jointed rodless cylinder does not guarantee traveling parallelism. When accuracy in traveling parallelism and a middle position of stroke is required, please consult with SMC.

Mounting

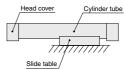
⚠ Caution

- To obtain the best results from the cover, horizontal mounting is recommended.
 - With horizontal mounting (shown below), the entry of dirt and dust from the bottom of the cover is much less compared to other mounting orientations, making it much more efficient.

Mounting

⚠ Caution

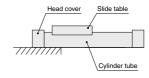
- When the cylinder is mounted from the top side or when strokes are to be adjusted by installing a stroke adjusting unit, the protective cover must be removed for these purposes.
 - · For detailed assembly step, refer to page 1364.
- Do not apply a strong impact or moment on the slide table (slider).
 - Since the slide table (slider) is supported by precision bearings, do not subject it to strong impact or excessive moment when mounting workpieces.
- 4. When connecting to a load which has an external guide mechanism, use a discrepancy absorption mechanism
- A mechanically jointed rodless cylinder can be used with a direct load within the allowable range for each guide type, however, align carefully when connecting to a load with an external guide mechanism.


Mount the external guide mounting brackets and floating brackets in a place where the required degree of freedom for the floating Y and Z axes can be secured.

The thrust transmission area of the floating bracket must be fixed so that it does not partially contact the body.

*Refer to the Coordinates and Moment in Model Selection on page 1342 for the details of floating Y and Z axes.

Do not mount cylinders as they are twisted.


- When mounting, be sure for a cylinder tube not to be twisted.
 The flatness of the mounting surface is not appropriate, the cylinder tube is twisted, which may cause air leakage due to the detachment of a seal belt, damage a dust seal band, and cause malfunctions.
- Do not mount a slide table on the fixed equipment surface.
 - It may cause damage or malfunctions since an excessive load is applied to the bearing.

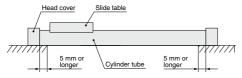
Mounting with a slide table (slider)

7. Consult SMC when mounting in a cantilevered way.

Since the cylinder body deflects, it may cause malfunctions.
 Please consult with SMC when using it this way.

Mounting in a cantilevered way

MY1□ W Series Specific Product Precautions 2


Be sure to read this before handling the products.

Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Handling

∕ Caution

Fixed parts of the cylinder on both ends must have at least 5 mm of contact between where the bottom of the cylinder tube and the equipment surface.

9. Do not generate negative pressure in the cylinder tube.

• Take precautions under operating conditions in which negative pressure is generated inside the cylinder by external forces or inertial forces. Air leakage may occur due to separation of the seal belt. Do not generate negative pressure in the cylinder by forcibly moving it with an external force during the trial operation or dropping it with self-weight under the non-pressure state, etc. When the negative pressure is generated, slowly move the cylinder by hand and move the stroke back and forth. After doing so, if air leakage still occurs, please consult with SMC.

10. Accuracy

 The mechanical jointed rodless cylinder does not guarantee traveling parallelism. When accuracy in traveling parallelism and a middle position of stroke is required, consult with SMC.

11. Cautions on less frequent operation

 When the cylinder is used extremely infrequently, operation may be interrupted in order for anchoring and a change lubrication to be performed or service life may be reduced.

Handling

1. Do not unnecessarily alter the guide adjustment setting.

- The adjustment of the guide is preset and does not require readjustment under normal operating conditions. Therefore, do not unnecessarily alter the guide adjustment setting. However, series other than the MY1□W series can be readjusted and their bearings can be replaced. To perform these operations, refer to the bearing replacement procedure given in the operation manual.
- 2. Avoid operation that causes negative pressure inside the cylinder.
 - Take precautions under operating conditions in which negative pressure is increased inside the cylinder by external forces or inertial forces. Air leakage may occur due to separation of the seal belt.

3. Do not get your hands caught during cylinder operation.

 For the cylinder with a stroke adjusting unit, the space between the slide table and stroke adjusting unit is very small, and your hands may get caught. When operating without a protective cover, be careful not to get your hands caught.

Operating Environment

- Because of floating particles such as paper dust and coolant mist that may enter the inside of the cover.
 - Since there is a gap between the bottom of the cover and cylinder tube, take precautions when operating cylinders in environments where there is exposure to excessive amount of floating particles, water/oil splash, or chip spattering. If they enter inside the cover, malfunction may occur.

2. Carry out cleaning and grease application suitable for the operating environment.

 Carry out cleaning regularly when using in an operating environment in which the product is likely to get dirty.
 After cleaning, be sure to apply grease to the top side of the cylinder tube and the rotating part of the dust seal band.
 Apply grease to these parts regularly even if not after cleaning. Please consult with SMC for the cleaning of the slide table (slider) interior and grease application.

Service Life and Replacement Period of Shock Absorber

 Allowable operating cycle under the specifications set in this catalog is shown below.

1.2 million times RB08□□

2 million times RB10□□ to RB2725

Note) Specified service life (suitable replacement period) is the value at room temperature (20 to 25°C). The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above.

MY1B MY1H

MY1B

MY1M MY1C

MY1H MY1

> HT MY1 ■W

MY2C

MY2 H/HT

MY3A MY3B

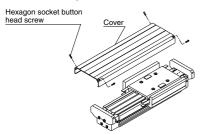
D-□ -X□

Technical Data

MY1 W Series **Specific Product Precautions 3**

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

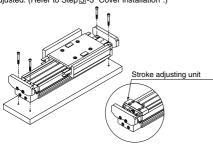
Assembly Procedure



Note) When auto switches are included with a cylinder order, they are packaged together with the cylinder.

Body mounting procedures

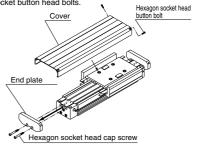
1. Removal of cover


Remove the hexagon socket head button bolts and cover.

2. Body mounting/adjustment

Mount the cylinder body.

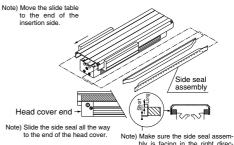
For cylinders with protective cover only (i.e., without side seal), reinstall the cover after the cylinder is mounted and adjusted. (Refer to Step 3-3 "Cover installation".)



Note) The adjustment of the stroke adjusting unit (optional) should also be

3 Side seal installation procedures

1. Temporary cover installation


- Remove the hexagon socket head cap screws and one of the end plates.
- 2) Place the cover and temporarily secure it with the hexagon socket button head bolts.

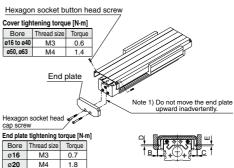
2. Side seal installation

Slide the side seal assembly into the place from one end of

Stainless steel portions of the side seal assembly are very sharp. Take extra precautions when handling.

bly is facing in the right direc-

MY1 W Series **Specific Product Precautions 4**


Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Assembly Procedure

4 | Side seal installation procedures (Continued)

3. Cover installation

- * Be sure to confirm Note 1) and Note 2). (When adjustment is not correctly done, it may cause malfunctions and parts damage (cover collision).)
 - 1) The end plate is fixed with hexagon socket head cap screws.
- 2) The cover is fixed with hexagon socket button head screws.

ø25 M5 3.5 ø32 M6 5.8 ø40 M6 5.8 ø50 M8 14

28

Note 2) If there is no gap (clearance) between the slide table and cover (B, C and D, E in the drawing above) throughout the stroke range, loosen the hexagon socket head cap screw to fix the end plate, then retighten it after adjusting the end plate position.

MY1B

MY1H

MY1B

MY1M

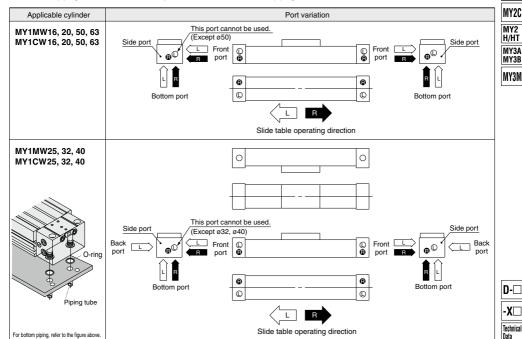
MY1C

MY1H

MY1 нт

MY1

 $\square W$ MY2C


Centralized Piping Port Variations

ø**63**

M10

Head cover piping connection can be freely selected to best suit different piping conditions.

1365

D-

-X□ Technical