

Operating Instructions

ORIGA SYSTEM PLUS

aerospace
climate control
electromechanical
filtration
fluid & gas handling
hydraulics
pneumatics
process control
sealing & shielding

Content

1	Fore	word to the Operating Instructions	4
2	Safe	ty	5
3	Warr	ranty	6
4	Tran	sport and Assembly	6
	4.1 4.2 4.3	Transport Interim storage Assembly	7
5	Com	missioning	7
6	Afte	r sales service	7
7	Belt	drives OSP-EBHD / OSP-EBV / OSP-EB	8
	7.1	Technical data	8
	7.2	Structural arrangement and operating mode	
	7.3	Maintenance / repair	
8	Spin	dle drives OSP-ESB / OSP-EST / OSP-ESBR / OSP-ESTR	24
	8.1	Technical data	24
	8.2	Structural arrangement and operating mode	27
	8.3	Maintenance / repair	29
9	Acce	essories	34
	9.1	Multi-axle system	34
	9.2	Linear guides	34
	9.3	Mountings and sensors	34
	9.4	Couplingbox and coupling	34
	9.5	Synchronous belt drive with configuration capability	37
10	Man	ufacturer's statement	39
11	Spar	re part lists	40
		OSP-EBHD (Recirculating ball bearing guide)	
	11.2	OSP-EBHD (Roller Guide)	42
	11.3	OSP-EBV	44
		OSP-EB	
		OSP-EB (Bi-Parting version)	
		OSP-ESB	
		OSP-EST	
	11.8	OSP-ESB	
	11.9	OSP-ESTR	55

Operator's responsibilities

The operator/organisation in charge is responsible for:

- Compliance with EN 89/655 replaced by 2001/45EWG and its national implementation,
- Compliance with 89/392/EEC in the version 91/368/EEC and 93/44/EEC
- Compliance with the national regulations for working safety applicable.
- Using the OSP-E for the intended purpose only.
- Compliance with all rules and regulations of these Operating Instructions.

It is not permitted to start the OSP-E until it has been ascertained that the machine into which the unit has been assembled fully complies with the provisions of the EC Machines Directive .

1 Foreword to the Operating Instructions

The purpose of these Operating Instructions is to assist you in familiarising yourself with the OSP-E and to make use of the functions it has been designed for.

The Operating Instructions contain important advice so that you can use the OSP-E safely, reliably and economically. Observance of these Operating Instructions will help you to avoid danger, reduce repair costs and downtime as well as to increase reliability and the service life of the OSP-E.

These Operating Instructions need to be read and applied by all persons working with the OSP-E, including:

- operating the unit, including setup work, trouble shooting during the work sequence, removal of production waste, servicing, handling as well as removing waste of hazardous materials (operating and auxiliary materials):
- maintenance (preventive maintenance, inspection, repairs)

In addition to the Operating Instructions and the mandatory regulations for accident prevention and environmental protection applicable in the user country and at the location of deployment , the standard technical rules and regulations for safe and professional work shall also be observed.

Explanation of symbols and instruction notes

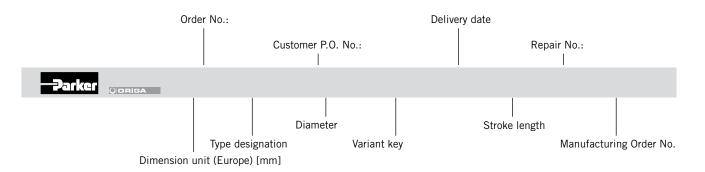
Instruction notes marked with these symbols help to prevent physical injury and harm for persons. All users shall be informed of all such instruction notes.

Symbol	Explanation	Symbol	Explanation
\triangle	Attention: Safety-relevant passages of the Operating Instructions will indicate this symbol	A	Attention: Danger of lacerations
i	Information: Symbol for tips and instructions to facilitate working with the machine and to prevent damage		Important: Wear protective goggles
	Attention: Falling loads		Important: Wear protective gloves
K	Attention: Danger resulting from crushing	-Parker _{OGRIGA}	Note: Accessories available

Copyright

Parker-Origa GmbH has the copyright to these Operating. Instructions Copyright 2008®.

No part of these Operating Instructions may be copied or distributed or used in any way or divulged to third parties for competitive purposes. Any infringement may result in legal action.


The identification plate

This identification plate is located at the OSP-E in the groove of the cylinder barrel.

Product observation

It is our aim to have safe and reliable products that represent state-of-the-art technology. For this reason, we constantly monitor our products even after delivery. Please inform us immediately of any repeating faults or problems with the OSP-E.

2 Safety

Use in accordance with the design purpose

We will only warrant the operating safety of the OSP-E if it is used in accordance with the design purpose.

The following usage is in accordance with the design purpose:

- moving loads,
- applying force.

The OSP-E is powered by electric motors.

Also to be taken into account:

- The conditions as stated and stipulated in the order confirmation,
- the operating instructions

If the OSP-E is used for any other purposes, this constitutes a use not in accordance with the design purpose. This may result in material damage and personal injury for which we cannot be held responsible or liable in any way. The user is entirely responsible for any risk arising from such a use.

The Operating Personnel

The operator of the overall plant needs to ensure that only authorised and qualified specialised personnel are allowed to work with and at the OSP-E. Authorised personnel are trained specialised personnel of the user, the manufacturer and the service partner.

Working with an awareness of safety

The contents of these Operating Instructions, particularly the chapter on "Safety Instructions" must be duly observed under all circumstances.

Before commencing work, all personnel assigned to work with the OSP-E must have read and thoroughly understood the Operating Instructions - and the chapter on Safety in particular. Doing so while at work is too late !! This also applies in particular to personnel working occasionally on the OSP-E, e.g., during set-up and maintenance.

At appropriate intervals, check the safety-awareness of the personnel at work with due observance of the Operating Instructions.

The following is not permitted:

- carrying out independent modifications of the OSP-E,
- using working methods that impair the safety of the OSP-E.

Observe at the OSP-E:

· All attached safety instructions

Maintain these instructions in a fully legible condition.

Observe also the manufacturer's instructions on lubricants, solvents and cleaning agents.

Conversions and alterations

The linear drives shall not be modified in its construction and safety aspects, without the prior written approval of **Parker-Origa GmbH**. Any such modifications carried out without approval will rule out all liability on the part of **Parker-Origa GmbH**.

In principle, no safety and protection devices/equipment shall be dismantled or put out of operation.

When installing special attachments, the assembly regulations of the manufacturer shall be observed as required.

The following regulatory instruments must be observed as a matter of course:

- relevant rules and regulations for accident prevention,
- · generally recognised safety regulations,
- EU-Directives and
- country-specific provisions.

Spare parts

The use of original spare parts and accessories authorised by the manufacturer is an important aspect for your safety. The use of other parts may change the characteristics of the OSP-E.

We accept no liability for any consequences resulting from the use of such parts.

3 Warranty

We reserve the right to make alterations to these Operating Instructions as well as to technical details with reference to data and illustrations as contained in these Operating Instructions.

Parker-Origa GmbH issues no quality and durability guarantees or any guarantees for the suitability for certain purposes unless these are expressly agreed in writing.

Public statements, statements of quality or advertising are not statements of characteristics.

If the user wants to make a claim under the warranty, he needs to notify the fault immediately and describe it precisely in his statement of complaint. Under no circumstances is **Parker-Origa GmbH** responsible for damage to the product itself or for consequential damage caused by the product, as caused by incorrect and faulty handling of the product. Insofar as **Parker-Origa GmbH** is responsible for a fault,

Parker-Origa GmbH may, at its discretion, either repair/modify the product or replace the item with a new one.

All OSP-E are provided with an identification plate within the framework of ISO 9000, that is attached to an OSP-E. This identification plate shall not be removed or destroyed in any way.

A liability of Messrs **Parker-Origa GmbH** – irrespective of the legal reason – exists only in the event of intentional or gross negligence, culpable injury to life, body, health, in the event of deficiencies with malicious intent of deception or faults the absence of which has been expressly guaranteed.

Furthermore, the company is liable to the extent stipulated by the product liability law regarding personal injury or materi-al damage on objects used privately. In the event of culpable violation of essential contractual obligations, **Parker-Origa GmbH** is liable also in the case of minor negligence, however, limited to the damage that could be foreseen under the contract.

Any other claims are ruled out.

No warranty shall apply in the event of non-observance of these Operating Instructions, the relevant legal provisions as well as further instructions of the supplier.

In particular, we are not responsible for stoppages caused by modifications by the customer or other persons. In such cases, we charge the normal repair costs. These are also charged for an inspection of the equipment where no fault can be found on the equipment.

This regulation also applies during the warranty period.

Users have no rights regarding the supply of previous equipment versions or regarding the upgrading of equipment to the current version.

4 Transport and Assembly

4.1 Transport

The linear drives OSP-E are high-precision equipment. Strong and abrupt jolts/bumps can damage the mechanical system or affect the functioning. In order to avoid damage during transport, the equipment is fixed in appropriate protective packaging.

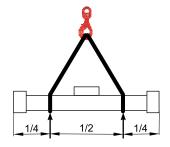
Danger caused by falling load

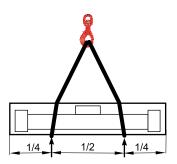
Incorrect transport and assembly of the OSP-E can:

- endanger human life,
- · result in material damage.

Transport of the packaged OSP-E with a crane or a forked-lift truck.

• Apply slinging as shown, and position the fork-lift truck as shown.


Transport of the OSP-E with a crane


Apply slinging as shown.

Information

Transport damage and missing parts are to be reported immediately and in writing to the transport company or to Parker-Origa GmbH or to the delivery company.

4.2 Interim storage

Where interim storage is involved, you must observe the following:

- · dry, dust- and vibration-free storage,
- on a flat surface,

outdoors under a suitable covering.

You must avoid deflection (bending) of the OSP-E!

4.3 Assembly

Before assembly, all transport devices must be removed and disposed of as required.

The assembly itself must be carried out in such a way that

- the applicable rules and regulations are observed as required,
- the OSP-E is installed without distortion or warping,
- all connections and operating parts are accessible,
- the company name is legible on the red cover strip.

Any potential hazards that may exist between ORIGA products and customer's items of equipment must be eliminated by the user as required.

Notes for using the OSP-E

Mechanical

- Secure the payload only at the threaded holes on the driver and/or at the piston rod thread.
- Place the payload in such a way that the bending moments at the driver are below the values that are stated in the catalogue OSP-E.
- Use central supports for long drives.

Electrical

- Exact positioning of the load is effected by the control unit.
- Do not locate the sensor close to ferritic parts or to moving loads.
- Use the most favourable mounting slot on the circumference of the cylinder profile.

5 Commissioning

The linear drive can produce quick linear movements with high force. Failure to observe the safety regulations can cause bodily injury as a result of trapping, or damage as a result of collision with other plant parts.

Danger of crushing

Inspect before start-up:

- The correct connection conditions, and
- that there nothing in the way of the moving load.

During the first start-up, check the function of proximity and/or limit switches. First, the linear drive should be allowed to run through the entire moving zone at low speed in order to detect any possible collision areas. These must be removed immediately.

6 After sales service

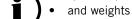
-Parker Opeiga

Spare parts and after sales service addresses

Refer to the last page of these Operating Instructions

Spare parts list

For the purposes of preventive maintenance for the linear drives, we offer seal kit sets, service packages and spare parts (refer to **Chapter 11**).


7 Belt drives OSP-E..BHD / OSP-E..BV / OSP-E..B

7.1 Technical data

7.1.1 General

Detailed information on

- dimensions,
- space requirement,

are shown in the OSP-E catalogue.

The following applies for all linear drives of the product series OSP-E with belt drive:

Temperature range: -30°C to +80°C.
 Installation location: BHD, B = any BV = vertical

We reserve the right to make technical alterations!

7.1.2 OSP-E..BHD

BHDII: Linear drive with toothed belt and integrated recirculating linear ball bearing guide.

Performance overview						
Characteristic		Unit	Description			
Series		OSP-E20BHD	OSP-E25BHD	OSP-E32BHD	OSP-E50BHD	
Max. speed		[m/s]	3.0	5.0	5.0	5.0
Linear motion per revolution of the dri	ve shaft	[mm]	125	180	240	350
with integrated gear		[mm]	-	220	280	360
Max. speed of the drive shaft	[min ⁻¹]	2 000	1 700	1 250	860	
	< 1 m/s	[N]	550	1 070	1 870	3 120
Maximum effective action force F _A	1 - 3 m/s	[N]	450	890	1 560	2 660
with reference to the drive torque	> 3-10 m/s	[N]	-	550	1 030	1 940
No-load torque		[Nm]	0.6	1.2	2.2	3.2
Max. acceleration /deceleration		[m/s ²]	50	50	50	50
Repeatability	[mm/m]	± 0.05	± 0.05	± 0.05	± 0.05	
Max. standard stroke length		[mm]	5760	5700	5600	5500
Tightening torque clamping hub		[Nm]	4,8	9,5	17	40

-	Max. permissible torque on the drive shaft Speed / stroke														
OSP-E	OSP-E20BHD			OSP-E25BHD				OSP-E	32BHD			OSP-E	50BHD		
Speed [m/s]	Torque [Nm	Stroke [m]	Torque [Nm]	Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]
1	11	1	11	1	31	1	31	1	71	1	71	1	174	1	174
2	10	2	11	2	28	2	31	2	65	2	71	2	159	2	174
3	9	3	8	3	25	3	31	3	59	3	60	3	153	3	138
4		4	7	4	23	4	25	4	56	4	47	4	143	4	108
5		5	5	5	22	5	21	5	52	5	38	5	135	5	89

Important:

The maximum allowable torque at the drive shaft is the lowest value of the speed- or stroke-dependent torque value (refer to example page 11).

7.1.3 OSP-E..BHD

BHD: Linear drive with toothedbelt and integrated roller guide

Performance overview								
Characteristic		Unit	Description	Description				
Series		OSP-E25BHD	OSP-E32BHD	OSP-E50BHD				
Max. speed	Max. speed			10	10			
Linear motion per revolution of the driv	[mm]	180	240	350				
Max. speed of the drive shaft	[min ⁻¹]	3 000	2 500	1 700				
	< 1 m/s:	[N]	1 070	1 870	3 120			
Maximum effective action force with reference to the drive torque	1 - 3 m/s	[N]	890	1 560	2 660			
	> 3-10 m/s	[N]	550	1 030	1 940			
No-load torque		[Nm]	1.2	2.2	3.2			
Max. acceleration /deceleration		[m/s ²]	40	40	40			
Repeatability	[mm/m]	± 0.05	± 0.05	± 0.05				
Max. standard stroke length	[m]	7	7	7				
Tightening torque clamping hub		[Nm]	9,5	17	40			

	Max. allowable torque at the drive shaft Speed / stroke												
OSP-E25	OSP-E25BHD				BHD			OSP-E50E	BHD				
Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]		
1	31	1	31	1	71	1	71	1	174	1	10,0		
2	28	2	31	2	65	2	71	2	159	2	10,0		
3	25	3	31	3	59	3	60	3	153	3	138		
4	23	3	25	4	56	4	47	4	143	4	108		
5	22	5	21	5	52	5	38	5	135	5	89		
6	21	6	17	6	50	6	32	6	132	6	76		
7	19	7	15	7	47	7	28	7	126	7	66		
8	18			8	46			8	120				
9	17			9	44			9	116				
10	16			10	39			10	108				

Important:

The maximum allowable torque at the drive shaft is the lowest value of the speed- or stroke-dependent torque value (refer to example page 11).

7.1.4 OSP-E..BV

Vertical linear drive with with toothed belt and inegrated recirculating linear ball bearing guide

Performance overview	Performance overview									
Characteristic		Unit	Description							
Series			OSP-E20BHD	OSP-E25BHD						
Max. speed		[m/s]	3.0	5.0						
Linear motion per revolution of the drive	[mm]	108	160							
Max. speed of the drive shaft		[min ⁻¹]	1 700	1 875						
	< 1 m/s:	[N]	650	1 430						
Maximum effective action force F _A with reference to the drive torque	1 - 3 m/s:	[N]	890	1 560						
'	> 3-5 m/s:	[N]	-	1 050						
No-load torque		[Nm]	0.6	1.2						
Max. acceleration /deceleration		[m/s ²]	20	20						
Repeatability		[mm/m]	± 0.05	± 0.05						
Max. standard stroke length	[mm]	1 000	1 000							
Tightening torque clamping hub	[Nm]	4.8	9.5							
Recomended permissible mass		[kg]	10	20						

Max. allowable torque at the drive shaft Speed / stroke										
OSP-E20BH	D			OSP-E25BHD						
Speed . [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]			
1	19	1	17	1	36	1	36			
2	17	2	10.5	2	30		36			
3	15.5			3	30					
				4	28					
				5	27					

Important:

The maximum allowable torque at the drive shaft is the lowest value of the speed- or stroke-dependent torque value (refer to example page 11).

7.1.5 OSP-E..B

Linear drive with toothed belt and internal plain bearing guide

Performance overview							
Characteristic		Unit	Description				
Series		OSP-E25B	OSP-E32B	OSP-E50B			
Max. speed	[m/s]	2	3	5			
Linear motion per revolution of the drive	shaft	[mm]	60	60	100		
Max. speed of the drive shaft	[min ⁻¹]	2 000	3 000	3 000			
Maximum affactive action force E with	< 1 m/s:	[N]	50	150	425		
Maximum effective action force F _A with reference to the drive torque	1 - 2 m/s:	[N]	50	120	375		
	> 2 m/s:	[N]	-	100	300		
Max. acceleration /deceleration		[m/s ²]	10	10	10		
Repeatability		[mm/m]	± 0.05	± 0.05	± 0.05		
Max. standard stroke length			3.0	5.0	5.0		
Bi-Parting version	[m]	2 x 1.5	2 x 2.5	2 x 2.5			
No-load torque		[Nm]	0.4	0.5	0.6		

	Max. allowable torque at the drive shaft Speed / stroke											
0SP-E25B				OSP-E32B				OSP-E50I	В			
Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	
1	0.9	1	0.9	1	2.3	1	2.3	1	10.0	1	10.0	
2	0.9	2	0.9	2	2.0	2	2.3	2	9.5	2	10.0	
		3	0.9	3	1.8	3	2.3	3	9.0	3	9.0	
						4	2.3	4	8.0	4	7.0	
						5	1.8	5	7.5	5	6.0	

Important:

The maximum allowable torque at the drive shaft is the lowest value of the speed- or stroke-dependent torque value.

Example:

OSP-E32B stroke 2 m, requires speed 3 m/s;

From table OSP-E..B: Speed 3 m/s means 1.8 Nm and stroke 2 m means 2.3 Nm.

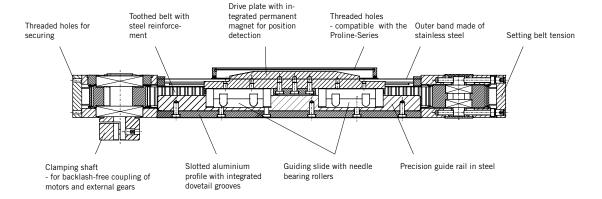
The maximum torque in this application is 1.8 Nm.

7.2 Structural arrangement and operating mode

7.2.0 General arrangement

The linear drives are used in all those places where loads are to be transported and/or have to be precision-positioned.

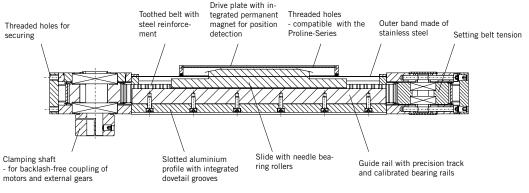
With a combination of several linear drives, a wide-surface covering or room-orientated arrangement can be realised.


- On a slotted aluminium profile with dovetail grooves, on the ends, the end cap required for the
 driving elements are mounted.
- In this barrel profile, a driver is moved where supporting rings are attached to both ends. These provide the lowest possible sliding friction.
- The attachment of the load material is connected by way of threaded holes on the driver.
- Dirt is prevented from getting into the aluminium profile by a outer band made of high quality stainless steel.
- An integrated permanent magnet at OSP-E..BHD and B is used for the purpose of position detection.
 - A magnetic switch set is recommended for OSP-E..BV. The magnet must be fixed in the dovetail groove.
- The linear unit is attached by means of threaded holes on the end caps.

7.2.1 OSP-E..BHD

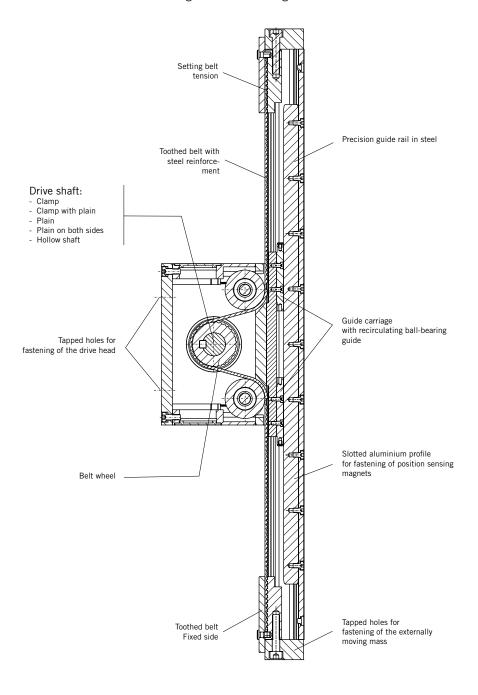
BHDII: Linear drive with toothed belt and integrated recirculating linear ball bearing guide.

Design Features


- Precision guide rail in steel.
- Drive plate on guiding slide with integrated linear guidance system for ball bearings.
- Toothed belt drive with integrated planetary gear (optional).
- Motor can be mounted from below or above (optional).

7.2.2 OSP-E..BHD

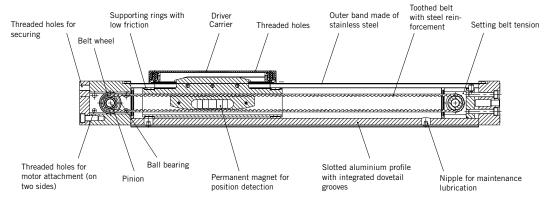
BHD: Linear drive with toothed belt and integrated roller guide


- · Guide rail in the aluminium profile and driver on needle-bearings
- Belt drive with integrated planetary gear (option).
- Motor attachment from above or below (option) possible

7.2.3 OSP-E..BV

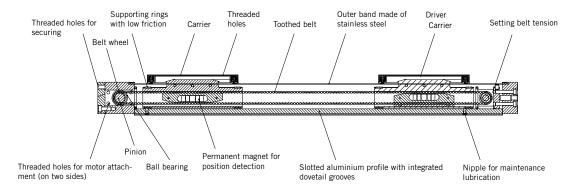
Vertical Linear drive with toothed belt and integrated recirculating ball bearing guide

- Linear drive for vertical movements in Z direction.
- Drive head fixed and movement through aluminium profile.
- · Precision guide rail of steel.
- Fastening of the externally moving mass by means of anchor points at the end of the profile. (observe details given in the catalogue!)



7.2.4 OSP-E..B

Linear drive with toothed belt and internal plain bearing guide


Design Features

- Toothed belt drive for linear movements
- · Toothed belt drive with threaded holes for lateral motor attachment

OSP-E..B Bi-Parting version

- Drive for synchronous counter movements
- Belt drive with threaded holes for lateral motor attachment

7.3 Maintenance / repair

Attention

Maintenance and repair work shall only be carried out by specially trained and instructed persons!

Attention

The machine or the working zone must be cordoned off for safety purposes as required!

7.3.1 Cleaning

The linear drive must be kept free from dirt particles at all times, particularly the surface between the outer band and the aluminium profile and/or the wipers at the carrier.

For cleaning, use only non aggressive cleansers and lint-free cloths.

Attention

After every cleaning operation, the corresponding parts must be lubricated as required.

7.3.2 Lubrication

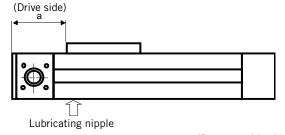
The roller guides and shaft bearings are lubricated for life.

We recommend an inspection of the linear drive after max. 3000 km or an operating period of 12 months, depending on the application.

The following aspects must be taken into account:

- Load
- Speed
- Temperature
- Surrounding condition

of the linear drives.

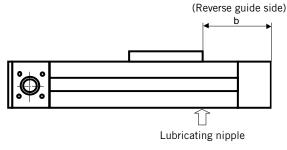

Visual inspection for lubricating grease:

- Make sure that the outer band has a thin lubricating film on both sides.
- Make sure that the guide rail (OSP-E..BHD) is covered with a thin lubricating film as required. For this purpose, the clamping pieces for the outer band must be loosened so that this can be lifted up easily.

Lubrication of the running surfaces in the tube (OSP-E..B):

On the downward facing side of the linear drive, there are two grease nipples for lubricating the running surfaces. In order to perform lubrication with a grease gun, the driver must be moved into its corres-ponding greasing position (if necessary, inching movement in the direction of the mechanical limit position of the drive).

Refer to the table for the clearance values.



 Type
 Dimension a [mm]
 Dimension b [mm]

 OSP-E25B
 64
 71

 OSP-E32B
 73
 79

 OSP-E50B
 98
 103

Lubricant

 Parker-Origa-grease 2 (HO-Grease 2 Ident N°.: #15071 Tube 45 gr)

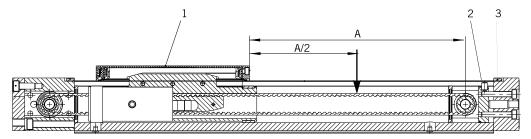
7.3.3 Inspection of the belt tension

OSP-E..BHD

Linear drive with toothed belt and integrated guide

- Move the slide far enough to the drive side until the clearance between profile of the driver edge and the centre of the pinion of the running side (opposite drive side) is 500 mm (or 250 mm for short stroke lengths).
- Take off the lateral cover strips (in the aluminium barrel profile).
- Through the side bore in the aluminium profile it is possible to measure the belt tension
- For a correct belt tension, you should be able to deflect the belt by 6 to 7 mm for an exposed belt length of 500 mm, and 3 to 3.5 mm for an exposed belt length of 250 mm.

Use a force-measuring gauge (dynamometer FDN200 with testpin ident-no. 16187) to read the following force:


Linear drive	Size 20	Size 25	Size 32	Size 50
Force	27N ± 1N	$35N \pm 0,5N$	60N ± 1N	94N ± 2N

If the measured value is below the value in the table shown above, then the belt must be replaced.

Replace the lateral cover strips (in the aluminium profile).

OSP-E..B

Linear drive with toothed belt and internal plain bearing guide

- Push the driver (1) onto the drive side.
- Release the clamping piece (3) for the outer band (2) so that the outer band can be lifted up and the slot between driver and running side is exposed.
- Move the driver far enough so that 500 mm (or 250 mm for short stroke lengths) of the belt is exposed between the profile of the driver edge and the centre of the pinion of the running side (opposite drive side) (Dimension A).
- In order to measure the belt tension, press down the belt in the centre of the exposed length in the direction of the slot (e.g. 250 mm or 125, measured from the edge of the carrier).
- For a correct belt tension, you should be able to deflect the belt by 6 to 7 mm for an
 exposed belt length of 500 mm, and 3 to 3.5 mm for an exposed belt length of 250
 mm.

With a force-measuring gauge (dynamometer FDN200 with testpin ident-no. 16187) it should be possible to read the following force:

Linear drive	Size 25	Size 32	Size 50
Force	7.5N ± 0,5N	13N ± 1N	23N ± 2N

If no force-measuring gauge is available, you can carry out the test with a weight of 0.7~kg (size 25), 1.3~kg (size 32) or 2.5~kg (size 50) which is placed through the slot onto the belt.

The belt should normally deflect by max. 7 mm and min. 6 mm for an exposed belt length of 500 and max. 3.5 mm and min 3 mm for a 250 mm exposed belt length.

If the measured value is below the value in the table shown above, then the belt must be replaced.

• Reposition the outer band into place and fix with the clamping piece

OSP-E..BV

Vertical linear drive with tooth belt and integrated recirculating ball bearing guide

Attention

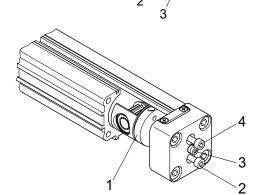
The toothed belt tension adjusted by the manufacturer must not be modified.

7.3.4 Tensioning the belt

OSP-E..BHD

Linear drive with toothed belt and integrated guide

- Release the set screws (3).
- Release the socket head screws (4) and remove cover (2).
- Tighten uniformly the socket head screws (1) in order to tighten the belt by moving the axle (5).
- After achieving the required belt tension, mount the cover (2) again and screw tight as required.
- Fix the position of the socket head screws (1) by tightly turning the set screws (3).


During tensioning, check the belt tension according to Chapter 7.3.3

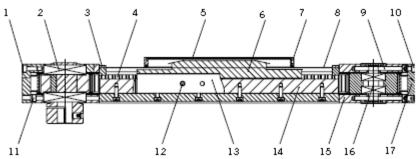
OSP-E..B

Linear drive with toothed belt and plain bearing guide

- Release the set screw (3)
- Tighten the socket head screws (2) and (4) uniformly in order to tension the belt by moving the bearing housing (1).
- After obtaining the required belt tension, fix the position of the bearing housing by tightly turning the set screw (3).

Thread size	Tightening torques socket head screws / threaded pins
M 5	6 ± 1Nm
M 6	10 ± 1,5Nm

During tensioning, check the belt tension according to Chapter 7.3.3.


Attention

Avoid a slanted position of the axle (5) by uniformly tightening the socket head screws (1).

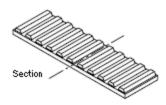
7.3.5 Replacing the belt

OSP-E..BHD

Linear drive with toothed belt and integrated guide

- Release and remove motor/drive unit as well as all other components attached.
- Release and remove the components mounted on the carrier (6).
- Release and remove the two bracing screws (7) so that the bearing housing lies loosely in the aluminium profile (6).
- Remove the clamping pieces (3) so that the outer band (7) can be removed.
- Release/remove the four fastening screws (10) and take off the cover plate (17).
- Slightly loosen the two belt bracing screws (9) in order to relieve the belt wheel (16).
- Release and remove the four fastening screws of the end cap (16).
- Remove the end cap (15) to the rear to such an extent until the belt (4) can be pressed together by hand
 in order to be able to lead it through the slot of the aluminium profile (if necessary, loosen further the
 belt bracing screws).
- Remove the fastening screws (1) and take off the cover plate.
- Remove the fastening screws (11) and remove the drive end cap.
 OSP-E. BHD with recirculating linear ball bearings: Pull the slide with linear guidance system (6) to the end of the guide rail (14) at the drive housing (2). Carefully insert transportation lock for balls from the service kit into the sliding carriages. After that, completely remove carriage (6), toothed belt (4) and housing (15).
- 0SP-E..BHD with roller guide: remove drive housing (2) including carrier with rollerguide (6), toothed belt (4) and housing (15).
- Remove socket head screws (12) in order to be able to remove the belt clamping plate (13).
- The belt can now be removed.

Attention


Check the dismantled parts for wear and replace if necessary.

Observe direction of movement with belt and carrier assembly! (Clamping in the carrier)

Do not twist the belt. Observe position of the drive end cap.

The new belt to be installed must be checked for correct length and, if necessary, shortened according to the following table.

Size	Belt length OSP-EBHD
20	2 x Stroke length + 639 mm
25	2 x Stroke length + 830 mm
32	2 x Stroke length + 960 mm
50	2 x Stroke length + 1310 mm

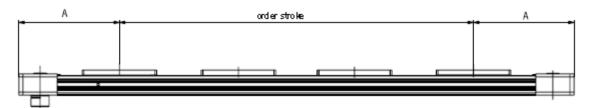
Information

The cut for the shortening of the belt must be made in the valley between two peaks.

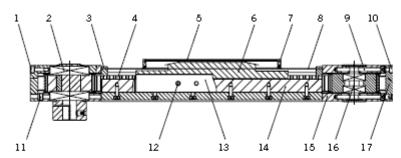
The belt for the linear drive OSP-E..BP is to be divided according to the following table.

Important:

applies only for OSP-E..BHD..BP (Option carrier: bi-directional: synchronous counter movement)


- Divide belt in the middle.
- Shorten the belt according to the following table

Sorting of tooth belt, bi-parting		
Size	Teeth	
	Drive side	Reverse Guide side
20	3	4
25	2	1
32	4	3
50	6	5


Information

After assembly, the clearance dimension (A) on both sides must be checked and corrected if necessary by offsetting the belt.

Size	Clearance Dimension A
20	185 mm
25	218 mm
32	262 mm
50	347 mm

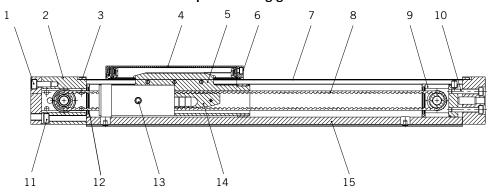
The belt is mounted in the dismantled condition of the linear drive.

- Place the belt (4) around the belt wheels.
- Locate the belt (4) into the clamping strip (13) on both sides in such a way that, in each case, at least six teeth (size 25 and 32) and ten teeth (size 50) engage.
- Secure the clamping strip with screws at the roller shoe couple (secure with thread lock).
- Press together the belt between end cap (16) and carrier (6) and place in the slot of the aluminium profile OSP-E..BHD with recirculating ball bearing system: Carefully slide carriage with linear guidance system (6) onto the guide rail (14) and remove transportation lock for balls. Install carriage (6), drive housing (2) and linear guidance housing (15)
- OSP-E..BHD with roller guides: Push carriage with roller guides (6) onto the guide rail (14) and install drive housing (2) and housing for linear guidance (15).

- Secure the drive end cap (2) with the four hex screws (11) at the aluminium profile (15).
- Mount the end cap (15) with hex screws at the aluminium profile.
- Tension the belt (8) in accordance with Chapter 7.3.4.
- Push the outer band (8) through the carrier(6) and screw tight on both sides with the clamping pieces (3) at the aluminium profile.
- Carefully mount and screw tight cover sheet (5) und cover with wiper (7).
- Secure both covers with hex screws to the individual casings.
- Mount again motor/drive unit as well as all other components attached to it (tightening torques clamping hub, refer to table for load values chapter 7.1 ff).
- The components attached to the carrier are to be mounted again.

Thread size	Tightening torques socket head screws
М 3	1.2 ± 0.2 Nm
M 4	3 ± 0.5 Nm
M 5	5,5 ± 0.8 Nm
M 6	10 ± 1.5 Nm

Thread size	Tightening torques countersunk screws
М 3	0,5 ± 0.1 Nm
M 4	2,2 ± 0.1 Nm


OSP-E..BV

Vertical linear drive with toothed belt and integrated recirculating ball bearing guide

If the toothed belt must be replaced, ask the manufacturer of the drive for possible repair.

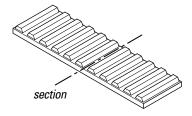
OSP-E..B

Linear drive with toothed belt and internal plain bearing guide

- Release and remove motor/drive unit as well as all other components attached.
- Release and remove the components mounted on the carrier (5).
- Release and remove the two bracing screws (10) so that the bearing housing (9) lies loosely in the aluminium profile (15).
- Remove the fastening screws (6) on both sides and take off carefully the covering (4) with the wipers (snap-in type). Make sure that the wipers and springs maintain their positions.
- Remove the clamping pieces (3) so that the outer band (7) can be removed.
- Remove the fastening screws (1) and take off the cover plate.
- Remove the fastening screws (11).
- Remove the drive end cap (2) including carrier (5) and bearing housing (9).
- Remove socket head screws (13) in order to be able to remove the belt clamping plate (14).
- The belt (8) can now be removed.

Attention

Check the dismantled parts for wear and replace if necessary.


The belt shall not be buckled as this can lead to damage.

When assembling belt and carrier, observe correct direction of movement ! (clamping in carrier)

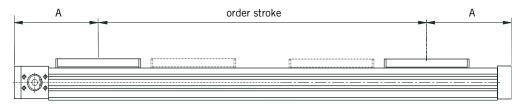
Do not twist the belt. Observe the position of the drive casing.

The new belt to be installed must be checked for correct length and, if necessary, shortened according to the following table.

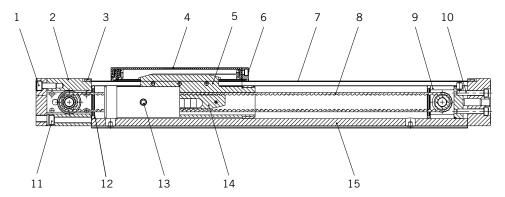
Size	OSP-EB
25	2 x stroke length + 390 mm
32	2 x stroke length + 485 mm
50	2 x stroke length + 670 mm

Information

The cut for the shortening of the belt must be made in the valley between two peaks.


The belt for the linear drive OSP-E...B in Bi-Parting version is to be divided according to the following table.

Size	Belt length	Belt length	
	Drive side	Reverse guide side	
25	stroke length + 200 mm	stroke length + 180 mm	
32	stroke length + 252 mm	stroke length + 222 mm	
50	stroke length + 345 mm	stroke length + 315 mm	


Information

After assembly, the clearance dimension (A) on both sides must be checked and, if required, corrected by shifting the belt.

OSP-EI	В
Size	clearance dimension A
25	125 mm
32	150 mm
50	200 mm

Mounting of the belt

- Place belt (8) around the drive belt wheel.
- Move the X-rings over the belt (8) as these cannot be mounted after.
- Move the belt end, which is not to be clamped, correctly positioned through the carrier (5) and around the second belt wheel (do not forget the X-rings).
- Put in the belt clamping plate (14) into the carrier (5).

OSP-E..B

• Place in the belt (8) into the belt clamping plate (14) on both sides in such a way that no tooth remains free (belt ends meet in the middle).

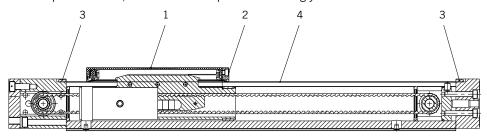
OSP-E..B Bi-Parting version

- Place in the belt (8) into the belt clamping plate (14) on both sides in such a way that the middle tooth of the clamping plate remains free.
- With the screws (13) secure the belt clamping plate to the carrier (5) (and secure with thread lock).
- Move the bearing housing (9) and the carrier (5) into the aluminium profile (15)...

Attention

Do not twist the belt. Observe the position of the drive casing (2). When assembling belt and carrier, observe correct direction of movement! (clamping in carrier

- With the help of the supporting rings and the slide rails, bring the carrier (5) into its correct position.
- Secure the drive end cap (2) with the four hex screws (11) at the aluminium profile (15).
- Secure the cover plate with the two hex screws (1) at the drive end cap (2).


- Tension the belt (8) in accordance with Chapter 7.3.4.
- Push the outer band (7) through the carrier and screw tight on both sides with the clamping pieces at the aluminium profile.
- With great care, mount the covering (4) with the wipers (snap-in type) and screw tight as required. Make sure that the wipers and springs maintain their positions.
- Motor/drive unit and all attached components are to be mounted again.
- The components attached to the carrier are to be mounted again.

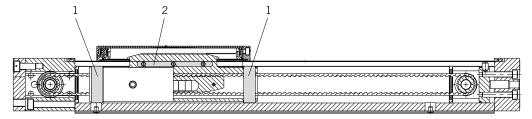
Thread size	Tightening torques socket head screws
М 3	1.2 ± 0.2 Nm
M 4	3 ± 0.5 Nm
M 5	5.5 ± 0.8 Nm
M 6	10 ± 1.5 Nm

Thread size	Tightening torques countersunk screws
М 3	0.5 ± 0.1 Nm
M 4	2.2 ± 0.1 Nm

7.3.6 Replace wiper / outer band

If the wipers are worn, these must be replaced accordingly.

- Loosen and remove the components mounted on the carrier.
- Remove the fastening screws (2) on both sides and take off carefully the covering (1) with the wipers (snap-in type). Make sure that the wipers and springs maintain their positions.
- The new wipers can now be mounted again.


If the outer band has visible damage so that dirt can get into the aluminium profile, it must be replaced immediately.

- Dismantle wipers.
- Remove clamping pieces (3) so that the outer band (4) can be removed and replaced

Thread size	Tightening torques countersunk screws
М 3	0,5 ± 0.1 Nm
M 4	2,2 ± 0.1 Nm

7.3.7 Replace bearing strips / bearing rings

The clearance between the bearing strips (2) and the aluminium profile should be maximum 0.2 mm. Any excess of this value means that the bearing strips must be replaced.

- Dismantle the drive in accordance with Chapter 7.3.4 (do not dismantle the belt!)
- Remove both bearing strips (2) and replace with new bearing strips of the same colour.
- Inspect the supporting rings (1) for wear and, if necessary, replace with new supporting rings of the same thickness.

7.3.8 Check the bearings

If there is increased noise development with the movement of the linear drives, the bearings must be inspected for wear.

Such an inspection should be carried out every 3000 km running performance or every 12 months.

- Loosen and remove motor/drive unit as well as all other components attached.
- Inspect belt and guides for possible dirt (loosen outer band and lift up for visual inspection).
- Turn drive shaft by hand in both directions. This should be possible without jolts and with easy movement. In order to check the running behaviour in a better way, if necessary, mount coupling on drive axle. Observe torque for no-load run! (see page 8/10)
- If this is not possible, the linear drive must be dismantled and the damaged bearing replaced.

8 Spindle drives OSP-E..SB / OSP-E..ST / OSP-E..SBR / OSP-E..STR

8.1 Technical data

8.1.1 General

Detailed information on

- dimensions,
- space requirement,
- weights

are shown in the OSP-E catalogue.

For all linear drives of the product series OSP-E, the following applies:

Temperature ranges:

- OSP-E..SB -20°C to +80°C.
- OSP-E..ST -20°C to +70°C.
- OSP-E..SBR -20°C to +80°C.
- OSP-E..STR -20°C to +70°C.

Installation location: no specific requirements

We reserve the right to make technical alterations!

8.1.2 OSP-E..SB Linear drive with ball screw drive and internal plain bearing guide

Performance overview								
Characteristic	Unit	Description						
Series		OSP-E25SB	OSP-E3	2SB	OSP-E5	OSB		
Pitch	[mm]	5	5	10	5	10	25	50
Max. speed	[m/s]	0.25	0.25	0.5	0.25	0.5	1.25	2.5
Linear motion per revolution of the drive shaft	[mm]	5	5	10	5	10	25	50
Max. speed of the drive shaft	[min ⁻¹]	3 000	3 000		3 000			
Maximum effective action force F _a	[N]	250	600 1 500					
with reference to the drive torque	[Nm]	0.35	0.75	1.3	1.7	3.1	7.3	14.6
No-load torque	[Nm]	0.2	0.2	0.3	0.3	0.4	0.5	0.6
Max. allowable drive torque at the drive shaft	[Nm]	0.6	1.5	2.8	4.2	7.5	20	20
Repeatability	[mm/m]	± 0.05	± 0.05		± 0.05	,		
Max. standard stroke length	[m]	1.1	2.0		3.2			

8.1.3 OSP-E..ST Linear drive with trapezoidal screw drive and internal plain bearing guide

Performance overview						
Characteristic	Unit	Description	Description			
Series		OSP-E25ST	OSP-E32ST	OSP-E5OST		
Pitch	[mm]	4	4	6		
Max. speed	[m/s]	0.1	0.1	0.15		
Linear motion per revolution of the drive shaft	[mm]	4	4	6		
Max. speed of the drive shaft	[min ⁻¹]	1 500	1 500	1 500		
Maximum effective action force F _A	[N]	600	1 300	2 500		
with reference to the drive torque	[Nm]	1.35	3.2	8.8		
No-load torque	[Nm]	0.3	0.4	0.5		
Max. allowable drive torque at the drive shaft	[Nm]	1.55	4.0	9.4		
Self-locking F _L	[N]	600	1300	2500		
Repeatability	[mm/m]	± 0.5	± 0.5	± 0.5		
Max. standard stroke length	[m]	1.1	2.0	2.5		

8.1.4 OSP-E..SBR

Linear drive with ball screw drive, internal plain bearing guide and piston rod

Performance overview							
Characteristic	Unit						
Series		OSP-E25SBR	OSP-E3	2SBR	OSP-E	50SBR	
Pitch	[mm]	5	5	10	5	10	25
Max. speed	[m/s]	0.25	0.25	0.5	0.25	0.5	1.25
Linear motion per revolution of the drive shaft	[mm]	5	5	10	5	10	25
Max. speed of the drive shaft	[min ⁻¹]	3 000	3 000		3 000		
Maximum effective action force F _A with reference to the drive torque	[N]	250	550	1090	750	990	1680
	[Nm]	0.3	0.65	2.6	0.9	2.4	10
No-load torque	[Nm]	0.2	0.2	0.3	0.3	0.4	0.5
Max. allowable drive torque at the drive shaft	[Nm]	0.6	1.5	2.8	4.2	7.5	20
Repeatability	[mm/m]	± 0.05	± 0.05		± 0.0	5	
Max. standard stroke length	[mm]	500	500		500		

8.1.5 OSP-E..STR

Linear drive with trapezoidal screw drive, internal plain bearing guide and piston rod

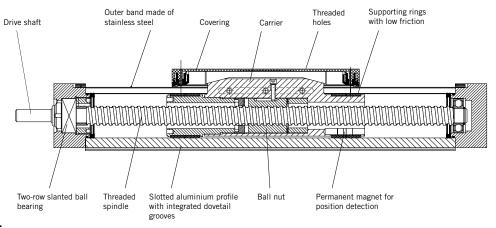
Performance overview				
Characteristic	Unit			
Series		OSP-E25STR	OSP-E32STR	OSP-E50STR
Pitch	[mm]	3	4	5
Max. speed	[m/s]	0.075	0.1	0.125
Linear motion per revolution of the drive shaft	[mm]	3	4	5
Max. speed of the drive shaft	[min-1]	1 500	1 500	1 500
Maximum effective action force FA	[N]	800	1 600	3 300
with reference to the drive torque	[Nm]	1.35	3.4	9.25
No-load torque	[Nm]	0.3	0.4	0.5
Max. allowable drive torque at the drive shaft	[Nm]	1.7	4.4	12
Self-locking FI	[N]	800	1600	3300
Repeatability	[mm/m]	± 0.5	± 0.5	± 0.5
Max. standard stroke length	[m]	0.5	0.5	0.5

8.2 Structural arrangement and operating mode

8.2.1 General arrangement

The linear drives are used in all those places where loads are to be transported and/or have to be precision-positioned.

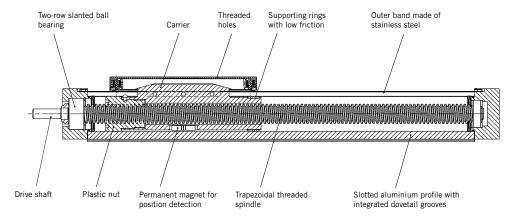
With a combination of several linear drives, a wide-surface covering or room-orientated arrangement can be realised.


- On a slotted aluminium profile with dovetail grooves, on the ends, the end cap required for the driving elements are mounted.
- In this barrel profile, a carrier is moved where supporting rings are attached to both ends. These provide
 the lowest possible sliding friction.
- The attachment of the load material is connected by way of threaded holes at the carrier.
- Dirt is prevented from getting into the aluminium profile by an outer band made of high quality stainless steel.
- An integrated permanent magnet is used for the purpose of position detection.
- On the side of the drive shaft there are end cap screws with internal threads for securing the coupling housing and the flange plate.

8.2.2 OSP-E..SB

Linear drive with ball screw drive, internal plain bearing guide and piston rod

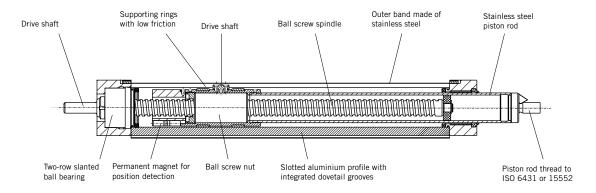
Design Features


- · Ball screw drive
- internal plain bearing guide

8.2.3 OSP-E..ST

Linear drive with trapezoidal screw drive, internal plain bearing guide and piston rod

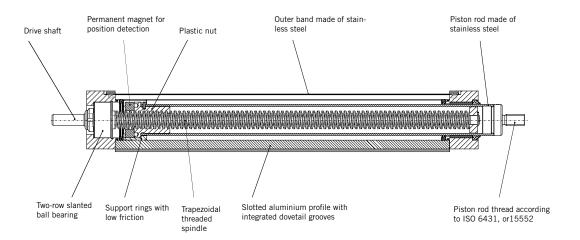
- Trapezoidal thread drive
- self locking



8.2.4 OSP-E..SBR

Linear drive with ball screw drive, internal plain bearing guide and piston rod

Design Features


- Ball screw spindle
- Piston rod made of stainless steel

8.2.5 OSP-E..STR

Linear drive with trapezoidal screw drive, internal plain bearing guide and piston rod

- Trapezoidal thread drive
- · Piston rod made of stainless steel

8.3 Maintenance / repair

Attention

Maintenance and repair work shall only be carried out by specially trained and instructed persons! The machine or the working zone must be cordoned off for safety purposes as required!

8.3.1 Cleaning

The linear drive must be kept free from dirt particles at all times, particularly the surface between the outer band and the aluminium profile and/or the wipers at the carrier.

For cleaning, use only non aggressive cleansers and lint-free cloths.

Attention

After every cleaning operation, the corresponding parts must be lubricated as required.

8.3.2 Lubrication

The shaft bearings have life-long lubrication.

The following aspects of the linear drives must be taken into account:

- Load
- Speed
- Temperature
- Surrounding condition

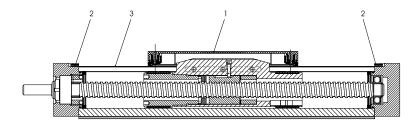
Lubricant for trapezoidal and ball screw spindle as well as cylinder tube

Parker-Origa-grease 2 (HO-Grease 2 Ident No.: #15071 Tube 45 gr)

Inspection interval for linear drive OSP-E..SB and OSP-E..SBR

Carry out a visual inspection after an operating period of max. 3000 km or 12 months.

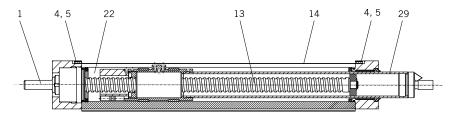
Inspection interval for linear drive OSP-E..ST and OSP-E..STR


Carry out a visual inspection after an operating period of max. 300 km or 24 months.

Visual inspection for lubricating grease

- Make sure that the outer band/piston rod has always a thin lubricating film on both sides.
- Make sure that the spindles are covered with a thin lubricating film. For this purpose, the clamping
 pieces for the outer band must be loosened so that this can be lifted up easily.

Lubricating the drive OSP-E..SB and OSP-E..ST


- Push the carrier (1) into the central position.
- Loosen clamping pieces (2) and lift up the outer band (3).
- Place a line of grease on the threaded spindle and the inside of the tube.
- Push the driver backward and forward a few times by hand to over the entire guide length.
- Tightly clamp the outer band again.

Thread size	Tightening torques countersunk screws
М 3	0,5 ± 0,1 Nm
M 4	2,2 ± 0,1 Nm

Lubricating the spindle of linear drive OSP-E..SBR and OSP-E..STR

- Remove the motor / drive unit from the drive shaft (1).
- Move the piston rod (29) by hand into the extended position.
- Release the countersunk screws (4) and clamping piece (5). Lift the cover band (14).
- Dispense a continuous string of grease on to the threaded spindle (13) and the inside of the tube (22)).
- Move the piston rod (29) by hand several times through the complete stroke.
- Reposition the cover band (14). Put the clamping piece (5) back into place and insert the counter-sunk screws (4), tightening them to the appropriate torque.
- After the lubrication the motor / drive unit is ready to be mounted again.

Thread size	Tightening torques countersunk screws
М 3	0,5 ± 0,1 Nm
M 4	2,2 ± 0,1 Nm

8.3.3 Check axle backlash of drive spindles

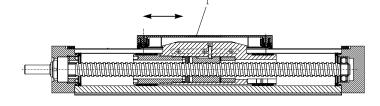
Inspection of the axle backlash of the drive spindles

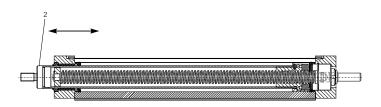
• The axle backlash of the drive spindles is determined by axially moving the carrier (1) (OSP-E..SB / OSP-E..ST) and/or the piston rod (2) (OSP-E..SBR / OSP-E..STR) at machine standstill.

The determined clearance should not exceed:

• **OSP-E..S** 0.2 mm

• **OSP-E..ST** 0.5 mm


• **OSP-E..SBR** 0.2 mm


OSP-E..STR 0.5 mm

If the allowable backlash clearance is exceeded, the spindle nuts and/or the spindles must be replaced.

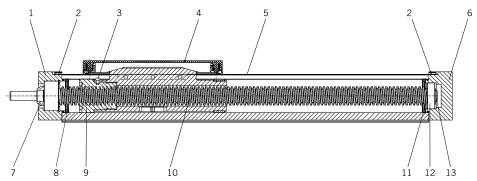
8.3.4 Replacing the spindle nut / spindle

Attention

OSP-E..SB

Linear drive with ball screw drive and internal plain bearing guide

Information


The exchange of the ball screw spindle requires perfect coordination. The ball screw nut must be adjusted precisely in order to avoid premature wear due to faulty installation.

The spindle must only be repaired by Parker-Origa GmbH or separately instructed personnel.

OSP-E..ST

Linear drive with trapezoidal screw drive and internal plain bearing guide

Dismantling spindle / spindle nut

- Release and remove motor/drive unit as well as all other components attached.
- Release and remove the components mounted on the carrier (4).
- Release clamping pieces (2) and remove clamp.
- Remove outer band (5).
- By releasing the fastening screws, separate the end cap (6) from the aluminium profile and remove from the spindle.
- Separating the end cap (1) from the aluminium profile by loosening the fastening screws.
- Take out the carrier (4) with the trapezoidal threaded spindle from the aluminium profile.
- Remove circlip (13), ball bearing (12) and X-ring (11).
- Turn out carrier with spindle nut (9).
- Remove locking screw (3).
- Replace spindle nut (9).
- In order to change the trapezoidal threaded spindle (10), loosen the locking nut (7), remove end cap (1) with ball bearing (drive side) and X-ring (8)

Installing the spindle nut

- Screw in the new spindle nut up to the stop in the carrier.
- Drill hole for locking screw (3) in spindle nut (anti-rotation) in accordance with the following table.

Size	Diameter	Depth
25	2,2 mm	5 mm
32	2,5 mm	5 mm
50	3,1 mm	5 mm

Attention

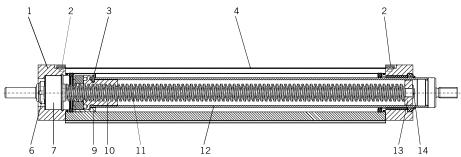
Do not drill into the thread itself!

Screw in the locking screw (3)

Installing the trapezoidal threaded spindle

- Turn the trapezoidal threaded spindle (10) into the spindle nut (9).
- The assembly of the spindle and ball screw nut is carried out in the reverse sequence of the disassembly.

Thread size	Tightening torques countersunk screws
М 3	0.5 ± 0.1 Nm
M 4	2.2 ± 0.1 Nm


Thread size	Tightening torques locking nut
M 8	10 ± 1.5 Nm
M 12	24 ± 2 Nm
M 17	30 ± 2 Nm

Thread size	Tightening torques socket head screws
М 3	1,2 ± 0.2 Nm
M 4	3 ± 0.5 Nm
M 5	5,5 ± 0.8 Nm
M 6	10 ± 1.5 Nm

OSP-E..STR

Linear drive with trapezoidal screw drive, internal plain bearing guide and piston rod

Dismantling the spindle / spindle nut

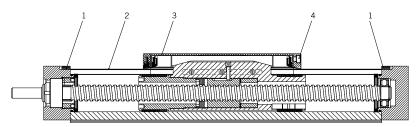
- Release and remove motor/drive unit as well as all other components attached.
- Release clamping pieces (2) and remove clamp.
- Remove outer band (4).
- By loosening the fastening screws, separate the drive end cap (1) from the aluminium profile and take out completely the spindle (11) with the piston rod (12).
- Remove the supporting ring (9).
- Remove the locking pin (3).
- Turn out the spindle nut (10) from the piston rod and take out the spindle.
- Remove retaining ring (14) and supporting bearing (13).
- Turn out the spindle nut.
- In order to change the trapezoidal spindle (11), loosen the locking nut (6) and remove the drive end cap (1) with ball bearing (7)

Installing the spindle nut / trapezoidal threaded spindle

- Screw a new spindle nut onto the trapezoidal threaded spindle.
- Screw in the spindle nut up to the stop into the piston rod profile.
- Drill a hole for locking pin (3) in spindle nut (anti-rotation) in accordance with the following table.

Size	Diameter	Depth
25	2.5 mm	4 mm
32	2.5 mm	4 mm
50	3 mm	6 mm

Attention


Do not drill into the thread itself!

- Screw in the locking screw (3).
- Assemble the dismantled parts again in reverse order (torques, refer to OSP-E..ST, above).

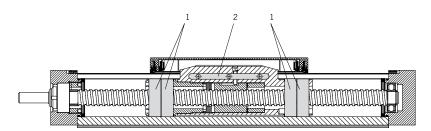
8.3.5 Replacing the wiper / outer band

If the wipers are worn down (OSP-E..S and OSP-E..ST), these must be replaced accordingly.

• Loosen and remove the components mounted on the carrier.

- Remove the fastening screws (4) on both sides and take off carefully the covering (3) with the wipers (snap-in type). Make sure that the wipers and springs maintain their positions.
- The new wipers can now be mounted again.

If the outer band has visible damage so that dirt can get into the aluminium profile, it must be replaced immediately.


- Dismantle wipers (OSP-E..S and OSP-E..ST).
- Remove clamping pieces (1) so that the outer band (2) can be removed and replaced.

Thread size	Tightening torques countersunk screws
M 3	0.5 ± 0.1 Nm
M 4	2.2 ± 0.1 Nm

8.3.6 Replacing bearing strips (OSP-E..S and OSP-E..ST) / supporting rings

The clearance between the bearing strips (1) and the aluminium profile should be maximum 0.2 mm. Any excess of this value means that the slide rails must be replaced.

Dismantle drive according to Chapter 8.3.4 (do not dismantle spindle and nut!)

- Remove both bearing strips (2) and replace with new bearing strips of the same colour.
- Check both supporting rings (1) for wear and replace, if necessary, by new supporting rings with the same thickness.

8.3.7 Checking the bearings

If there is increased noise development with the movement of the linear drives, the bearings must be inspected for wear.

We recommend an inspection of the linear drives (**OSP-E..ST** and **OSP-E..STR**) after an operating duration of max. 300 km or 24 months.

An inspection of the linear drive **OSP-E..SB** and **OSP-E..SBR** should be carried out after an operating duration of max. 3000 km or 12 months.

- Release and remove motor/drive unit as well as all other components attached.
- Check the spindles and guides for possible dirt (loosen outer band and lift up for visual inspection).
- Turn drive shaft by hand in both directions. This should be possible without jolts and with easy movement. In order to check the running behaviour in a better way, if necessary, mount coupling on drive axle.
 Observe torque for no-load run! (see cap. 7.1...)
- If this is not possible, the linear drive must be dismantled and the damaged bearing replaced.

9 Accessories

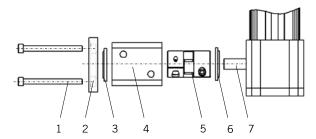
9.1 Multi-axle system

With the use of **Parker-Origa** adapter plates, profile attachments and/or intermediate drive shafts, the connection of linear drives in a multi-axle arrangement is possible.

Further information on this subject can be found in the OSP-E catalogue.

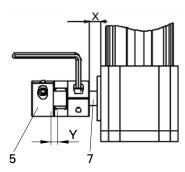
9.2 Linear guides

The **Origa System Plus—OSP**—offers the possibility of adapting various types of guides to the linear drive. Further information on this subject is available in the OSP-E catalogue or in the separate operating instructions for guides and brakes.

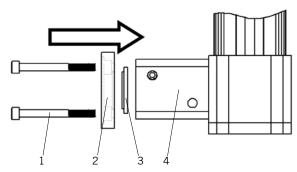

9.3 Mountings and sensors

With the help of the comprehensive range of **Parker-Origa** accessories for mounting components, the linear drives can be secured depending on the surrounding conditions.

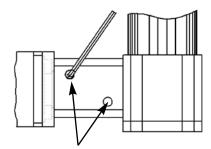
With the **Parker-Origa** sensors, a non-contact scanning of the linear drives is achieved at end and/or intermediate positions.


Further information on this subject can be found in the OSP-E catalogue.

9.4 Couplingbox and coupling


9.4.1 OSP-E belt drive

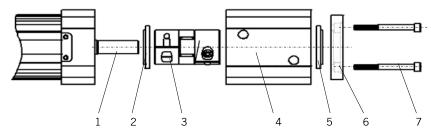
- Push the location ring (6) over the drive shaft (7) until this is positioned in the cover of the drive. Observe and ensure correct location of the location ring!
- Connect the coupling (5) with the drive shaft (7) in such a way that there is a defined clearance "X", as stated in the table
- or make sure that the hex screw at the motor end of the coupling is accessible through the window in the coupling housing (4).
- Secure coupling (5) to the drive shaft (7).
- Push the coupling housing (4) onto the location ring (6).

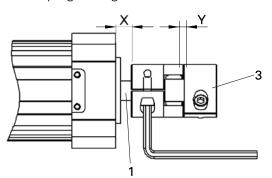


Size	Dimension "X"	Dimension "Y"	Tightening torque
OSP-E20BHD	6,4 mm	2 mm	10,5 Nm
OSP-E20BV	6,4 mm	2 mm	10,5 Nm
OSP-E25BV	13 mm	2 mm	10,5 Nm
OSP-E25B	14 mm	1 mm	0,76 Nm
OSP-E32B	10 mm	1,5 mm	1,34 Nm
OSP-E50B	5 mm	2 mm	10,5 Nm

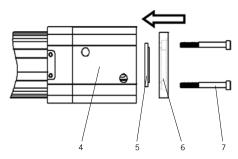
Place location ring (3) into the coupling housing. Observe and ensure correct location of the location ring!

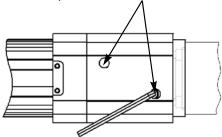
- Fix-position the motor flange (2) at the coupling housing (4).
- Secure the coupling unit at the linear drive with the screws (1).
- Tightly screw the motor to the motor flange (2).
- Tighten the screws of the coupling through the window of the coupling case (4). Use a screw driver to assist in the alignment of the screws. This can be inserted into the notch at the coupling and the coupling can then be turned into the desired position.
- Insert the plugs into the coupling housing to prevent the penetration of dirt.




Attention

Some motor systems (e.g., Servo) are to be adjusted in advance before they are connected up to the drive.

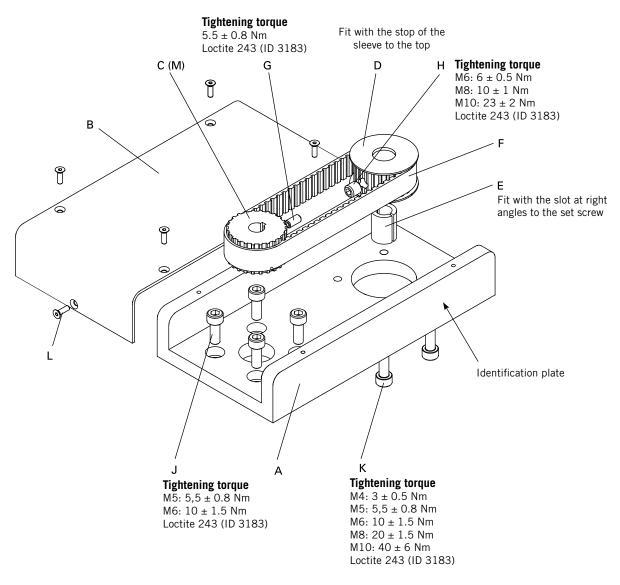

9.4.2 OSP-E spindle drive


- Push the location ring (2) over the drive shaft (1) until this is positioned in the cover of the drive. Observe and ensure correct location of the location ring!
- Connect the coupling (3) with the drive shaft (1) in such a way that there is a defined clearance "X", as stated in the table
- or make sure that the hex screw at the motor end of the coupling is accessible through the window in the coupling housing (4).

Size	Dimension "X"	Dimension "Y"	Tightening torque
25	5 mm	1 mm	0,76 Nm
32	15 mm	1,5 mm	1,34 Nm
50	13 mm	2 mm	10,5 Nm

- Secure coupling (3) on the drive shaft.
- Push the coupling housing (4) onto the location ring of the drive (6).
- Place fitting ring (5) into the coupling housing. Observe and ensure correct location of the location ring!
- Fix-position the motor flange (6) at the coupling housing (4).
- Secure the coupling unit at the linear drive with the screws (7).
- Tightly screw the motor to the motor flange (6).
- Tighten the screws through the window of the coupling housing. Use a screw driver to assist in the alignment of the screws. This can be inserted into the notch at the coupling and the coupling can then be turned into the desired position.

• Insert the plugs into the coupling housing to prevent the penetration of dirt.



Attention

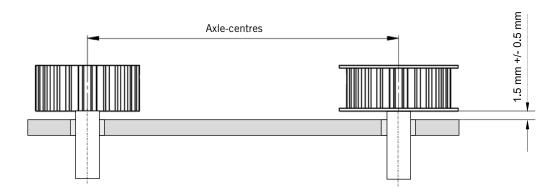
Some motor systems (e.g., Servo) are to be adjusted in advance before they are connected up to the drive.

9.5 Synchronous belt drive with configuration capability

9.5.1 Design Features

Parts for the option "smooth drive shaft"

POS	DESIGNATION
С	COG BELT WHEEL ACTUATOR A T5 DRIVE SIDE
М	CLAMPING SLEEVE


POS	DESIGNATION
Α	FLANGE PLATE
В	COVER
С	COG BELT WHEEL A T5 DRIVE SIDE
D	COG BELT WHEEL A T5 MOTOR SIDE
E	CLAMPING SLEEVE
F	COG BELT
G	SOCKET SET SCREW DRIVE SIDE
Н	SOCKET SET SCREW MOTOR SIDE
J	SOCKET HEAD CAP SCREW DRIVE SIDE
K	SOCKET HEAD CAP SCREW MOTOR SIDE
L	COUNTERSUNK SCREW M3 X 10 DIN 7991
	IDENTIFICATION PLATE

9.5.2 Sequence of assembly:

Pay attention to tightening torque.

- Fit the motor to the flange plate.
- Fit the linear drive to the flange plate ensuring that the axles centres are set at the correct distance appart. (See table)
- Push on belt wheels and feed on timing belt. (See drawing)
- Set the clearence between the belt wheel and flange face to 1.5+/- 0.5mm and tighten the locking screws.
- Install toothed belts and correct centre distance if necessary.
- Fit the cover plate.

Size	OSP-E25		OPS-E32		0SP-E50	
Transmission ratio	1:1	2:1	1:1	2:1	1:1	2:1
Axle-centres [mm]	110	109.3	110	111.4	135	133.7

Manufacturer's Declaration

in accordance with EU-Directives Machinery (89/392/ EC, replaced by 98/37/EU appendix II B)

The design of the OSP-E:

Types:

OSP-E..BHD / OSP-E..BV / OSP-E..B

OSP-E..SB / OSP-E..ST / OSP-E..SBR / OSP-E..STR

is developed, designed and manufactured in compliance with Guidelines 98/37/EU and is the sole responsibility of

Company:

Parker-Origa GmbH Industriestraße 8 DE-70794 Filderstadt

To the OSP-E following related standards apply:

- DIN EN ISO 12100, Safety of Applicanes Plant and Machinery
- DIN EN 60204.1, Equipment for Industrial Machines

Full technical documentation is available.

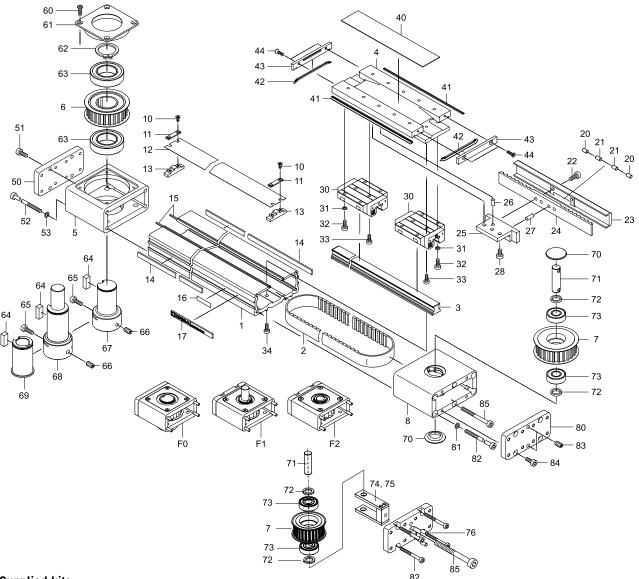
Commissioning of the OSP-E is forbidden until it has beed established that the machine/plant in which it is to be installed complies with the requirements of the EU Machines Directives.

Filderstadt, august 2006

Johann Asperger

Managing Director

Dr. Robert Eschmann

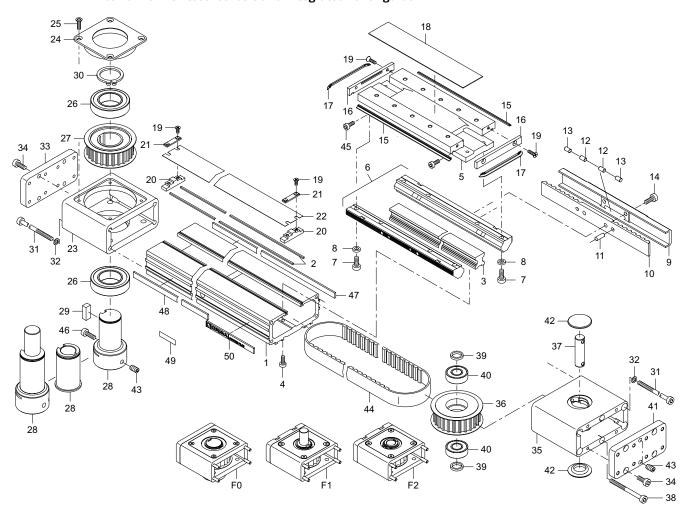

i.V. P. E.Q-

Dep. for Research and Development

11 Spare part lists

11.1 OSP-E..BHD

BHDII: Linear drive with toothed belt and integrated recirculating ball bearing guide

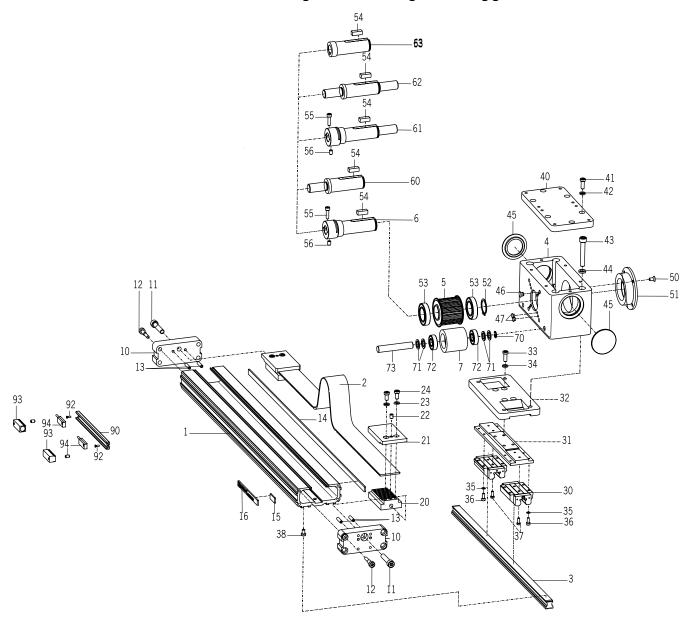

Description	Order No.			Contents	
	OSP-E20BHD	OSP-E25BHD	OSP-E32BHD	OSP-E50BHD	
Service kit	16317	15266	15267	15268	2, 10, 11, 12, 13, 70
Outer-band-kit	16316	15271	15272	15273	10, 11, 12, 13
End cap kit - run end	16145	12930	12931	12932	7, 70, 71, 72, 73, 8, 80, 81, 82, 83, 84, 85
End cap kit - drive clamp shaft	16144	12927	12928	12929	5, 50, 51, 52, 53, 6, 60, 61, 62, 63, 64, 65, 66, 67
End cap kit - drive clamp shaft and plain shaft	16148	15093	15095	15097	5, 50, 51, 52, 53, 6, 60, 61, 62, 63, 64, 65, 66, 68
End cap kit - plain shaft	16185	16318	16319	16320	5,50,51,52,53,6,60,61,62,63,64,90
End cap kit - drive hollow shaft	16147	15094	15096	15098	5, 50, 51, 52, 53, 6, 60, 61, 62, 63, 64, 65, 66, 69

POS.	DESCRIPTION				
1	CYLINDER BARREL OSP-EBHD				
2	TOOTH BELT OSP-EBHD				
3	GUIDE RAIL OSP-EBHD				
4	CARRIER OSP-EBHD				
5	CAP ACTUATOR OSP-EBHD				
6	TOOTH BELT WHEEL ACTUATOR OSP-EBHD				
7	TOOTH BELT WHEEL CIRCULATION OSP-EBHD				
8	END CAP RUN END OSP-EBHD				
10	COUNTERSUNK SCREW DIN 7991				
11	CLAMPING PIECE FOR OUTER BAND OSP-EBHD				
12	OUTER BAND OSP-EBHD				
13	CLAMPING PIECE FOR INNER BAND OSP-EBHD-II				
14	COVER RAIL				
15	MAGNETIC STRIP				
16	IDENTIFICATION PLATE				
17	COVER RAIL- LABEL				
20	STEEL BOLT (2*0SP-E20BHD, 25BHD, 32BHD / 3*0SP-E50BHD)				
21	MAGNET (1*0SP-E20BHD / 6*0SP-E25BHD / 2*0SP-E32BHD / 3*0SP-E50BHD)				
22	SOCKET HEAD CAP SCREW DIN 6912				
23	CLAMPING PLATE OSP-EBHD				
24	TOOTH BELT KEYLOCK OSP-EBHD				
25	TOOTH BELT SHACKLE PLATE OSP-EBHD-II				
26	ROLL PIN DIN 6325 ONLY OSP-E32BHD AND OSP-E50BHD				
27	ROLL PIN DIN 7				
28	SOCKET HEAD CAP SCREW DIN 7984				
30	GUIDED CARRIAGE OSP-EBHD				
31	WASHER				
32	SOCKET HEAD CAP SCREW DIN 912				
33	SOCKET HEAD CAP SCREW DIN 7984				
34	SOCKET HEAD CAP SCREW DIN 7984				
40	COVER OSP-EBHD				
41	SIDE WIPER				
42	WIPER GABLE END				
43	WIPER COVER				

POS.	. DESCRIPTION					
44	COUNTERSUNK SCREW DIN 7991					
50	COVER PLATE ACTUATOR FOR OSP-EBHD					
51	SOCKET HEAD CAP SCREW DIN 912					
52	SOCKET HEAD CAP SCREW DIN 912					
53	WASHER					
60	COUNTERSUNK SCREW DIN 7991					
61	COVER CAP ACTUATOR OSP-EBHD					
62	WASHER DIN 471					
63	BALL BEARING					
64	KEY DIN 6885					
65	SOCKET HEAD CAP SCREW DIN 912					
66	SOCKET SET SCREW DIN 913					
67	CLAMP SHAFT					
68	CLAMP SHAFT WITH PLAIN SHAFT					
69	HOLLOW SHAFT WITH KEYWAY					
70	COVER CAP (NOT OSP-E20BHD)					
71	AXLE CIRCULATION OSP-EBHD					
72	DISTANCE RING OSP-EBHD					
73	BALL BEARING					
80	COVER PLATE CIRCULATION OSP-EBHD					
81	WASHER					
82	SOCKET HEAD CAP SCREW DIN 912					
83	SOCKET SET SCREW DIN 913					
84	SOCKET HEAD CAP SCREW DIN 912					
85	SOCKET HEAD CAP SCREW DIN 912					

11.2 OSP-E..BHD

BHD: Linear drive with toothed belt and integrated roller guide

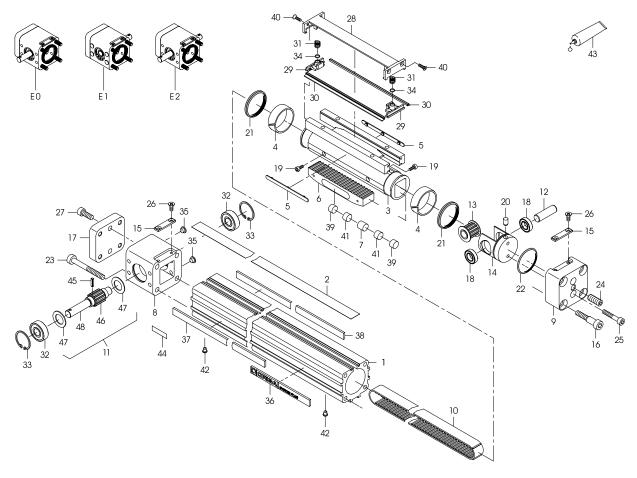

Description Order No.		Contents		
	OSP-E25BHD	OSP-E32BHD	OSP-E50BHD	
Service kit	15266	15267	15268	19, 20, 21, 22, 42, 44
Outer-band-kit	15271	15272	15273	19, 20, 21, 22
End cap kit - run end	12930	12931	12932	31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43
End cap kit - drive clamp shaft	12927	12928	12929	23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 43, 46
End cap kit - clamp shaft with plain shaft	15093	15095	15097	23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 43, 46
End cap kit - drive plain	16318	16319	16320	5,50,51,52,53,6,60,61,62,63,64,90
End cap kit - drive hollow shaft	15094	15096	15098	23, 24, 25, 26, 27, 28, 29, 30, 31,32, 33, 34

POS.	DESCRIPTION
1	CYLINDER BARREL OSP-EBHD CUT TO LENGTH
2	MAGNET BAND
3	DOUBLE RAIL FD15K OSP-EBHD CUT TO LENGTH
4	CYLINDER SCREW DIN 912
5	CARRIER OSP-EBHD
6	ROLLER SHOE PAIR OSP-EBHD
7	CYLINDER SCREW DIN 912
8	LOCKING DISK
9	CLAMPING PLATE OSP-EBHD
10	BELT LOCK OSP-EBHD
11	CYLINDRICAL PIN DIN 7
12	MAGNET
13	STEEL BOLT OSP-E32BHD / OSP-E50BHD
14	CYLINDER SCREW DIN 6912
15	WIPER SIDE OSP-EBHD CUT TO LENGTH
16	WIPER COVER OSP-EBHD
17	WIPER END OSP-EBHD CUT TO LENGTH
18	COVERING OSP-EBHD
19	COUNTERSUNK SCREW DIN 7991
20	CLAMPING PIECE INTERN OSP-EBHD
21	CLAMPING PIECE OUTER BAND OSP-EBHD
22	OUTER BAND CUT TO LENGTH OSP-EBHD
23	COVER DRIVE FOR OSP-EBHD CLAMP SHAFT
24	COVERING COVER DRIVE OSP-EBHD
25	COUNTERSUNK SCREW DIN 7991
26	BALL BEARING
27	BELT WHEEL DRIVE FOR OSP-EBHD
28	CLAMP SHAFT OSP-EBHD / HOLLOW SHAFT
29	ADUSTING SPRING DIN 6885
30	LOCKING DISK DIN 471

POS.	DESCRIPTION					
31	CYLINDER SCREW DIN 912					
32	LOCKING DISK					
33	COVER PLATE DRIVE FOR OSP-EBHD KL.					
34	CYLINDER SCREW DIN 912					
35	COVER REVERSE GUIDE OSP-EBHD					
36	BELT WHEEL REVERSE GUIDE FOR OSP-EBHD					
37	AXLE REVERSE GUIDE FOR OSP-EBHD					
38	CYL. SCREW DIN 912					
39	DISTANCE RING FOR OSP-EBHD					
40	BALL BEARING					
41	COVER PLATE REVERSE GUIDE FOR OSP-EBHD					
42	COVER CAP					
43	THREADED PIN DIN 916					
44	BELT OSP-EBHD CUT TO LENGTH					
45	CYLINDER SCREW DIN 7984					
46	CYLINDER SCREW DIN 912					
47	COVER RAIL METER GOODS					
48	COVER RAIL METER GOODS					
49	IDENTIFICATION PLATE					
50	COVER RAIL FOR NAMEPLATE					

11.3 OSP-E..BV

Vertical linear drive with tooth belt and integrated recirculating ball bearing guide



POS.	S. DESCRIPTION				
1	CYLINDER BARREL OSP-EBV				
2	TOOTHED BELT OSP-EBV				
3	GUIDE RAIL OSP-EBV				
4	CAP ACTUATOR OSP-EBV				
5	TOOTHED BELT DRIVE OSP-EBV				
6	CLAMP SHAFT				
7	TOOTH BELT WHEEL CIRCULATION OSP-EBV				
10	COVER PLATE OSP-EBV				
11	SOCKET HEAD CAP SCREW DIN 912				
12	SCREW FOR COVER				
13	SOCKET SET SCREW DIN 916				
14	COVER RAIL				
15	IDENTIFICATION PLATE				
16	COVER RAIL IDENTIFICATION PLATE				
20	BELT LOCK OSP-EBV				
21	CLAMPING PLATE OSP-EBV				
22	CYLINDRICAL PIN DIN 6325				
24	SOCKET HEAD CAP SCREW DIN 7984				
30	GUIDED CARRIAGE OSP-EBV				
31	CARRIER PLATE OSP-EBV				
32	COVER PLATE OSP-EBV				
33	SOCKET HEAD CAP SCREW DIN 7984				
34	LOCK WASHER				
35	LOCK WASHER				
36	SOCKET HEAD CAP SCREW DIN 912				
37	SOCKET HEAD CAP SCREW DIN 6912				
38	SOCKET HEAD CAP SCREW DIN 7984				
40	COVER PLATE DRIVE OSP-EBV				
41	SOCKET HEAD CAP SCREW DIN 7984				

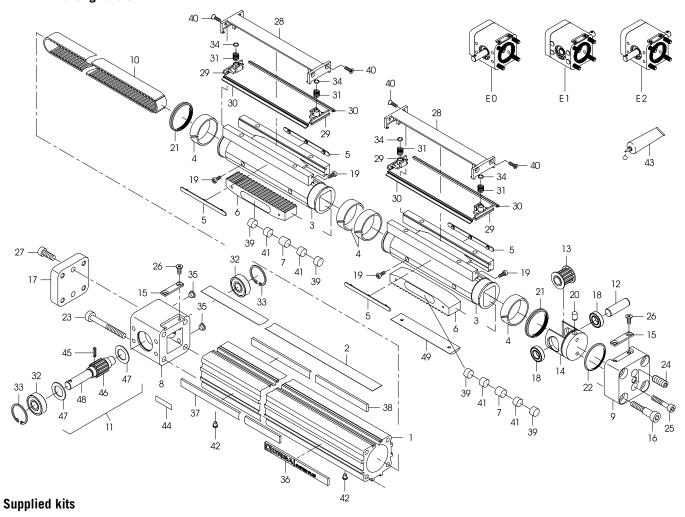
POS	DESCRIPTION
42	LOCK WASHER
43	SOCKET HEAD CAP SCREW DIN 912
44	LOCK WASHER
45	COVER CAP GPN 910/4010
46	PLUG 7 D
47	PLUG M6
50	COUNTERSUNK SCREW DIN 7991
51	COVER CAP ACTUATOR OSP-EBV
52	LOCK WASHER DIN 471
53	BALL BEARING
54	KEYWAY
55	SOCKET HEAD CAP SCREW DIN 912
56	SOCKET SET SCREW DIN 913
_60	SHAFT WITH PLAIN
61	CLAMP SHAFT WITH PLAIN SHAFT
62	CLAMP SHAFT WITH PLAIN SHAFT DOUBLE SIDED
_63	HOLLOW SHAFT WITH KEYWAY
70	LOCK WASHER DIN 472
_71	DISTANCE RING
_72	BALL BEARING
73	KEEPER
90	LOCK RAIL
92	SOCKET HEAD CAP SCREW
93	MAGNET
94	KL3087 (RS-S NC)

11.4 OSP-E..B

Linear Drive with toothed belt and internal plain bearing guide

Description	Order No.		Contents	
	OSP-E25B	OSP-E32B	OSP-E50B	
Seal kit	12110	12111	12112	4, 5, 19, 21, 22, 28, 29, 30, 31, 34, 40, 43
Service kit	15247	15248	15249	Seal kit + 2, 10
Carrier kit	12172	12173	12174	3, 4, 5, 6, 7, 19, 28, 29, 30, 31, 34, 39, 40, 41
End cap kit running unit	12113	12117	12121	9, 12, 13, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26
End cap kit shaft 0	12114 / 15277*	12118 / 15280*	12122 / 15283*	8, 15, 17, 21, 23, 26, 27, 32, 33, 35, 45, 46, 47, 48
End cap kit shaft 1	12115 / 15278*	12119 / 15281*	12123 / 15284*	8, 15, 17, 21, 23, 26, 27, 32, 33, 35, 45, 46, 47, 48
End cap kit shaft 2	12116 / 15279*	12120 / 15282*	12124 / 15285*	8, 15, 17, 21, 23, 26, 27, 32, 33, 35, 45, 46, 47, 48

^{*)} Stainless steel version


POS.	DESCRIPTION
1	CYLINDER BARREL OSP-EB CUT TO LENGTH
2	OUTER BAND CUT TO LENGTH OSP-EB
3	CARRIER OSP-EB
4	SUPPORT RING OSP-EB
5	BEARING STRIP OSP-EB
6	MAGNET HOUSING FOR OSP-EB
7	MAGNET 10D X 3L FOR OSP-EB
8	DRIVE END CAP FOR OSP-EB
9	RUN END CAP FOR OSP-EB
10	BELT OSP-EB CUT TO LENGTH
11	SHAFT ONE-SIDE OSP-E32B / OSP-E50B
12	AXLE REVERSE GUIDE FOR OSP-EB
13	BELT WHEEL REVERSE GUIDE FOR OSP-EB
14	BEARING HOUSING FOR OSP-EB
15	CLAMPING PIECE EXTERN
16	SCREW FOR COVER
17	COVER PLATE FOR OSP-EB
18	BALL BEARING
19	CYLINDER SCREW
20	CYLINDRICAL PIN DIN 6325
21	X-RING
22	O-RING
23	CYLINDER SCREW DIN 912
24	THREADED PIN DIN 916
25	CYLINDER SCREW DIN 912
26	COUNTERSUNK SCREW DIN 963
27	CYLINDER SCREW DIN 912
28	COVER
29	WIPER

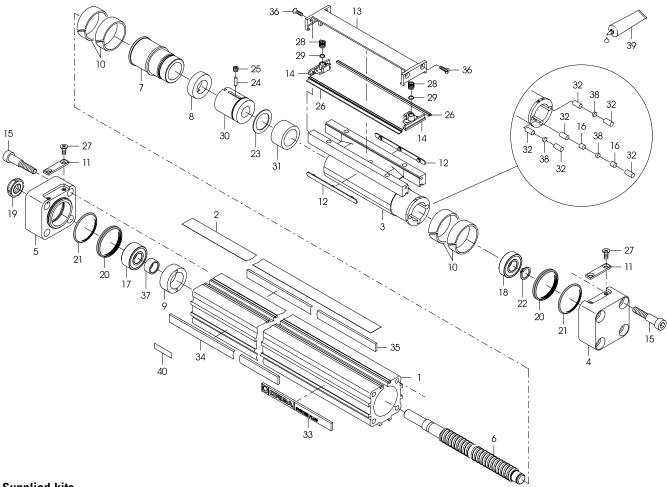
POS.	DESCRIPTION
30	SIDE WIPER CUT TO LENGTH ON SIDE
31	THRUST SPRING FOR WIPER
32	BALL BEARING
33	CIRCLIP DIN 472
34	O-RING
35	PLUG PLASTIC FOR SECURING BOREHOLES
36	COVER RAIL FOR NAMEPLATE
37	COVER RAIL METER GOODS
38	COVER RAIL METER GOODS
39	BOLT FOR MAGNET
40	COUNTERSUNK SCREW DIN 7991
41	MAGNET OSP-E32B
42	GREASE NIPPLE A1
43	GREASE FOR GUIDE
44	IDENTIFICATION PLATE OSP
45	BRACING PIN DIN 7343 OSP-E25B
46	BELT WHEEL DRIVE FOR OSP-E25B
47	DISTANCE RING FOR OSP-E25B
48	SHAFT ONE SIDE OSP-E25B

11.5 OSP-E..B

Linear Drive with toothed belt and internal plain bearing guide

Bi-Parting version

Description	Order No.			Contents
	OSP-E25BP	OSP-E32BP	OSP-E50BP	
Seal kit	2 x 12110	2 x 12111	2 x 12112	4, 5, 19, 21, 22, 28, 29, 30, 31, 34, 40, 43
Service kit	15289	15290	15291	Seal kit + 2, 10
Carrier kit	15253	15254	15255	3, 4, 5, 6, 7, 19, 28, 29, 30, 31, 34, 36, 40, 41, 49
End cap kit running unit	12113	12117	12121	9, 12, 13, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26
End cap kit shaft 0	12114 / 15277*	12118 / 15280*	12122 / 15283*	8, 15, 17, 21, 23, 26, 27, 32, 33, 35, 45, 46, 47, 48
End cap kit shaft 1	12115 / 15278*	12119 / 15281*	12123 / 15284*	8, 15, 17, 21, 23, 26, 27, 32, 33, 35, 45, 46, 47, 48
End cap kit shaft 2	12116 / 15279*	12120 / 15282*	12124 / 15285*	8, 15, 17, 21, 23, 26, 27, 32, 33, 35, 45, 46, 47, 48

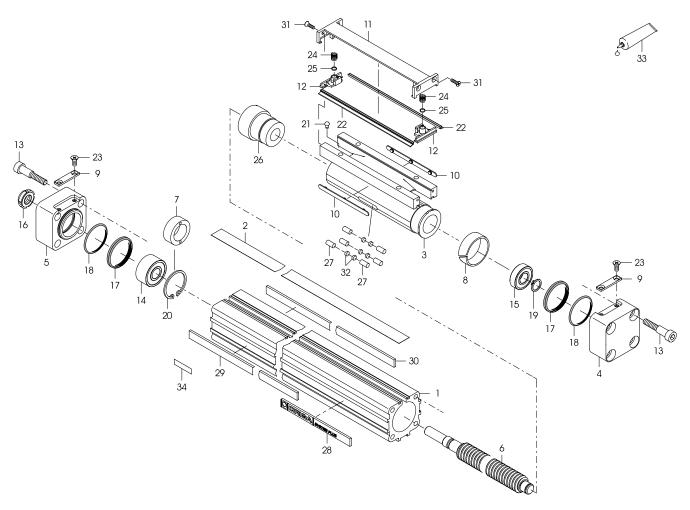

^{*)} Stainless steel version

POS.	DESCRIPTION
1	CYLINDER BARREL OSP-EBP CUT TO LENGTH
2	OUTER BAND CUT TO LENGTH OSP-EBP
3	CARRIER OSP-EBP
4	SUPPORT RING OSP-EBP
5	BEARING STRIP OSP-EBP
6	MAGNET HOUSING FOR OSP-EBP
7	MAGNET 10D X 3L FOR OSP-EBP
8	DRIVE END CAP FOR OSP-EBP
9	RUN END CAP FOR OSP-EBP
10	BELT OSP-EB CUT TO LENGTH
11	SHAFT ONE SIDE OSP-E32B / OSP-E50BP
12	AXLE REVERSE GUIDE FOR OSP-EB
13	BELT WHEEL REVERSE GUIDE FOR OSP-EBP
_14	BEARING HOUSING FOR OSP-EBP
15	CLAMPING PIECE EXTERN
_16	SCREW FOR COVER
_17	COVER PLATE FOR OSP-EBP
_18	BALL BEARING
19	CYLINDER SCREW DIN 912
20	CYLINDRICAL PIN DIN 6325
_21	X-RING
22	O-RING
23	CYLINDER SCREW DIN 912
24	THREADED PIN DIN 916
25	CYLINDER SCREW DIN 912
26	COUNTERSUNK SCREW DIN 963
27	CYLINDER SCREW DIN 912
28	COVER
29	WIPER

POS.	DESCRIPTION
30	WIPER CUT TO LENGTH ON SIDE
31	SPRING
32	BALL BEARING
33	CIRCLIP DIN 472
34	O-RING
35	PLUG PLASTIC FOR SECURING BOREHOLES
36	COVER RAIL FOR NAMEPLATE
37	COVER RAIL METER GOODS
38	COVER RAIL METER GOODS
39	BOLT FOR MAGNET OSP-EBP
40	COUNTERSUNK SCREW DIN 7991
41	MAGNET OSP-E32BPP
42	GREASE NIPPLE A1
43	GREASE FOR GUIDE
44	IDENTIFICATION PLATE OSP
45	LOCK PIN DIN 7343 FOR OSP-E25BP
46	WHEEL BELT DRIVE FOR OSP-E25BP
47	DISTANCE RING FOR OSP-E25BP
48	SHAFT ONE SIDE OSP-E25BP
49	FILLING OUT PLATE FOR OSP-EBP

11.6 OSP-E..SB

Linear drive with ball screw drive and internal plain bearing guide

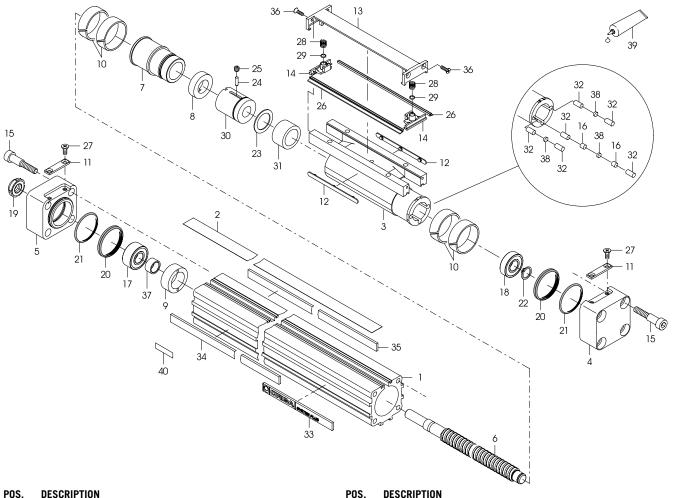

Description	Order No.			Contents
	OSP-E25S	OSP-E32S	OSP-E5OS	
Seal kit	12125	12126	12127	10, 12, 13, 14, 20, 21, 26, 28, 29, 36, 39
Service pack	15250	15251	15252	Seal kit + 2
Carrier kit spindle 5 mm	12166	12168	12916	3, 7, 8, 10, 12, 13, 14, 16, 23, 24, 25, 26, 28, 29, 32, 36, 38
Carrier kit spindle 10 mm	-	12168	12916	3, 7, 8, 10, 12, 13, 14, 16, 23, 24, 25, 26, 28, 29, 32, 36, 38
Carrier kit spindle 25 mm	-	-	12916	3, 7, 8, 10, 12, 13, 14, 16, 23, 24, 25, 26, 28, 29, 32, 36, 38
Carrier kit spindle 50 mm	-	-	12916	3, 7, 8, 10, 12, 13, 14, 16, 23, 24, 25, 26, 28, 29, 32, 36, 38
Ball Screw Dirve 5 mm	15256	15257	15259	6, 30
Ball Screw Dirve 10 mm	-	15258	15260	6, 30
Ball Screw Dirve 25 mm	-	-	15261	6, 30
Ball Screw Dirve 50 mm	-	-	15262	6, 30
End cap kit run unit spindle	12129	12131	12133	4, 11, 15, 18, 20, 21, 22, 27
End cap kit actuator spindle	12128	12130	12132	5, 9, 11, 15, 17, 20, 21, 27

POS. DESCRIPTION 1 CYLINDER BARREL CUT TO LENGTH OSP-E..S 2 OUTER BAND CUT TO LENGTH OSP-E..S 3 CARRIER OSP-E..S 4 END CAP FOR OSP-E..S 5 END CAP DRIVE FOR OSP-E..S 6 BALL THREADED SPINDLE LOCKING NUT OSP-E..S 8 ADJUSTING NUT OSP-E..S 9 CLAMPING RING OSP-E..S 10 SUPPORT RING OSP-E..S CLAMPING PIECE EXTERN 11 12 BEARING STRIPS OSP-E..S 13 COVER WIPER 14 15 SCREW FOR COVER MAGNET OSP-E..S 16 17 BALL BEARING 18 BALL BEARING 19 NUT 20 X-RING 21 O-RING 22 CIRCLIP DIN 471 23 FITTING DISK DIN 988

SIDE
S
<u> </u>

11.7 OSP-E..ST

Linear drive with trapezoidal screw drive and internal plain bearing guide

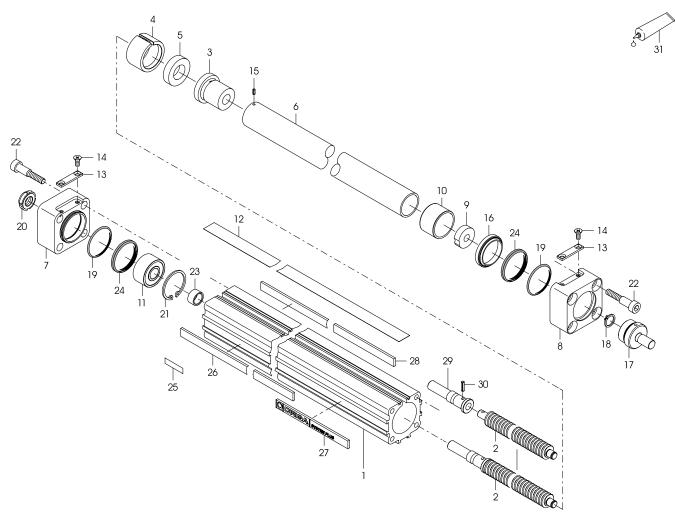

Description	Order No.	Order No.		Contents
	OSP-E25ST	OSP-E32ST	OSP-E5OST	
Seal kit	12125	12126	12127	8, 10, 11, 12, 17, 18, 22, 24, 25, 31, 33
Service pack	15250	15251	15252	seal kit + 2
Carrier kit	12816	12825	12834	3, 8, 10, 11, 12, 21, 22, 24, 25, 26, 27, 31, 32
End cap kit run unit spindle	12129	12131	12133	4, 9, 13, 15, 17, 18, 19, 23
End cap kit actuator spindle	12128	15617	15618	5, 9, 13, 14, 17, 18, 20, 23

POS. DESCRIPTION 1 CYLINDER BARREL CUT TO LENGTH OSP-E..ST 2 OUTER BAND CUT TO LENGTH OSP-E..ST CARRIER OSP-E..ST 3 4 END CAP FOR OSP-E..ST 5 END CAP DRIVE FOR OSP-E..ST 6 TRAPEZOIDAL THREADED SPINDLE OSP-E..ST CUT TO LENGTH 7 CLAMPING RING OSP-E25ST 8 SUPPORT RING OSP-E..ST 9 CLAMPING PIECE EXTERN 10 SLIDE RAIL OSP-E..ST 11 COVER WIPER 12 13 SCREW FOR COVER 14 BALL BEARING 15 BALL BEARING 16 NUT 17 X-RING O-RING 18 19 CIRCLIP DIN 471 20 CIRCLIP OSP-E32ST / OSP-E50ST

POS.	DESCRIPTION
21	SCREW
22	SIDE WIPER CUT TO LENGTH ON SIDE
23	COUNTERSUNK SCREW DIN 963
24	THRUST SPRING FOR WIPER
25	O-RING
26	TRAPEZOIDAL THREADED NUT FOR OSP-EST
27	STEEL BOLT
28	COVER RAIL FOR NAMEPLATE
29	COVER RAIL METER GOODS
30	COVER RAIL METER GOODS
31	COUNTERSUNK SCREW DIN 7991
32	MAGNET FOR OSP-EST
33	GREASE
34	IDENTIFICATION PLATE

11.8 OSP-E..SB

Linear drive with ball screw drive and internal plain bearing guide



POS.	DESCRIPTION
1	CYLINDER BARREL OSP-ESBR CUT TO LENGTH
2	BALL SCREW
3	PISTON ROD
4	SUPPORT RING OSP-ESBR
5	BALL SCREW NUT
6	ADJUSTING NUT
7	END CAP DRIVE FOR OSP-ESBR
8	END CAP PISTON SIDE OSP-ESBR
9	COUNTERSUNK SCREW DIN 965
10	CLAMPING PIECE EXTERN
11	SCREW FOR COVER
12	LOCKING NUT
13	BALL BEARING
14	SLEEVE OSP-E32SBR
15	CLAMPING RING
16	O-RING
17	X-RING
18	WIPER
19	SEALING RING DIN 471
20	SUPPORT BEARING
21	SLIDE BEARING
22	PISTON ROD SECUREMENT
23	COVER RAIL FOR NAMEPLATE

POS.	DESCRIPTION
24	IDENTIFICATION PLATE
25	COVER RAIL METER GOODS
26	OUTER BAND CUT TO LENGTH
30	NUT SLEEVE
31	BEARING STRIPL
32	COUNTERSUNK SCREW DIN 965
33	TURNING LOCK
34	SOCKET SET SCREW DIN 914
35	SOCKET SET SCREW DIN 916
40	MAGNET HOLDER OSP-E32/50SBR
41	STEEL BOLT OSP-E32/50SBR
42	MAGNET OSP-E32/50SBR
43	MAGNET OSP-E32SBR
50	MAGNET OSP-E25SBR
51	ADJUSTING WASHER OSP-E25SBR
52	SEALING RING DIN 471 OSP-E25SBR
99	PARKER-ORIGA GREASE 2

11.9 OSP-E..STR

Linear drive with trapezoidal screw drive, internal plain bearing guide and piston rod

POS.	DESCRIPTION
1	CYLINDER BARREL OSP-ESR CUT TO LENGTH
2	TRAPEZOIDAL THREADED SPINDLE OSP-EST CUT TO LENGTH
3	NUT TR16X4 OSP-ESR
4	SUPPORT RING OSP-ESR
5	MAGNET FOR OSP-ESR
6	PISTON ROD OSP-ESR CUT TO LENGTH
7	END CAP DRIVE FOR OSP-ESR
8	END CAP PISTON SIDE OSP-ESR
9	SUPPORT BEARING OSP-ESR
10	SLIDE BEARING
11	BALL BEARING
12	OUTER BAND CUT TO LENGTH OSP-ESR
13	CLAMPING PIECE EXTERN OSP-ESR
14	COUNTERSUNK SCREW DIN 965
15	BRACING PIN DIN 8752
16	WIPER
17	PISTON ROD SECUREMENT OSP-OSP-ESR
18	CIRCLIP DIN 471

POS.	DESCRIPTION
19	O-RING
20	LOCKING NUT
21	CIRCLIP DIN 472
22	SCREW FOR COVER
23	SLEEVE FOR OSP-E32SR
24	X-RING
25	IDENTIFICATION PLATE
26	COVER RAIL METER GOODS
27	COVER RAIL FOR NAMEPLATE
28	COVER RAIL METER GOODS
29	SHAFT OSP-E32SR
30	BRACING PIN DIN 8752 OSP-E32SR
31	GREASE

Your competent partner with global service

and-distribution.

parker.me@parker.com

AR - Argentina, Buenos Aires Tel: +54 3327 44 4129

AT - Austria, Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

AT - Austria, Wiener Neustadt (Europa Oriental) Tel: +43 (0)2622 23501 970 parker.easteurope@parker.com

AT - Austria, Wiener Neustadt Parker Origa Pneumatik GmbH Tel: +43 2622 26071-269 info-hoat-sales.pn@parker-origa.com

AU - Australia, Castle Hill Tel: +61 (0)2-9634 7777

AZ - Azerbaijan, Baku Tel: +994 50 2233 458 parker.azerbaijan@parker.com

BE/LX - Belgium, Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

BR - Brazil, Cachoeirinha RS Tel: +55 51 3470 9144

BY - Belarus, Minsk Tel: +375 17 209 9399 parker.belarus@parker.com

CA - Canada, Milton, Ontario Tel: +1 905 693 3000

CH – Swiss, Etoy Tel: +41 (0) 21 821 02 30 parker.switzerland@parker.com

CH - Swiss, Otelfingen Parker Origa AG Tel +41 44 846 6860 info-hoch-sales@parker-origa.com

CN - China, Shanghai Tel: +86 21 5031 2525

CZ - Czechia, Klecany Tel: +420 284 083 111 parker.czechrepublic@parker.com

DE - Germany, Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

DK – Denmark, Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

ES - Spain, Madrid Tel: +34 902 33 00 01 parker.spain@parker.com

FI - Finland, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com

FR – France Tel: +33 (0)4 50 25 80 25 parker.france@parker.com FR - France, Courtaboef Cedex Parker Origa SAS Tel +33 1 69 29 22 00 info-hofr-sales@parker-origa.com

GR - Greece, Atenas Tel: +30 210 933 6450 parker.greece@parker.com

HK – Hong Kong Tel: +852 2428 8008

HU - Hungary, Budapest Tel: +36 1 220 4155 parker.hungary@parker.com

IE - Ireland, Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com

IN - India, Mumbai Tel: +91 22 6513 7081-85

IT - Italy, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

IT - Italy, Pioltello (MI) Parker Origa SRL Tel +39 02 92 16 65 53 info-hoit-sales@parker-origa.com

JP - Japan, Fujisawa Tel: +(81) 4 6635 3050

KR - Korea, Seúl Tel: +82 2 559 0400

KZ - Kazakhstan, Almaty Tel: +7 7272 505 800 parker.easteurope@parker.com

LV - Latvia, Riga Tel: +371 6 745 2601 parker.latvia@parker.com

MX - Mexico, Apodaca Tel: +52 81 8156 6000

MY - Malaysia, Subang Jaya Tel: +60 3 5638 1476

MY - Malaysia, Penang Parker Origa Sdn Bhd Tel +60 4 508 10 11 info-hosg-sales@parker-origa.com

NL - Netherlands, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

NL - Netherlands, SL Moerdijk Parker Origa B.V. Tel +31 168 356 600 info-honl-sales@parker-origa.com

NO - Norway, Ski Tel: +47 64 91 10 00 parker.norway@parker.com

NO - Norway, Drammen Parker Origa AS Tel +47 3 288 08 40 info-hose-sales@parker-origa.com

NZ - New Zealand Mt Wellington Tel: +64 9 574 1744

PL – Poland, Varsovia Tel: +48 (0)22 573 24 00 parker.poland@parker.com

PT - Portugal, Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com

RO - Romania, Bucarest Tel: +40 21 252 1382 parker.romania@parker.com

RU - Russia, Moscow Tel: +7 495 645-2156 parker.russia@parker.com

SE - Sweden, Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SE – Sweden, Kungsör Parker Origa AB Tel +46 227 411 00 info-hose-sales@parker-origa.com

SG - Singapor Tel: +65 6887 6300

SG - Singapor Parker Origa PTE Ltd. Tel. +65 6483 2959 info-hose-sales@parker-origa.com

SK - Slovakia, Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SI - Slovenia, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

TH - Thailand, Bangkok Tel: +662 717 8140

TR - Turkey, Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

TW - Taiwan, Taipei Tel: +886 2 2298 8987

UA – Ukraine, Kiev Tel +380 44 494 2731 parker.ukraine@parker.com

UK - United Kingdom, Gloucester Parker Origa Ltd. Tel +44 8700 600655 info-hogb-sales@parker-origa.com

UK - United Kingdom, Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com

US - United States of America, Cleveland Tel: +1 216 896 3000

US - United States of America Parker Origa Corporation Tel +1 630 871 830-0 info-hous-sales@parker-origa.com

VE – Venezuela, Caracas Tel: +58 212 238 5422

ZA - South Africa. Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com

P-A7P014E

Nov. 2008

© 2008 Parker-Origa GmbH - The right to introduce technical modifications is reserved

Industriestr. 8 70794 Filderstadt, Deutschland Tel. +49 7185 17030 Fax +49 7158 64870 www.parker-origa.com

ORIGA